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ABSTRACT FTL (Flash Translation Layer) is a memory block controller that manages the challenges of a
data storage system based on flash memory technology. The design of internal parallelism in MLC-based
SSDs with virtual blocks resulted in various challenges and due to the physical structure of flash memory
cells based on MLC technology, it is possible to write a new page in a data block at the address after the last
page is written. In parallel-based SSD design based on virtual blocks, some writes create unusable pages at
the memory space, and these created holes reduce memory efficiency; consequently, it reduces the life-time
of memory blocks by creating more operations, and accelerates garbage collection and merging operations.
The proposed FTL offers three steps to address this constraint. Firstly, an idea was proposed to prevent
costly transitions and to distribute data more evenly at memory blocks (wear leveling). Secondly, the unused
holes created in virtual blocks became much fewer resulting in increased utilization of memory space. At last,
a policy was proposed to prevent update blocks (log blocks) from being blocked and to postpone the merging
and garbage collection by which the memory lifetime increases significantly. Simulation results showed that
the number of unused erased pages and the number of extra write operations decreased up to 23% and 17%,
respectively. In addition, the number of invalid released pages increased up to 21% in the proposed FTL, and
the speed of I/O executions to 3%.

INDEX TERMS Solid-state disk, MLC (multi-level cell), parallel virtual blocks, flash translation layer,

life-span, memory utilization.

I. INTRODUCTION

SSDs (Solid-State Disks), as a data storage system, have
many capabilities such as high I/O operations, low power
consumption and non-electronic components removal. These
advantages increase the use of SSDs in large IT companies in
order to storage data. Access to high density is very impor-
tant in SSDs; therefore, NAND Flash memory technology is
mainly used in SSDs [1]. In NAND technology, reduced inter-
connection lines make the space possible to allocate more
memory. However, on the other hand, flexible data access
is somewhat reduced and by that, it causes limitations in
running I/O operations on memory cells. MLC (Multi-Level
Cell) technology is used to achieve greater storage density in
flash memories. These transistor cells can store more bits in
their floating gate. However, memory blocks usage time is
reduced compared to SLCs (Single-Level Cells). These limi-
tations cause significant challenges, including the lifetime of
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memory blocks and the optimal use of memory space. When
a memory reaches its end of life, data should be relocated
before it is lost. Given the high price of SSDs, data relo-
cation is very costly, and data recovery methods should be
used in the event of data loss [2]. So, increasing lifetime of
memory and postponing memory crashes are very important
and consequently, it reduces costs in the long term. NAND
flash memory is used in various storage drives, and also as a
storage unit in computers like desktops and devices, such as
USBs, digital camera memory cards, solid state disk servers,
and smart devices [3].

In flash memories the read and write unit is a page, while
the erase unit is a block and have limitations that challenge
their management. For example, to update data (Overwrite),
a space corresponding to data size is considered in a physical
address, and then data is updated and stored in that address.
In the meantime, the earlier data address becomes invalid
until being released and accessible for reuse by erasing. This
operation is called GC (garbage collection) [4], [5]. This
limitation imposes overheads on the system in two ways:
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time overhead, and the overhead caused by copying data
(i.e. Extra read/write operations) which can lead to memory
blocks wear-out [6]—[8].

As mentioned above, writing and erasing operations can
speed up the memory wear-out. Limited number of eras-
ing operations is another limitation of flash memory. For
example, in Samsung K9F1GO8UOC SLC, a block can be
erased up to 100,000 times without having problem with
data storage, while in Samsung K9G4GO8UOA, each physical
block can be erased up to 5,000 times [9]. The difference
between these two series of storage devices is related to the
technology of their memory cells. The transistors used to
store data in flash memories use one or more floating gates
in addition to the main gate. If one floating gate is used in
the transistors, they can store only one bit, and if the floating
gates are more than one, they can store 2 bits or more. The
former manufacturing technology is called SLC and the latter
one is called MLC [10]. As noted above, SLC-based storage
memories have a longer lifetime than MLCs, due to the noise
margin or confidence interval at the binary voltage levels.
An interface module called flash translation layer is used to
hide these unfavorable features from users [11]. Logical and
physical block addressing is one of the most important tasks
of FTL [12].

There are three basic addressing methods; Page-level
addressing in which there is a physical address corresponding
to each logical address. In this method, data access speed is
very high, and the size of address table, proportional to the
number of memory pages, is very large and too much memory
space is occupied. In FTL with page construction, if the
sequential write command arrives from the operating system,
it starts from the first empty storage space where there may be
multiple unused pages per block and a serial write request is
distributed across the blocks. In terms of operating system,
data is written as sequential because its logical address is
Sequential, but at the bottom layer it is written completely
in random order [13]. Block-level addressing in which there
is a physical address corresponding to each logical address
associated with a block. In this method, a page is accessible
through the offset into that page, and the size of address table,
proportional to the number of memory blocks, is lower than
the previous method and less memory space is occupied [14].
Recently, a hybrid method has been most frequently used
in FTLs. In this method, memory space is divided into two
sections. Primary data (the data being written for the first
time) which is stored in the first section called data blocks
region. In this section, addressing is done at block level.
Page update operation is done in the second section called
update blocks or log blocks in which addressing is done at
page level [15]-[17]. This method takes advantage of both
previous methods. Figure. 1 shows the internal structure of
SSD Samsung K9K8GOUOA.

As can be seen, chips take place at the highest level, and
each of them contains several dies. Each die has a number
of planes that each plane contains several blocks. Every indi-
vidual block contains a number of pages, and each page has
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FIGURE 1. Internal structure of Samsung K9K8GOUOA [18].

number of modified transistors with floating gates. In flash
memories, read and write are page-granularity operations,
and erase is a block-granularity operation. It is noteworthy
that various plane blocks can be accessed through abundant
channels of an SSD parallelly and simultaneously. SSDs’
internal parallelism capabilities were merely used in previous
FTLs, mainly due to the limitations discussed in the next
section.

In our proposed FTL, it is tried to take advantage of
parallelism, increase speed, and reduce overhead caused by
unnecessary copies of data, and additionally, to overcome
the challenges in virtual parallel FTL structure and improve
memory utilization. This paper is organized as follows.
Section II includes literature review and the motivation
behind the desired idea. In section III, the FTL is proposed
and implemented. In section IV, the performance of the
proposed FTL is assessed. Finally, conclusion is presented
in section V.

Il. RELATED WORKS

In this section, we first introduce the internal parallelism
of SSDs and their advanced instructions. Then, we exam-
ine valid and popular FTLs and finally present ideas
for implementing the proposed FTL based on a virtual
parallel SSD.

A. INTERNAL STRUCTURE OF SSDs AND

THEIR ADVANCED INSTRUCTIONS

Basic instructions in SSDs were examined in FTL and an
I/0 instruction was executed. These instructions are divided
into two groups, main instructions including read, write, erase
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and Sub-instructions including copy, garbage collection, and
merging [19]. Various FTLs are designed with different struc-
tures depending on the desired area of application, but all of
them mainly focus on the major challenges and limitations of
flash memories. Obviously, there is an interaction between
improving a parameter and paying for this improvement.
For example, to increase the lifetime of flash memories and
ultimately to improve the performance of an SSD, we need
to implement and design an extra section in the FTL which
imposes overheads on the system. These overheads can be
reduced by using some capabilities of SSDs [20] includ-
ing the use of idle bus lines in the internal structure of
SSDs for simultaneous access to memory blocks. Therefore,
by increasing the speed of execution operations, we can
compensate the time lost to perform complex calculations to
implement a more optimal FTL.

Today finer nanometer process technologies for manu-
facturing NAND flash memory are being introduced. New
processes produce various multi-level cell (MLC) NAND
flash devices, providing a high-capacity; small form factor
storage option for saving any data on smartphones, tablets
and solid-state drives (SSDs). Generally, in SSDs, write to
flash blocks is performed serially, especially if the man-
ufacturing technology is MLC. However, from a different
perspective, one can find parallelism in internal structure of
an SSD, so that simultaneous access to different chips of
an SSD is possible due to the large number of embedded
communication channels [21]. In finer granularity, the same
possibility can be seen in the dies of a chip, planes of a die,
and blocks of a plane. Therefore, with proper organization,
one can access a certain level of parallelism and manage
the operations defined on SSDs simultaneously. Given this
capability, a series of advanced instructions were defined for
I/O operations on SSDs. These instructions include interleave
command instruction, multi-plane instruction and interleave
multi-plane and copy-back instruction. Multi-plane instruc-
tion runs multiple I/O instructions on different planes of a
die. Interleave instruction runs multiple I/O instructions on
different dies of a chip, and copy-back instruction copies
pages from odd to even addresses, and vice versa, in the same
row of memory planes [22]. At the highest possible level of
parallelism, I/O operation can be run on a row of memory of
a chip using these instructions.

B. THE PREVIOUS DESIGNATED FTLs

FTL software layer is a control center for different
components of an SSD; and there are highly efficient designs
in this area. Some of the most important and efficient FTLs
are introduced below.

FAST: Fully Associative Flash Translation Layer is an
extremely efficient flash translation layer that uses hybrid
addressing [23]. In this method, storage space is divided
into two distinct sections. The first section, called data
blocks region, is used for primary storage, and utilizes
block-mapping addressing method to interconnect logical
and physical blocks. Given the larger memory space in
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FIGURE 2. An example of full merging operation.

this section, this addressing method results in an address table
with smaller size. The second section takes up a much smaller
space than the first section, and is only used to store updated
data. The link between updated pages in this section and
their logical addresses is built through the page’s address
table. This table normally occupies a large space, but due to
the low memory space in this section, it will not face any
challenges, and on the other hand, it also uses high-speed
access capability of page-mapping method. In FAST, each
update block can associate with all data blocks and accept
the updated page from them. Figure. 2 reveals a full merging
operation through which the update block (Log Block) is in
association with data blocks #0 and #1. When all log block
pages are filled, the merging operation is called. In this case,
valid pages from the data block #0 and the updated pages
from the log block are copied to an empty data block. The
same operation is repeated for data block #1. Finally, data
blocks 0, 1 and the log block are erased to become reusable.
Now suppose that the size of each block in flash memory is
as large as 8 pages. Therefore, a log block (update block) can
correspond to at least 8 data blocks. Accordingly, by exe-
cuting merging instruction in FTL controller, 8 data blocks
will be merged into the log block, and data will be written
on the 8 other empty blocks in the memory space. Finally,
the previous 8 data blocks and the update block will be erased.
Due to this very process, many unused pages in data blocks
may be erased for no reason, and as a result, it causes severe
memory block wear-out, reduced performance on SSDs and
decreased memory lifetime.

DA-FTL: Dynamic Associative Flash Translation Layer
proposes a dynamic design for SSDs greatly overcoming its
challenges [24]. Hybrid addressing method is used in this
design and the storage space is divided into two distinct
sections as well. Given the limited number of update blocks,
this method associatively changes for log blocks from static to
dynamic. This easily prevents some pages of log blocks from
being unused before merging operation, and also prevents
unused pages from being erased during merging operation.
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Therefore, it increases the system’s lifetime. In this method,
the log block selected as victim to perform merging oper-
ation is analyzed by a decision-making algorithm. In this
algorithm, the associativity between this victim log block
and its corresponding data blocks may decrease or increase,
depending on the current memory condition and how the
pages of data blocks are filled. Putting aside some pages from
the victim block reduces associativity, which will happen
when associativity of the data block corresponding to these
pages in merging operation is not worthwhile (in terms of
cost of read, write, or erase operations). On the one hand,
some pages of other log blocks may be copied to the victim
log block, which increases associativity in the victim block.
This decision is made when associativity of the data block
corresponding to copied pages in merging operation is highly
worthwhile- that is to say, by associating this data block
in merging operation, many invalid pages are released and
less unused pages are erased in erase operation unnecessar-
ily. DA-FTL actually increases utilization of memory space
resulting in dramatically increased SSD lifetime. On the other
hand, copying pages on the log blocks of the update section
causes overheads (caused by time and extra write operations)
on the system. This is an ideal FTL for MLC-based SSDs in
which lifetime is a very important issue but not the time.

In VBP-FAST, the memory space is divided into VBlocks
and PBlocks [25]. Each row of VBlocks is called a Big-Page.
Obviously, the number of pages in a Big-Page is calculated
by multiplying the number of chips per SSD by the number
of dies per chip by the number of planes per die. The size of
virtual blocks should be equal to the standard size of blocks
in SSD. It should be noted that in VBP-FAST, a VBlock
does not necessarily cover all SSD channels. For example,
an SSD may have 44 channels, and each VBlock occupies
4 channels. If a virtual block is using GC operation, the other
blocks can perform different operations simultaneously. If the
channels are likely to be occupied, the controller section after
data buffering provides the required FTL channels with an
interrupt. VBlocks are used to store “random write” or full
merged data log blocks. Write operation in VBlocks is per-
formed on rows. Blocks are the common blocks of flash
memories used to store ‘“‘serial write”” and partial or switch
merged data log blocks, and also, they are used to write any
data for the first time. In VBP-FAST, a portion of DRAM
is considered as buffer. When buffer is filled, VBP-FAST
chooses the pages to leave the buffer using LRU mecha-
nism. In fact, it dismisses as many pages as big-pages from
the buffer. At the same time, a prioritization mechanism is
applied to the pages in which the priority for dismissing the
pages belonging to a logical block is higher than the buffer in
order to maximize partial and switch merge. If the dismissed
pages are ordered starting with a zero-offset page, the pages
are written on a “‘serial write”” log block. If there is a log block
corresponding to the dismissed pages, the pages are written
following the pages of this block in the same order (dismissed
pages are written on a ‘“‘serial write” log block). However,
if there is not such block for the dismissed pages, all of them
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are written on a Big-Page simultaneously. If some dismissed
pages do not exist in the serial log block, these pages are
fully merged into their corresponding pages in the serial log
block, and then the remaining pages are written on a Big-Page
simultaneously running a write operation.

In parallel structure of SSD based on virtual blocks,
the connection between data blocks and update blocks is
defined as fully associative, meaning that an update block
is allowed to retrieve and store updated data from each data
block. By executing the merging function in GC, the valid
pages in the log block and its corresponding data blocks
will be copied to the empty data blocks, and eventually the
previous data blocks will be erased. Data blocks are involved
in the merging operation, which has a lot of unused pages,
and copying their valid pages and erasing the data block are
unnecessary. Restricting associativity between log blocks and
data blocks will guarantee the worst case, and creating a
control for selecting data blocks in the merging operation will
prevent unnecessary duplication of pages and erasure of data
blocks [26].

VBP-FAST uses the advanced instructions in parallel
structure of SSDs, mentioned in Section II-A. For example,
every Big-Page can be read using a two-plane interleaves
instruction. In VBP-FAST, page update has two parallel and
serial modes. For serial page update, n pages are writing
running and n write instructions on the serial log-block.
Otherwise, by running a parallel write instruction, as many
pages as Big-Pages are dismissed from buffer and written on
the random log-block each time. In full merging operation,
the valid data from log-block and data-block is copied on
DRAM using parallel read instructions, and then DRAM data
is written on a new VBlock using two instructions.

Garbage collection operation does not take place
immediately after formation of the new data block following
merging operation. This means that two invalid VBlocks are
not erased during full merging operation and will remain until
a GC operation is run. In VBP-FAST, GC operation is applied
to all physical blocks overlapping VBlocks; and this group of
blocks is called set block.

Blog-FTL is a suitable FTL for storage systems based on
MLC NAND FLASH, and it has been attempted to keep the
updated pages of a data block in the same log block as far
as possible, and consequently this helps to reduce the asso-
ciation between log blocks and data blocks [27]. In another
part of this FTL, a new method for partial merging operation
is introduced which postpones garbage collection operations,
and improves memory efficiency for valid pages and greatly
prevents unnecessary erasure of blocks. In summary, in this
FTL, two auxiliary tables are used to map memory. The
LMT: Log-Block Management Table specifies which data
blocks corresponds to each log block, and also the address
of first empty page of that log block stored in the offset.
A parameter named “L” is defined to determine the maxi-
mum number of data blocks that can be associated with this
Log block. DLT table: Data-Block to Log-Block Mapping
Table Specifies which data blocks each log block uses to
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store its updated data. Parameter ““U” is defined to determine
the maximum number of log blocks that can be assigned
to a data block. The GC operation is executed in multiple
states using the status of the data blocks and the log blocks
(filled or empty) and the L and U values (complete or not)
of the LMT and DLT tables; eventually, the table values are
updated.

MN-FTL presents a new mapping approach for MLC
NAND FLASH storage systems [28]. This method uses a
combination of block level addressing and page level address-
ing. Each logical block can be mapped with M physical
blocks, and the Block Mapping Table is organized by a
linked list. At the beginning of which is the Logical Block
and the rest of it is M physical blocks. Each logical page
is mapped to a corresponding physical page by the page
level mapping method, and this page table is divided into
N sub-tables for each logical block and stores as N pointers
in RAM as the page table stores. This FTL also reduces
the overhead of copying valid pages and erasing blocks by
postponing the Garbage Collection and limiting the amount
of RAM space used.

In ASA-FTL: An Adaptive Separation Flash Translation
layer for SSDs data is divided into three groups; Hot, Cold
and Warm [29]. In fact, the space of the memory blocks
is divided, so that each data is stored into one of three
groups according to its characteristics. This FTL presents a
new method to classify data and makes data classification
more precise and optimized. Therefore, this design ultimately
reduces overhead in Garbage Collection operation.

Ill. PROPOSED FTL

In this section, a new structure is proposed for flash
translation layer which uses advanced instructions at paral-
lelism level. This FTL mainly focuses on increasing lifetime
and the speed of I/O operations using advanced instruc-
tions at SSDs’ parallelism level. In this method, memory
space is divided into data blocks and update blocks, as well.
The proposed structure takes advantage from the previously
mentioned virtual blocks. There are many problems in the
structure of virtual parallel block-based FTLs, including
unnecessary copies of data, without being limited or con-
trolled. Moreover, poor management of write instructions in
memory blocks creates unusable spaces in different sections
of MLC-based flash memories, and as a result, it causes mem-
ory utilization. In the proposed method, three new control
sections are added to the parallel FTL structure. In the first
section, extra I/O operations related to instructions such as
merging and GC, which result in reduced lifetime of memory
blocks were minimized as much as possible by limiting the
associativity between data and update blocks. In the second
section, the characteristics of data blocks were changed and
a plan was proposed to reduce unused holes created on the
middle layers of flash memories as much as possible. This
increases memory utilization and prevents severe wear-out
of some memory blocks in the short run, and that ultimately
leads to increased lifetime of SSDs. In the third section,
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FIGURE 3. Structure of an SSD with 16-page virtual blocks.

changes were made in the update blocks (log blocks). This
section aims to prevent update blocks from being blocked,
which is of great importance due to the limited number of
these blocks. Consequently, this postpones operations such
as merging and garbage collection and ultimately increases
the lifetime of SSD. The proposed FTL is discussed in more
detail in the following sections.

A. ESTABLISHING AN APPROPRIATE EFFICIENT
INTERCONNECTION LAYER BETWEEN VIRTUAL

DATA BLOCKS AND VIRTUAL UPDATE BLOCKS BY
MODIFYING GC IN MERGING OPERATION

In VBP-FAST, when GC operation is called, a virtual update
block is merged into all its corresponding virtual data blocks.
However, due to the fact that there is no limitation on the
number of received virtual data blocks in the address table of
virtual log blocks, in the worst case, merging operation may
be run as many times as the number of pages of a block. This
leads to severe memory blocks wear-out and creates many
unused holes. For example, suppose that each physical block
has 16 pages. The structure of this virtual logical block-based
SSD is shown in Fig. 3.

Given that the size of each physical block is 16 pages
and each Big-Page here has 8 pages, so each virtual block
has two Big-Pages, and 8 Big-Pages build a real physical
block, forming a set block. Obviously, in random mode, the
associativity of a Virtual Log Block can range from 1 to 16.
This happens when there is only one updated page of any
unique virtual data block in a virtual update block.

Now, suppose that the average associativity in a random
virtual block is 4 that is to say, each virtual update block
associatively corresponds to 4 virtual data blocks. So, when
merging operation is called, the virtual update block will be
merged into 4 virtual data blocks. As a result, read/write oper-
ations should be run as many times as the number of all valid
pages in the random virtual block and its 4 corresponding
virtual blocks. In virtual block method, write operation is per-
formed on rows, and many holes may be created in merging
operation with high associativity rate creating several unused
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LAVB_function(victim)//Limited Associative Virtual Block
BEGIN
//LA: Define as limited associative between a virtual log block
and their virtual data blocks
A_list=associative_linked_list of virtual victim block;
Bool suitable;
/*If(virtual _data_block.utilization>=thereshold)
Suitable=TRUE;
9 Else
10 Suitable=FALSE;
11 */
12 start=A_list.first;
13 while (start = NULL){
14 if (start.suitable == TRUE)

e BN Be NV I N S A

15 start=start->next;
16 else
17 call remove(vicim,start);

18 }//end of while

19 merge(victim);

20 remove(X,y) {

21 scan virtual_log block_list;

22 host=find the least virtual log blocks.utilization;
23 //copy all valid pages of ‘y’ to the host block;
24 for (int i=0; i<virtual block_size ; i++){

25 if(x_associative[i]==y)

26 host_next free page=x_valuel[i];

27 }//end of for

28 }//end of remove function

29 | END

FIGURE 4. The pseudo code for modification of merging and GC
operations.

pages and expediting garbage collection operation. As noted
above, speeding up garbage collection leaded to early mem-
ory wear-out and reduced lifetime. In order to overcome this
problem, we proposed a new strategy for associating update
blocks with their corresponding data blocks. In this strategy,
we select a number as the worst associativity rate, which
helps us to reduce extra write operations and unused holes.
Like KAST-FTL [30], we have used multiple replication
experiments to obtain the best associativity value. However,
in this study many experiments were repeated over hundreds
of times over real and synthetic workloads. We found that
the choice of the best limit for the associativity rate depends
on parameters such as block size, amount of memory used
for the update blocks, and the type of workload used. Since
this parameter is set to software in FTL and is hardware-
free, it can be changed depending on the circumstances, and
achieves the best results. In the second step, a virtual update
block is selected as the victim for merging operation, and then
it passes through a filter to eliminate possible bad cases in GC
from merging operation. This leads to reduced memory wear-
out. Figure. 4 presents the pseudo code of the proposed idea.
In summary, this pseudocode is run as follows: Firstly, all
virtual data blocks of the victim virtual log block are placed
on an attached list called A_list, and then, all of them are
verified. The necessary condition for being verified is that uti-
lization of a block containing valid and invalid pages should
not be less than threshold. In the proposed FTL, threshold
is considered to be 50% to guarantee the worst efficiency of
the block to be erased in GC operation. Secondly, A_list is
scrolled to the bottom, and the verification tag of each virtual
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data block is checked. It passes through if its value is correct;
otherwise, remove function is called. This function finds valid
pages of the virtual data block transferred to the argument of
remove function in the victim virtual log block and moves
them to another virtual log block. The host virtual block must
have the minimum utilization to achieve wear-level and over-
lap at memory blocks level. Finally, inappropriate data blocks
are removed from the list and the victim block becomes
ready to be sent for merging operation by calling merge
function. It should be noted that in the source code, erased
data is buffered and transferred by using parallel instructions
simultaneously. Buffering operation is performed based on
page addresses to avoid excessive overhead.

In the proposed idea, the virtual data block used in merging
operation is not labeled as an invalid block. As mentioned
in the previous section, GC operation is performed on a set
block; so, until the desired data block is not placed in the
desired situation for GC operation, unused pages of data
block are allowed to be used. The novel way to Reduce Extra
Costs, such as copying extra pages, and deliberately erasing
unused pages in Garbage Collection and merging operation
can also be embedded in all new FTLs that use the actual
structure of the memory blocks.

B. AN ACCURATE CONFIGURATION FOR FLASH
MEMORY BLOCKS TO ACHIEVE MORE SET
BLOCKS AND REDUCE UNUSED HOLES
In parallel FTL, GC operation can be performed on set
blocks using virtual blocks. Unlike ordinary FTLs in which
only valid blocks of a block are copied to another empty
block to erase the former block, here we must copy virtual
blocks (VBlocks) of a set block to an empty set block to erase
the former set block. In VBP-FAST, there are very few set
blocks, so, keeping some of them empty for GC operation
leads to large unusable memory space. The number of set
blocks is equal to the number of blocks on a plane. As a
solution to this problem, it is suggested to reduce the size of
physical blocks to have more set blocks and more unusable
memory space for GC operation. However, the main reason
for choosing smaller size of blocks is to solve the problem of
unused holes created on set blocks. In physical blocks, write
operation is performed on columns from the first to the last
page of a block. In VBlocks, write operation is performed
on rows, but in physical blocks, write operation is performed
serially. Hence, as shown in Fig. 5, several unused pages
are created in the middle space of VBlocks of a set block.
In VBLOCK # 0, the memory pages following page # 59 can-
not be used. Here, an equation is proposed to calculate the size
of the hole created on each VBlock. Table 1 shows definitions
and classification for a virtual block-based parallel SSD in the
proposed FTL.

The size of a Big_Page is calculated using (1).
BIG_PAGE_SIZE =SSD_SIZE*(CHIP_SIZE*DIE_SIZE)

ey

In (1), the number of pages of a row on each chip of an SSD
is equal to CHIP_SIZE * DIE_SIZE. The size of a Big_Page
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FIGURE 5. Hole formation between pages of a VBlock.

TABLE 1. Definitions and classification for a virtual block-based parallel
SSD.

TABLE 2. Specifications of the Samsung 80GB SSD.

is calculated by multiplying this value by the total number of
chips (SSD_SIZE). The size of a VBlock based on the number
of BIG_PAGE:s is calculated using (2).

BLOCK_SIZE
VBLOCK _SIZE = 2)
BIG_PAGE_SIZE

The size of a VBlock based on the number of its
BIG_PAGE:s is calculated by dividing the size of a physical
block (a physical block has the same size as a virtual block)
by the size of a BIG_PAGE. VBLOCK,_HOLE_SIZE rep-
resents the size of a hole on VBlock, and is calculated using
(3), as shown at the bottom of this page. Equation 3 calculates
the size of the unused hole created on VBLOCKn.

In (3), if the number of BIG_PAGEs written on
VBLOCK,+; (the VBLOCK after VBLOCK,) is zero,
no hole is created on this VBLOCK and its following
VBLOCKs, so VBLOCK,_HOLE_SIZE is zero for

Categories Description Categories Value
SSD_SIZE Chips per SSD SSD_SIZE 4
CHIP_SIZE Dies per Chip CHIP_SIZE 2

DIE SIZE Planes per Die DIE SIZE 4
PLANE_SIZE Blocks per Plane PLANE SIZE 5120
BLOCK SIZE Pages per Block BLOCK SIZE 128

PAGE _SIZE Words per Page PAGE SIZE 4 KByte
VBLOCK_SIZE Big Pages per VBLOCK BIG PAGE SIZE 32 using (1)
VBLOCK USED Written Big Pages per VBlock VBLOCK USED P

SET BLOCK_SIZE VBlocks per Set_Block VBLOCK SIZE 4 using (2)

this VBLOCK. However, even if just one BIG_PAGE is
written on VBLOCK 11, the number of holes created on
VBLOCK,, can be calculated by multiplying the differences
between size of a VBLOCK (based on the number of its
BIG_PAGESs) and the number of its written BIG_PAGEs,
by the size of a BIG_PAGE (based on the number of phys-
ical pages) by the size of a page (in bytes). For example,
the number of unused holes created in Fig. 5 which shows
a section of a SSD Samsung 80GB, is calculated here for
VBLOCKO using (3) and Table 2.

Given non-zero VBLOCK_USED, the number of holes
created on VBLOCK is calculated as follows

VBLOCK,_HOLE_SIZE = [(4 — 2)*32]*4KB = 256KB

In this example, 256KB of memory in VBLOCKj is
unusable, and that leads to reduced memory utilization.

(VBLOCK,,_SIZE — VBLOCK,_USED)

VBLOCK,, — HOLE_SIZE =
0
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On the other hand, since this unusable memory space may
be erased during future merging operation, it can impose
huge costs on the system in terms of memory wear-out and
reduced lifetime of SSD. The number of VBLOCKS in a
SET_BLOCK can be calculated using (4).

BLOCK _SIZE
SET_BLOCK _SIZE = ———————— 4)
VBOLCK _SIZE

In fact, by dividing the size of a physical block by the number
of BIG_PAGE:s in a VBLOCK, one can calculate the number
of VBLOCKSs in each SET_BLOCK. SET_BLOCK_HOLE
represents the size of the hole created on a SET_BLOCK, and
it is calculated using (5).
SET_BLOCK_HOLE
SET_BLOCK _SIZE—1

Actually, the hole created on a SET_BLOCK is the sum
of all holes created on VBLOCKSs of this SET_BLOCK.
The following example shows that how reducing the size of
physical block makes a difference. Suppose that the SSD
consists of four planes and each plane has several blocks.
If the block is configured into 16 pages, virtual blocks and set
blocks will be divided as shown in Fig. 6-a. If each physical
block in SSD structure is configured into 8 pages, virtual
blocks and set blocks will be divided as shown in Fig. 6-b.
Now, suppose that a big-page is to be written on the virtual
blocks 1 and 2 simultaneously.

Obviously, the hole created in Fig. 6-a consists of 12
unusable pages which can be calculated using (3), while
in Fig. 6-b there are only 4 unusable pages. So, this leads less
unused pages to be erased during merging and GC operations.
The other advantage is that more set blocks are available
in the latter structure (the number of set blocks in Fig. 6-b
is twice the set blocks in Fig. 6-a). This makes FTL more
flexible in utilizing memory and leads to better design of log
blocks, which is addressed in section III-C. It is noteworthy
that in Fig. 6-b, more channels are needed for data transfer.
However, this may increase internal hardware and complexity
of interconnection network, but we know that significant
number of bus lines is embedded inside SSDs, and in many
cases, many of them are unused, so they can be used in the
new FTL. It is of a great value to mention that the physical
block sizes after construction are fixed, and the appropriate
selection should be used in the simulation suitable for any
application.

VBLOCK; HOLE_SIZE (5)

C. DESIGN AND CONFIGURATION OF VIRTUAL

UPDATE BLOCKS IN THE PROPOSED FTL

In physical blocks, write operation should be performed on
rows serially. A very important issue not mentioned in virtual
block-based FTLs is the necessity of a policy for configuring
and controlling utilization of virtual log blocks to overcome
the limitation of this structure (i.e. to prevent pages of flash
memory from being blocked and to create unusable holes).
Suppose that the control layer of flash memory is given full

VOLUME 8, 2020

Page | Plane #1 | Planc #2 | Planc #3 | Planc #4

1
2 Z
- g
3 Unusable Pages @
——— >
4
5
&
6 <
2
7 m
>
8
9
@
10 Y
8
11 =
>
12
13
14 %
8
15 =
>
16

(2)

Page | Planc #1 | Plane #2 | Plane #3 | Plane #4
1

VBlock #1

‘ Unusable Pages

VBlock #2

VBlock #3

eI IR o N IV S A Y

VBlock #4

(b)

FIGURE 6. A comparison between big-pages written on two SSD
structures with different sizes of physical block.

authority to manage and allocate a portion of memory to
virtual log blocks. For example, Fig. 7 illustrates the cases
in which a set block is created with virtual data blocks and a
virtual log block.

Clearly, VLogBlocks take a portion of memory randomly.
If a big-page of the VLog Block is filled, all unused
pages of VBlocks 0O to 2 are unusable (Fig. 7-a), or in the
worst case, we can mention to Fig. 7-b in which under
the above conditions, all unused pages of VBlocks 0 to
6 are unusable. In fact, many unusable holes are created on
memory.

In our proposed FTL, the solution to this problem is to
select VLBs in segments of a block set whose address is
smaller than the address of the virtual data blocks in a set
block so that they would be prioritized for write. Due to the
limited number of virtual log blocks, their pages are filled
much faster than pages of data blocks, so if we put them in
the middle or the end of a set block, its preceding virtual data
blocks will be blocked, and data is no longer written on them.
It should be noted that data and update blocks are completely
selected by software, and there is no hardware and physical
memory space for dividing these two groups of block. And
all memory blocks are aligned serially. Figure. 7-c shows the
proper policy applied to align log blocks. In this case, even if
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VBlock #0 VBlock #0 VLogBlock
VBlock #1 VBlock #1 VBlock #1
VBlock #2 VBlock #2 VBlock #2
VLogBlock VBlock #3 VBlock #3
VBlock #4 VBlock #4 VBlock #4
VBlock #5 VBlock #5 VBlock #5
VBlock #6 VBlock #6 VBlock #6
VBlock #7 VLogBlock VBlock #7
(a) ® ©

FIGURE 7. Positioning of log blocks in virtual block structure.

all pages of the VLog Block are filled, given that the pages
of a physical block are filled serially (from top to bottom), all
pages of VBlocks 1 to 7 can be used.

The next challenge in this design is to put more than one
virtual log block. If we want to use more than one virtual log
block, we can put them in front of a set block only if they are
filled in such a way that lower log blocks do not block higher
log blocks. In Fig. 8-a, for using all pages of VlogBlocks
0 and 1, the pages of these two virtual log blocks should be
filled from O to 15.

As mentioned in section III-B, in this design, it is possi-
ble to block pages and create unusable holes, and merging
operation is accelerated due to the limited number of vir-
tual log blocks. As it is obvious, accelerating this operation
results in failure to fully utilize memory space. On the other
hand, it increases memory wear-out which leads to reduced
memory lifetime. This limitation also reduces the speed of
I/O operations and disrupts the use of parallel processing
capabilities.

In the previous case, we have to use virtual log blocks
sequentially, so we cannot use the two log blocks at the
same time. On the other hand, there is no guarantee that they
can be used sequentially, because the pages of virtual data
blocks corresponding to Vlog Block #1 are updated sooner
than the pages of virtual data blocks corresponding to Vlog
Block #0. In this case, unused pages of Vlog Block #0 are
blocked and huge costs are imposed on the system due to
the limited number of log blocks. The proposed solution is
to put these VLog Blocks in two different set blocks. This
will allow simultaneous utilization of the two log blocks.
This case is shown in Fig. 8-b. In this case, for example,
we can write the first big_pages of VlogBlock #0 and VLog-
Block # 1 at the same time. Moreover, we can use parallel
instructions for the rest of big_pages. Consequently, this
allows to use parallel instructions, prevents pages on log
blocks from being blocked and helps us to increase memory
lifetime.

IV. EVALUATION

In this section, the proposed FTL is evaluated step by
step to observe the improvements in any upgraded section
of it. FlashSim simulator is used to implement the pro-
posed FTL [31]. The used real workloads include Finl, Fin2,
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FIGURE 8. (a), Configuration of log blocks and (b), correct positioning of
more than one log block in a virtual log block-based SSD.

TABLE 3. Configuration of Samsung 128GB SSD.

Charecteristics Samsung 128GB
SSD_Size (Chip/SSD) 8

Package Size (Die/Chip) 2

Die Size (Plane/Die) 2

Plane Size (Block/Plane) 2048

Block Size (Page/Block) 256(Page)

Page Size (Cell/Page) 4KB

Exchange and LiveBE obtained from databases of [32], [33].
Finl and Fin2 traces were collected at a large financial insti-
tution, (Financiall) is write intensive and 77.9% of the com-
mands are “write” type. Fin2 (Financial2) is read intensive
and only 18% of the commands are ““write” type. Exchange
traces were collected for Exchange Server for duration of 24
hours. LiveMapsBE [Microsoft Production Server Traces]
was collected for LiveBE back-end server for a duration
of 24 hours and the number of switch merging and partial
merging operations is higher than the number of full merging
operations. In this section, a Samsung 128GB SSD with
specifications shown in Table 3 is simulated.

Figure. 9 depicts the simulation results obtained from the
improvement of merging and GC operations in the proposed
FTL presented in section III-A.

In this simulation, four evaluation criteria are considered
and the proposed design called as VPI-FTL is evaluated with
FAST FTL as most common FTL, DA-FTL as most flex-
ible FTL with high performance, BLog-FTL that designed
specifically for NAND FLASH technology MLC-based stor-
age devices and VBP-FAST as the closest FTL to the pro-
posed idea with parallel structure based on high-speed log
blocks. In Fig. 9-a, the total number of clocks needed to
completely execute write operation under four workloads is
calculated. As can be seen, the number of clocks needed for
write operation in the proposed FTL is lower than previ-
ous FTLs, because the number of extra write operations is
decreased, less clock cycles are required for writing and less
than 1% improvement is achieved in the proposed method.
Due to parallel execution of instructions, not much difference
can be observed in clock cycles of write operation between
the VPI-FTL and VBP-FAST, because in parallel struc-
tures based on virtual blocks, a big-page can be written by
a clock.

Fig. 9-b compares the number of additional writes in
different FTLs, and the obvious at Finl and Fin2 workloads
because most operations are of full merge type, DA-FTL
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FIGURE 9. The results obtained from evaluation with four significant parameters on different FTLs using four real workloads on a simulated SSD platform.

shows a better result, the obvious reason is its focus on
reducing the number of duplicates in GC operations when
executing full merging functions. Due to the dynamic idea
of associating between data blocks and log blocks, the GC
is more postponed than our proposed FTL, which is briefly
shown with VPI-FTL and fewer pages have been copied. But
in LiveBE most of the commands are partial merging and
switch merging, and given that Blog-FTL has used reduced
order merging to reduce the number of extra writes, the num-
ber of extra writes has been reduced compared to other FTLs.
In VBP-FAST, there are no restrictions on the correspondence
between data blocks and update blocks and due to the lack of
optimal utilization of the data block space, GC operations are
accelerated and more transfers than VPI- FTL happens. With
the proposal outlined in Section III-A, our proposed FTL is
in a better position than FAST and VBP-FAST and its extra
writes is about 2-9% more than DA-FTL and Blog-FTL.

In Fig. 9-c, the number of unused pages erased in GC
operation is calculated. As previously mentioned, in GC
operation, after copying valid pages to virtual data block
and virtual log block, those blocks are erased to be reused.
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In conventional methods, blocks with any number of unused
pages are erased which leads to severe memory wear-out.
However, in the proposed method, each virtual block should
pass through a specific filter to participate in GC operation
and be erased. If its utilization is less than a threshold, it will
not be allowed to participate in GC operation. This leads
to reduced number of erased unused pages in our method.
The number of unused erased pages in the proposed FTL
is lower than FAST and VBP-FAST but increased by about
3-11% compared to DA-FTL and BLog-FTL. This is because
the DA-FTL selects a victim block in the best case in terms
of reducing the number of unused pages which is done by
moving pages among the update blocks which also modifies
the association of the different update blocks, however these
transfers add some overhead to the results and in the Blog-
FTL, the use of auxiliary tables and parameters (U and L)
to call GC, as much as possible, blocks are mostly used
for storing data, leaving fewer pages unused before they are
erased.

Figure. 9-d compares the number of invalid released pages
during merging operation in different FTLs. Given that
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merging operation is postponed in the proposed method,
more valid pages can be updated (before being copied to
another empty block during merging operation). Therefore,
more valid pages are created when merging operation is
called. This effectively prevents unnecessary copy of the
previous valid page, and by that, more invalid pages are
released during merge operation, so the lifetime of the storage
system increases due to increased memory utilization. This
parameter is clearly improved in the proposed FTL compared
to FAST and VBP-FAST because there was no solution for
using more memory blocks and postponement in GC oper-
ations, but about 2-7% less invalid pages have been released
than DA-FTL and Blog-FTL in DA-FTL, dynamic changes in
log blocks cause the GC operation to be postponed and more
updates occur before the merging operation, and eventually
more invalid pages are generated and in Blog-FTL, GC oper-
ations are postponed in some merging operations such as par-
tial merging and switch merging therefore more pages get the
chance to be updated and eventually more invalid pages are
generated that will be released during the merging operation.
The results of this evaluation show that just by adding the idea
of Section III-A to the proposed FTL, VPI-FTL evaluation
results get better than FAST and VBP-FAST.

Now, the changes in relevant evaluations are investigated
by applying the ideas proposed in sections III-B and III-C.
The variables required in section III-B can be obtained
according to the configuration presented in Table 3 for the
simulated SSD. According to (1) and (2), the size of a big-
page is equal to 32 pages, and the number of big-pages
forming a VBlock is equal to 8. Unusable pages (the holes
created on memory blocks) are erased and released to be
reused during merging and GC operations. Now, we make
two changes in the configuration presented in Table 3. First,
BLOCK_SIZE, i.e. the number of pages in each block is
reduced from 256 to 128. Then, to maintain SSD size,
PLANE_SIZE, i.e. the number of blocks in each PLANE,
is increased to 4096 (coefficient of variation is, by default, set
to 2). It can be seen that after making these changes, the size
of a big-page is not changed, but the number of big-pages in a
VBlock becomes equal to 4, according to (2), which is half of
the previous one. As discussed in section III-B, these changes
can significantly reduce the holes created on memory. In addi-
tion, accurate configuration of virtual log blocks outlined in
section III-C is applied by adding a policy to the FTL con-
trol layer. The results obtained from evaluation by applying
the proposed ideas on Samsung 128GB SSD are shown in
Fig. 10. Given that the proposed FTL was improved com-
pared to FAST and VBP-FAST by adding the ideas presented
in section III-A and the previous section, in this section,
we only perform evaluation for DA-FTL and VPI-FTL.

According to Fig. 10-a, the number of unused erased
pages in VPI-FTL is dramatically decreased compared to DA-
FTL because of reduced holes created on memory blocks
as a result of the new configuration and policy presented
in section III-C. The simulation results indicated that the
number of unused pages erased during GC operation in
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the proposed FTL is reduced by 16-23% which results in
increased memory utilization and prevents the early wear-
out of memory blocks caused by repeated and unnecessary
erasing.

As shown in Fig. 10-b, the number of invalid released
pages in VPI-FTL is increased by 17-21%. The reason is
that with increasing memory utilization, merging operation is
postponed that allows more pages to be updated. This leads
to creation of more invalid pages in each VBlock which are
released and reused during merging and GC operations.

According to Fig. 10-c, the number of extra written pages
in the proposed FTL is decreased by 10-17%. It is clear that
these extra write operations are resulted from copying valid
pages to log blocks and their corresponding data blocks, more
memory utilization, and creation of more invalid pages in the
memory blocks which reduces the number of valid pages to
be copied during merging operation, and decreases extra write
operations significantly.

Figure. 10-d compares the execution speed of write
operation in the proposed FTL with VBP-FAST. Due to
decreased number of extra write operations in VPI-FTL,
the number of clocks required for write operation is also
reduced. However, given that as many pages as a big-page
can be written by each clock, this parameter is improved in
the proposed FTL by about 2-3% compared to VBP-FAST.

The expected challenges during real-time implementation
include performance, reliability, endurance and flexibility.
To achieve maximum performance an SSD requires precise
coordination on the interface, and to achieve the required
performance, some parallelism must be used so that multiple
dies are programmed or returning results at once. The pro-
posed FTL makes the structure of the memory blocks avail-
able in parallel with the availability of virtual blocks, which
enhances performance by executing advanced commands
using parallel channels. In this FTL, read and write instruc-
tions can be executed simultaneously on different pages of
different chips. GC and merging operations can also be per-
formed concurrently with write operations, which greatly
enhance the efficiency of using communication channels.

Some of the techniques used to ensure flash reliability
include preventing errors from initially occurring and then
managing errors once they happen. Array-based encoding
methods are very useful for error detection and correction
since additional data is spread across different parts of mem-
ory, making it easier to retrieve. Given that the proposed
scheme provides parallel and simultaneous access to the
various dies, RAID implementation is appropriate. However,
the main idea of this FTL is focused on increasing the lifetime
of the memory blocks, and the computation goes as far as
the noise margin, and data readout does not occur. Therefore,
before the critical time is reached, the data is transferred to a
secure location.

Write and erase operations can speed up the memory
wear-out. These limitations cause significant challenges,
including the lifetime of memory blocks and the optimal
use of memory space. When a memory reaches its end of
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FIGURE 10. A comparison between the number of unused erased pages in VPI-FTL and DA-FTL and between the number of required clocks to execute

write instructions in VPI-FTL and VBP-FTL.

life, data should be relocated before it’s lost. Given the high
price of SSDs, data relocation is very costly and data recovery
methods should be used in the event of data loss. Since whole
flash blocks must be erased before the individual pages can
be overwritten, the valid data in the surrounding pages that
get moved to new blocks causes an increase in write ampli-
fication. In our FTL an optimal GC (Garbage Collection) is
presented, and a new approach is proposed to manage the
correspondence between log blocks (update blocks) and data
blocks to prevent extra transfers which prevent of memory
wear-out.

One final area of consideration for an SSD controller
designer is the amount of flexibility enabled. Ideally, the con-
troller should be easily configurable in any form factor
and usable with any type of flash memory. There are two
points to be considered here, mapping strategies (page-level,
block-level and hybrid mapping) and media flexibility. These
two give the SSD maker ultimate flexibility in choosing from
whom to buy the flash memory (except for the case where
they manufacture their own flash memory). Each flash has
different characteristics such as page/block size, spare area,
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response times, and other factors. The proposed FTL mapping
is a hybrid scheme that is easily implemented in the controller
section of an SSD and can be implemented with very few soft-
ware changes. Section III-A indicates that the idea presented
is applicable to all hybrid mapping-based FTLs. The attribute
settings are also easily applied to a part of FTL as config
and can be easily adjusted before implementation. However,
it is also noted in Section III-C that these settings may vary
depending on the application requested.

V. CONCLUSION AND FUTURE WORKS

The present study proposed a parallel structure-based FTL
consisting of virtual blocks. This FTL is suitable for
MLC-based SSDs, and it is to mention that high density
is the unique feature of these SSDs. On the other hand,
MLC technology has a lower lifetime, but, the proposed FTL
aims to increase lifetime and the speed of I/O instructions.
In this structure a new approach is proposed to manage
the correspondence between log blocks and data blocks to
prevent expensive transfers which lead to memory wear-out.
Then, it reduces unusable holes significantly and uses the
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policy that prevents pages of log blocks from being blocked.
Finally, according to evaluations, the proposed FTL improves
lifetime and the speed of I/O instructions in MLC-based
SSDs significantly, by increasing utilization of flash memory
blocks.

It should be noted that the proposed FTL uses bus lines
embedded inside SSDs as much as possible, but making
changes in SSD configuration according to the proposed
design may be subject to hardware constraints. Hence,
the coefficiency of variation in the second section of the
proposed FTL will vary according to the hardware of dif-
ferent SSDs. The optimum coefficiency of variation can be
calculated and considered in the configuration of SSD by
running simulation for several times as different workloads
exist according to user application type. In this research, in
section B of proposed FTL, threshold is considered to be 50%
to guarantee the worst efficiency of the block to be erased in
GC operation. Of course, this number is fully suggested, and
its selection is experimentally concrete according to repeated
testing. But it remains to be suggested that a more cogent
solution can be used to calculate the exact number of the
trochlea more accurately.

Research shows that heating up worn-out NAND flash
cells can make them reusable. The self-healing flash can
significantly improve the flash memory’s lifetime, but it does
increase energy consumption. Applying some of the new
ideas presented in this field such as DHeating (Dispersed
Heating) with the aim of reducing energy consumption, to the
proposed FTL can be effective in extending the life span of
memory cells.
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