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ABSTRACT Booming electric vehicles (EVs) lead to degraded quality-of-service (QoS) of urban public
charging network (UPCN) consisting of public charging stations (PCSs) and traffic network, such as
prolonged waiting time at popular PCSs. UPCN QoS analysis creates broad prospects in QoS optimization
by providing reliable tools to improve UPCN performance. Conventional methods focusing on the impact
of network topology on QoS underestimates effects of network capacity and its distribution among PCSs.
In this paper, we proposed a heterogeneous UPCNmodel with limited PCS service capacity, and constructed
a QoS analysis method according to PCS and EV characteristics from classic method for traffic assignment
model, in which we analyzed waiting time at PCSs by queueing theory and calculated feasible routes for EVs
recharging half-way by screening from deep-first-search results. Finally, we demonstrated an application of
the proposed model and method in QoS optimization. We carried out experiments on popular Sioux Falls
network with randomly-added PCSs. Results indicate that proportion of traditionally neglected waiting time
at PCSs may reach 22% in EVs’ total travel time if fast charging piles serve 2 vehicles/h, and the gap between
our method and conventional method in average waiting time and spatial throughput distribution is growing
as EV amount increases. These results support our method’s advantages in simulating EVs’ charging choice
trade-off between farther routes and popular PCSs as well as higher performance in UPCNQoS optimization.

INDEX TERMS Charging network, electric vehicles, queueing analysis, traffic control.

I. INTRODUCTION
Urban public charging network (UPCN) is forming upon
the original urban traffic network along with broadly con-
structed public charging stations (PCSs) [1], in order to
satisfy huge charging demand generated by quickly pro-
moted electric vehicles (EVs) whose global stock reached
5.1 million in 2018 because of their advantages in green
transportation and energy efficiency [2]. Meanwhile, UPCN
plays an increasingly significant role in providing charging
service for EVs suffering from unavailable private charging
piles or urgent midway recharging. However, as the number
of EV has been growing rapidly, apart from power distribu-
tion network [3], UPCN is under huge pressure leading to
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deterioration in quality-of-service (QoS) [4] such as longer
delay and higher blocking probability.

In order to improve UPCN QoS, it would be more promis-
ing to increase UPCN service capability than to schedule
EVs whose performance depends largely on the full cooper-
ation of private EVs. Increasing UPCN service capability by
changing its topology and capacity, such as establishing new
PCSs and expanding PCS capacity, is intuitively feasible [5],
since UPCN is a heterogeneous network made up of roads
and various PCSs. Therefore, for more reliable performance
in QoS optimization, it is necessary to establish a method
analyzing the impact of UPCN topology and capacity on net-
work QoS. Fortunately, QoS optimization will be easier with
an analysis method to evaluate a specific UPCN providing
the best QoS among several candidate solutions. Classified
as the mixed-integer nonlinear problem (MINP), this proce-
dure can be completed by heuristic algorithms such as the
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genetic algorithm [6], [7]. However, in UPCN, highly random
EV behaviors and spatially correlated PCSs are both difficul-
ties confront with network QoS analysis.

In literature, there are three classes of methods analyz-
ing EV charging network QoS. References [7]–[10] model
EVs as individuals with independent destination, state-of-
charge (SoC) and charging preference, estimate their possi-
ble routes, and obtain QoS such as delay and throughput.
References [11], [12] divide the city into several zones
according to PCS location, quantify zonal EV by traffic
flow, and apply queueing model to each charging station
for EV waiting time analysis. References [13]–[16] describe
EV travel demand by origin-destination (OD) matrix, study
EV flows distributed around the city based on traffic assign-
ment model, and finally estimate network QoSmetrics. Com-
paratively, methods based on traffic assignment model show
advantages in describing statistics of EV behavior patterns
by traffic flow, discussing non-cooperativity of private EV by
user equilibrium (UE) principle, and studying spatial corre-
lation among PCSs through establishing a complete network
passing interactions of PCSs. Several modifications consid-
ering EV’s nonnegligible charging time and limited state-of-
charge (SoC) have been made in the traffic assignment model
originally constructed for the fuel vehicle. In [17]–[19],
charging time is analyzed by building the flow-dependent
energy consumption function and SoC-dependent charging
time function. Limited SoC and its influence on EV flow
distribution are studied with or without recharging, respec-
tively. Without recharging, [20] researches the distribution
of EVs with determined initial SoC by involving out-of-
energy penalty into travel cost functions, and [21] discusses
EV flow distribution on trip chain level by constructing a
distance-constrained traffic assignment model for EVs with
different ranges. With recharging, [19] allows EV to visit one
or more battery swapping charging stations in trips.

However, focusing on the impact of UPCN topology on
QoS, these traffic assignment models ignoring waiting time
at PCSs actually overestimate UPCN capacity, for such an
ideal situation of unlimited PCS capacity. As a consequence,
UPCN QoS may be optimistically estimated. This ideal
assumption also overlooks difference between PCSs, and then
obstructs effective capacity expansion in QoS optimization.
Other than this, influence of limited SoC on EV flow dis-
tribution hasn’t been researched with time-costly midway
recharging yet.

The main contributions of this paper are summarized as
follows:
1) We construct a novel UPCN model consisting of traf-

fic network and heterogeneous PCS nodes allowing
independent capacity quantification and adjustment.
We view these PCSs with limited capacity as dif-
ferent M/G/N/K queueing systems for waiting time
estimation.

2) We establish a UPCN QoS analysis method based
on traffic assignment model. We estimate travel cost
including time in driving, waiting and charging, search

FIGURE 1. Urban public charging network.

feasible routes for EVswith limited SoC under recharg-
ing condition, analyze EV flow distribution according
to UE principle by translating original problem into
an equivalent optimization problem with non-negative
linear constraints that could be solved by an iterative
method, and finally analyze charging network QoS
from EV flow distribution.

3) We demonstrate an application of the UPCN model
and its analysis method in QoS optimization. Based
on PCS-extended Sioux Falls network, we optimize
average waiting time through genetic algorithm (GA)
by expanding charging piles in existing PCSs. As a
result, we verity the importance of UPCN capacity in
QoS analysis and optimization.

The remainder of this paper is organized as following:
Section II illustrates UPCN model, explains its influence on
QoS from topology and capacity, and describes QoS analy-
sis by a toy example. Section III discusses system models
including driving time model of roads, queueing model of
PCSs and energy consumption model of EVs. Section IV
represents the QoS analysis algorithm. Section V presents
the application in QoS optimization. Section VI presents the
simulation settings, case study and results analysis. Finally,
Section VII concludes the paper and provides directions for
future studies.

II. PROBLEM FORMULATION
In this section, we describe UPCN as a weighted directed
graph, reveal the impact of UPCN topology and capacity on
network QoS through EV flow distribution, and explain the
process of charging network QoS analysis by a toy example.

A. URBAN PUBLIC CHARGING NETWORK
Illustrated in Fig. 1, he UPCNmade up of traffic network and
PCSs is described as a weighted directed graph G = (V ,E),
where V is the set of nodes and E is the set of traffic roads.
Nodes are further categorized into the traffic intersection and
the PCS in set S (S ⊆ V ). PCS in S is denoted as a. Traffic
road in E is denoted as arc (n1, n2), n1, n2 ∈ V , which is also
simplified as e if there is no need of location information.
Distinguished by node size or line width, weight of a node

or edge indicates its service capacity. PCS service capacity
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FIGURE 2. Urban public EV charging network with O/D points and
OD matrix.

is determined by scale and charging pile performance, which
can be independently expanded by increasing charging piles,
enhancing charging power and reducing charging time. Road
service capacity is affected by parameters like lane amount
and maximum speed limit. Models to quantify their service
capacities are detailed discussed in section III.

Towards fuel vehicle and EV in UPCN, traffic flow
describes statistics of their highly random behavior: flow
rate reflects their density and average speed; flow direc-
tion reflects their trips. Besides, Poisson flow model is fur-
ther chosen to simulate EV movements for reasons that:
1) mixture of Poisson flows still forms a Poisson flow whose
rate is the sum of original flows’, making EV classification
possible; 2) Poisson flow is widely used in queueing system
for waiting time estimation. In this paper, q denotes the
EV flow rate, and qF is the rate of fuel vehicle flow which
is the background flow in EV flow analysis.

B. EV FLOW DISTRIBUTION
EV flow distribution among nodes and edges establishes a
bridge from UPCN topology and capacity to QoS. EV flow
distribution is the integration of all EV trips, mainly influ-
enced by UPCN topology and capacity through limiting fea-
sible routes and affecting travel cost. What’s more, it models
the burden of gigantic EVs around the city under which
UPCN performance is quantified as QoS metrics. Therefore,
EV flow distribution is the key in UPCN QoS analysis.

EV travel demand described by OD matrix should be
introduced before formulating the EV flow distribution prob-
lem. As shown in Fig. 2, travel demand is categorized by
EV parameters such as initial SoC and mass. OD matrix
QI×I×C ’s element Qijc is the flow rate of category c EVs
travelling from origin point i to destination point j. O/D points
are embedded into the UPCN according to their position,
forming a new weighted directed graph G = (Ṽ , Ẽ). In this
new graph, Ṽ = V ∪ D where D indicates the set of O/D
points, and set Ẽ is extended by edges connecting O/D point
in set D and nodes in set V . In remaining paper, we default

that the graph has been expanded and no longer distinguish
their symbols.

EVs schedule routes between O/D points, form traffic
flow on nodes and edges, and finally contribute to EV flow
distribution. Their trips are influenced by UPCN topology
and capacity. On one hand, network topology prevents EVs
from routes with unconnectable nodes or unbearable energy
consumption. On the other hand, network capacity motivates
non-cooperative EVs to inexpensive routes with less traffic
and higher service capacity. These mechanisms are formu-
lated by (1)-(4).

In UPCN, a route is expressed as vector r1×m whose ele-
ment rk is the index of the kth node passed by: for a route
between O/D point i and j, r1 = i, rm = j. Feasible routes
meet these two conditions for all k for 2 to m:

arc (rk−1, rk) ∈ E (1)
k∑
l=1

[C (rl)+ C (arc (rl−1, rl))] > ε (2)

where function C discussed in section III calculates energy
consumption, constant ε is the threshold to judge whether the
EV has broken down, and C (r1) is the initial SoC. Appar-
ently, equation (1) ensures all nodes are connectable, and
(2) requests EVs to finish the route without breaking down
due to insufficient energy. Routes satisfying (1) and (2) form
the feasible route set denoted as Rijc. It is common that EVs
of different categories own different feasible route sets even
if they may travel between the same O/D points. In some
extreme case, e.g. too low initial SoC, no route is feasible
and Rijc is empty.

Since non-cooperative EVs select feasible routes freely,
each feasible route owns the same chance of being assigned
EV flow to:

∑
r

qijcr = Qijc, r ∈ Rijc

qijcr ≥ 0,∀r ∈ Rijc
∀i, j ∈ D,∀c (3)

where qijcr is the flow rate of EVs choosing feasible route r
from Rijc. Besides, EVs are supposed to choose routes with
the least cost, expressed as the first Wardrop principle [22]:{

qijcr
(
f ijcr − f ijc

)
= 0

f ijcr − f ijc ≥ 0
∀r ∈ Rijc, ∀i, j ∈ D, ∀c (4)

where f ijc is the least cost between O/D points i and j, and
f ijcr is the travel cost of route r . Travel cost is calculated by
EV-flow-dependent functions whose parameters are deter-
mined by service capacity of nodes and edges along the way.
Briefly, less traffic and higher capacity lead to lower cost.

EV flow distribution satisfying (1)-(4) shows statistics of
EVs random behavior in the UPCN, and reveals the impact
of UPCN topology and capacity on network QoS.

C. A TOY EXAMPLE OF NETWORK QoS ANALYSIS
Shown in Fig. 3, a toy example is constructed to explain the
process of analyzing EV flow distribution and network QoS,
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FIGURE 3. A toy example of UPCN QoS analysis.

in the case of limited network capacity and EV SoC. The
toy UPCN includes several traffic intersections and roads,
a pair of O/D points and 2 PCSs. Its connectivity determines
3 routes from O/D points 1 to 6: route a connects 2 and 5
through PCS 3, route b via PCS 4, and a non-stop route c
directly reaches node 5. PCS service capacity is quantified as
parameters of waiting time function in Fig. 3: compared with
PCS 4, PCS 3 has higher service capacity because of shorter
waiting time under the same flow rate condition. To simplify
the example, only waiting time at PCSs contributes to travel
cost.

EVs are classified into three categories with different feasi-
ble route sets. EVs in category I have sufficient energy for all
the three routes, whereas other EVs unable to afford route c
have to recharge half-way. EVs in category II and category III
are differentiated according to whether their initial SoC may
afford the trip from node 2 to 4. Their detailed feasible route
sets and flow rate are presented in the table of Fig. 3.

EV flow distribution is analyzed based on (3) and (4), then
UPCN QoS is researched. Taking waiting time as travel cost,
category I EVs undoubtedly choose route c with zero cost.
Category III EVs have no choice but route a to complete their
trips. Then, category II EVs need to trade off route a and
route b: route b with zero traffic is a prior choice, but route a
with higher capacity is also competitive. Actually, category II
EVs may select both routes, and form equal waiting time in
PCS 3 and PCS 4. The result is as following: EV flow on
route a is 4 vehicles/h consisting half category II EVs and
half category III EVs; EV flow on route b is 2 vehicles/h
of category II EVs only; EV flow on route c is 4 vehicles/h
of category I EVs only. This result is stable because any EV
changing route suffers from longer travel cost. Further, UPCN
QoS including waiting time and throughput is calculated:
waiting time in both PCS 3 and 4 is 0.4 hours, and throughput
of PCS 3 and 4 is 4 vehicles/h and 2 vehicles/h, respectively.

With comprehensive information about network topology
and capacity, it is possible to obtain more accurate EV flow
distribution as well as more detailed QoS like driving time
and blocking probability. What’s more, accompanying with
the adjustments on UPCN capacity, EV flow distribution may
change, so does the UPCN QoS, which is the theoretic basis
of QoS optimization by capacity expansion.

In reality, large-scale UPCN is too complex to be ana-
lyzed by such simple operations. So, we investigate on an

FIGURE 4. Charging station model.

efficient method for EV flow distribution analysis, shown
in section IV.

III. SYSTEM MODELING
A. PCS SERVICE CAPACITY AND QUEUEING MODEL
APCS is typically divided into two sections: charging section
with charging piles and waiting section with parking lots.
Charging section provides charging service for EVs with
the same count of charging piles simultaneously. Waiting
section is prepared for queueing in case all charging piles
are occupied. PCS service capacity is determined by scale
and charging pile performance expressed by the probability
distribution function of charging time.

Queueing model is utilized to quantify PCS service capac-
ity: shorter waiting time in serving the same EV flow means
better service capacity. Illustrated in Fig. 4, we describe the
queueing process at a PCS by aM/G/N/K queueing model,
where M represents that EVs reach the place according to
exponential distribution with arrival rate λ, G represents that
charging time follows a general distribution,N is the charging
pile amount, K is PCS scale, and K − N is the parking lot
amount.

Based on this model, waiting time at the PCS is estimated
by method in [23].

twa (λ) =
1
λ
×
(Nρ)N

N !
×

ξ

(1− ρ) (1− ξ)
× P0

×

[
1− ξK−N − (K-N) (1− ξ) ρξK−N−1

]
(5)

where

P0 =

[
N−1∑
l=0

(Nρ)l

l!
+
(Nρ)N

N !
1− ρξK

1− ρ

]−1
, (6)

ρ = λ/NE[G], ξ = ρ RG/1− ρ + ρ RG, and

RG =

(
1+ c2s

)
RD

(2RD − 1) c2s + 1
(7)

where c2s is the coefficient of variance of charging time dis-
tribution and RD = EW (M/M/S)/EW (M/D/S) is approxi-
mated in [24]. It’s worth to note that waiting time approxima-
tion in [23], [24] is suitable for ρ < 1, and in case of ρ > 1
we use M/M/N/K model [25] for rough approximation.
Moreover, we estimate charging time according to general
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distribution

tca = E [G] (8)

B. ROAD CAPACITY AND DRIVING TIME MODEL
Powered by electric motors, EV has different travelling pat-
terns comparing fuel vehicle such as excelling accelerate
performance and better braking effect. However, considering
the vast majority of fuel vehicles on roads, driving time
of EV is approximated by road capacity according to the
most widely used Bureau of Public Roads (BPR) function
originally established for fuel vehicle

te (qe) = t0e

[
1+ 0.15

(
qe + qFe

ce

)4]
, ∀e ∈ E (9)

where variable qe is the EV flow rate on road e, qFe is the
background flow rate of fuel vehicle, t0e is free-flow travel
time, and ce is road capacity.

C. EV ENERGY CONSUMPTION MODEL
EV energy consumption during driving is mainly affected by
three factors: EV parameters such as mass and frontal area,
road condition such as grade, and driving process such as
speed and acceleration. Towards traffic flow, it is impractical
to collect precise data about each EV’s driving process espe-
cially acceleration and deceleration operations. Therefore,
energy consumption is calculated by supposing that EVs
travel along the roads at a constant speed, and coefficient ηc is
used to approximate energy cost due to non-uniform motion
and energy conversion efficiency. Energy consumption func-
tion is as follows:

Ce(qe)=ηcle[M cg(sinαe+f cr cosαe)+
1
2
ρaCc

DA
c
f ve

2] (10)

where le is length of road e, M c is mass of EVs belonging to
category c, g is the gravitational acceleration,αe is road grade,
f cr is rolling resistance coefficient, ρa is air mass density,
Cc
D is aerodynamic drag coefficient, Acf is the frontal area of

the vehicle, and ve is average speed. In order to highlight
the impact of EV parameters on energy consumption and
simplify calculation, we estimate energy consumption based
on average speed of background flows:

ve =
le

te (0)
(11)

What’s more, the total energy that EVs gain in charging
station a is computed by charging power Pa and average
charging time tca :

Ca (qa) = Patca (12)

IV. UPCN QoS ANALYSIS METHOD
A. PRINCIPLE
In order to analyze UPCN QoS, we should model spa-
tial correlation among PCSs and then figure out statis-
tics of highly-random EV behavior under the consideration
of UPCN topology and capacity. In our method, spatial

correlation among PCSs is researched by establishing an
UPCN model, whose topology spreads interactions between
PCSs by traffic roads, and whose capacity influences strength
of these interactions. Meanwhile, statistics of highly-random
EV behavior described as the EV flow distribution among
UPCN is analyzed according to UE principle.
EV flow distribution is the integration of EVs select-

ing feasible routes between O/D points to satisfy travelling
demands. Naturally, feasible route search and EV traffic
assignment among these feasible routes are two main pro-
cedures during EV flow distribution analysis. Feasible route
search reflects spatial correlation among PCSs from UCPN
topology because close PCSs are more likely to appear in the
same feasible route set. EV traffic assignment implemented
under UE principle also embodies spatial correlation among
PCSs from UCPN capacity because EVs prefer PCS with
higher service capacity.
UPCN QoS including delay, blocking probability and

throughput is obtained after EV flow distribution analysis by
combining queueing model and driving model.

B. FEASIBLE ROUTE SEARCH
Feasible routes satisfying constraints formulated in (1) and
(2) are searched according to pseudocode shown in
Algorithm 1. In the first procedure, all routes between each
pair of O/D points meeting (1) are investigated by deep-first-
search (DFS). There is no limitation on the amount or order
of PCSs along the routes. In reality, these routes cover all
possible recharging choices and greatly exceeds the scope
of finally chosen routes. So, based on the number of passed
nodes |r|, coefficient α is applied for a rough filtration among
preliminary results.
Then, considering SoC limitation in (2), routes with

unbearable energy consumption are deleted. As shown in
the second procedure, each route is examined, and travel cost
of detected route is estimated based on background flow. For
simplification, only routes with the first β minimum travel
cost before EV flow assignment are remained in the final
feasible route sets.
Time complexity of this algorithm is the product of graph

size, O/D points number and EV categories. Whereas fine
division of EVs leads to accurate and complete results,
the number of EV categories should be set based on actual
needs for the sake of proper running time.

C. EV TRAFFIC ASSIGNMENT
Faced with feasible routes, EVs are assumed to prefer those
with the least travel cost: routes taken the shortest total time in
trips including driving time on the road, waiting and charging
time at the charging stations. Travel cost function of a PCS is
the sum of waiting time and charging time at the station:

fa (qa) = twa (qa)+ t
c
a (13)

and travel cost function of a road is calculated according to
driving time model:

fe (qe) = te (qe) (14)
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In section II, expressions (1)-(4) just formulate rules that
EV flow distribution follows, but they offer no information
of a specific method. In this part, we construct an equivalent
optimization problem whose optimal solution is exactly the
expected EV flow distribution satisfying (1)-(4). EV flow
distribution is obtained by solving the equivalent optimization
problem:

Min z (x) =
∑
a∈S

∫ xa

0
fa (xa) dxa+

∑
e∈E

∫ xe

0
fe (xe) dxe (15)

s.t.
∑
r

qijcr = Qijc ∀i, j ∈ D, c (16)

qijcr ≥ 0 ∀r ∈ Rijc, i, j ∈ D, c (17)

xe =
∑
i,j,c,r

qijcr δ
ijcr
e (18)

xa =
∑
i,j,c,r

qijcr δ
ijcr
a (19)

where xa and xe are EV flow rate on PCS or road respectively,
fa and fe are travel cost functions, coefficients δ

ijcr
a and δijcre

indicate whether a route r ∈ Rijc crosses through correspond-
ing PCS and road, if so, δijcra = 1 and δijcre = 1, or else
δ
ijcr
a = 0 and δijcre = 0. Apparently, equations (18) and (19)
define the relationship between edge flow and route flow.

Equivalence between the optimal solution and expected
EV flow distribution is established by proving the solution
meeting (1)-(4). Expressions (1) and (2) regulating routes
feasibility implicit in the definition of feasible route set Rijc.
Formulation (3) is the combination of (16) and (17). There-
fore, the optimal solution is the expected EV flow distribution
once proofing the optimal solution satisfying (4).

First of all, we explore solution by defining Lagrange
function according to original problem

L (q,u) = z (x (q))+
∑
ijc

uijc
(
Qijc −

∑
r

qijcr

)
(20)

whose optimal conditions are represented as follows accord-
ing to Kuhn-Tucker conditions

qijcr
∂L (q,u)

∂qijcr
= 0

∂L (q,u)

∂qijcr
≥ 0

qijcr ≥ 0,

∀i, j, c, r (21)

∂L (q,u)
∂uijc

= 0, ∀i, j, c (22)

Expand (21) as

∂L (q,u)

∂qijcr
=

∑
a∈S

∂

∂qijcr

∫ xa

0
fa (xa) dxa×

∂qijcr
∂xa

+

∑
e∈E

∂

∂qijcr

∫ xe

0
fe (xe) dxe×

∂qijcr
∂xe
−uijc (23)

Algorithm 1 Feasible Route Search
Input: graph G= (V ,E), OD matrix QI×I×C
Output: R̃N×N
1: for all Qijc in QI×I×C do
2: if i 6= j then
3: Search route set R̃ij between i and j by DFS
4: for all route r in R̃ij do
5: if |r| > α × |V | then
6: Delete route r from R̃ij
7: end if
8: end for
9: end if
10: end for
11: return R̃N×N
Input: graph G = (V ,E), energy function P, OD matrix

QI×I×C , R̃N×N
Output: RN×N×C
1: for all R̃ij in R̃N×N do
2: for all c ∈ C do
3: if Qijc > 0 then
4: Rijc← R̃ij
5: for all route r in Rijc do
6: if EV break down in route r then
7: delete route r from Rijc
8: end if
9: Estimate travel cost based on background flow.
10: end for
11: Save β routes with least travelling cost from Rijc.
12: end if
13: end for
14: end for
15: return RN×N×C

where

∂qijcr
∂xa
= δijcra ,

∂qijcr
∂xe
= δijcre (24)

Then, combine (23) and (24) into

∂L (q,u)

∂qijcr
=

∑
a∈S

fa (xa)δijcra +
∑
e∈E

fe (xe)δijcre −u
ijc (25)

Setting

f ijcr =
∑
a∈S

fa (xa)δijcra +
∑
e∈E

fe (xe)δijcre (26)

that represents total travel cost of one feasible route, formu-
lation (21) is finally simplified as

qijcr (f ijcr − uijc) = 0

f ijcr − uijc ≥ 0

qijcr ≥ 0,

∀i, j, c, r (27)

Regarding uijc as the least travelling cost, equation (27) is
equivalent to (4), proving the equivalence between this opti-
mization problem’s solution and EV flow distribution.
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FIGURE 5. EV flow distribution analysis.

As a result, EV flow distribution is obtained by research-
ing optimal solution of the problem expressed in (15)-(19).
The iterative method [22] for solution is shown in Fig. 5.
As initialization, travel cost of each node or edge is calculated
based on its travel cost function by setting EV flow to zero,
and EV flows are totally assigned to feasible route with
minimal cost. Then start the iterative process. Based on the
old assignment of EV flow x, update travel cost, assign all
EV flows to feasible routes with the least cost, and further
gain new assignment of EV flow x′. Search move size for
candidate τ ∗ by solving equation∑
a∈S

(
x ′a − xa

)
fa
(
xa + τ ∗

(
x ′a − xa

))
+

∑
e∈E

(
x ′e − xe

)
fe
(
xe + τ ∗

(
x ′e − xe

))
= 0, (28)

select final move size τ minimizing following function from
τ ∗, 0 and 1

∑
a∈S

∫ xa+τ(x ′a−xa)

0
fa (ω)dω+

∑
e∈E

∫ xe+τ(x ′e−xe)

0
fe (ω)dω,

(29)

and update assignment of EV flow by calculating the convex
combination of old and new assignments according to move
size. Repeat the iterative process until the difference between
input and output assignment of EV flow satisfies convergence
test. The final assignment of EV flow is the expected EV flow
distribution.

D. NETWORK QoS ANALYSIS
EV flow distribution provides adequate information for QoS
analysis. Network delay from one node to another can be ana-
lyzed by calculating driving time, waiting time and charging
time spending on corresponding nodes and edges. Network
throughput is the sum of EV flow rates captured by PCSs
in the charging network. Network blocking probability, i.e.
probability that the PCS has been full when one EV arrives,
is obtained according to the queueing model of each PCS.
In summary, from EV flow distribution as well as nodes
and edges capacity model, we obtain a macro perspective of
UPCN performance by network QoS analysis.

V. APPLICATION IN QoS OPTIMIZATION
As scarce land resource inmetropolis, it may be impractical to
serve high-density EVs with increasing charging demand by
keeping establishing new PCSs. Expanding service capacity
of existing PCSs is feasible in UPCN QoS optimization.
In this situation, it is the impact of UPCN capacity, rather
than UPCN topology, on network QoS that plays a significant
role in QoS optimization. Therefore, the disadvantage of
neglecting PCSs’ difference in service capacity prevents the
traditional model from high QoS optimization performance.
In this section, we formulate an UPCN QoS optimization
problem focusing on PCS service capacity, and explain a
feasible way combining our QoS analysis method and genetic
algorithm.

A. QoS ANALYSIS PROBLEM
Several spare charging piles should be assigned to existing
PCSs for shorter average waiting time, and the objective
function defining average waiting time is expressed as

Min t̄w(y) =
∑
a∈S

qatwa /
∑
a∈S

qa (30)

where y is the vector indicating charging pile amount of all
PCSs, qa is the rate of EV flow captured by PCS a, and twa is
waiting time obtained by queueing model.

Constraints simply includes total amount of charging piles
for expansion as well as maximum charging pile amount of
each PCS: 1) Total amount of new charging piles is restricted
by M ∑

a∈S

ya ≤ M , a ∈ S (31)

2) Maximum charging pile amount in PCS a is limited byMa

0 ≤ ya < Ma, ∀a ∈ S (32)

B. GENETIC ALGORITHM
Considering the QoS optimization problem in section A,
average waiting time can be calculated by our QoS analysis
method once updating charging pile amount y: qa is the result
of EV flow distribution analysis, and twa is the approximation
based on queueing model. Further, classifying the optimal

53642 VOLUME 8, 2020



J. Fu et al.: Comprehensive QoS Analysis of UPCN in Topology and Capacity With Its Application in Optimization

problem as a mixed-integer nonlinear problem, genetic algo-
rithm (GA) is applied for solution, which is decomposed into
the following steps.

1) Chromosome Coding: Convert the amount of new
charging pile in PCS a into binary number whose length
is set by Ma. Then, code a chromosome representing
one solution by splicing binary numbers.

2) Fitness Calculation: Filter out individuals dissatisfy-
ing (29) and (30) before analyzing average waiting
time of remaining individuals. Process one genera-
tion

(
t̄w1 , t̄

w
2 , . . . , t̄

w
n
)
by the sigmoid function instead

of directly utilizing average waiting time as fitness,
in order to improve distinction of individuals. Individ-
ual fitness is calculated as following

f̄k =
(
1+ eσ[t̄k−E(t̄n)]

)−1
, E

(
t̄n
)
=

1
n

n∑
k=1

t̄n (33)

where coefficient σ is responsible for distinction
adjustment.

3) Selection: Choose next generation by fitness propor-
tionate selection, where fitness level is used to associate
a probability of selection with each individual.

4) Crossover: Generate offspring according to two-point
crossover. Pick two random crossover points from the
parent chromosomes, and swap digits between the two
points to combine genetic information of two parent
chromosomes.

5) Mutation: Negate random bits of chromosomes who
face the same rate for mutation, aiming to maintain
genetic diversity from one generation to the next and
avoid local optimum.

6) Elitist preservation: Allow the best individual from
the current generation to carry over to the next,
which avoids deterioration in solution quality during
iterations.

VI. EXPERIMENTS
A. SIMULATION SETTINGS
This section exhibits the UPCN, OD matrix and EV param-
eters in simulation. As illustrated in Fig. 6, the topology
of charging network is constructed by randomly facilitating
PCSs in conventional Sioux Falls traffic network, a popular
benchmark network in numerous traffic assignment prob-
lems, consisting 24 nodes, 76 links and 552 OD pairs.
PCSs are introduced by establishing additional edges con-
necting adjacent nodes to prevent original traffic network
topology. It’s worth noting that this structure doesn’t build
any new roads but only enhance the traffic network with
roadside PCSs. So, EV is free to decide whether to charge
or keep driving at the roadside PCS. Taking PCS 25 for
example, EVs recharging at this station travel along with road
4-25 and 25-5, and others simply travel through road 4-5.
In detailed analysis, road 4-25, 25-5 and 4-5 have the same
flow including fuel vehicles and EVs when calculate driving

FIGURE 6. Urban Public Charging network for simulation.

TABLE 1. Public charging station scale.

time and energy consumption, and node 25 only have the
EV flow for recharging.

In order to quantify UPCN capacity intuitively, service
capacity of every PCS in the experiment is independently
adjusted in the charging pile amount instead of charging rate.
Parameters of the charging pile are set according to [26]:
charging power Pa is 44kW, probability distribution function
of charging time is regulated by its mean and coefficient of
variance c2s that are 0.5 h and 0.6 respectively. Therefore,
upper limit of a PCS’s service capacity is restricted by its
scale which is set in TABLE 1. Additionally, traffic road
capacity referred from [27] is listed in TABLE 2. Every road’s
grade is 0, free-flow speed is 60 km/h, and background flow
is set according to the equilibrium state of fuel vehicle flows
in [27].

OD matrix describing EV travel demand is 1% of the OD
matrix downloaded from [27] since the market share of EVs
among all vehicles is 1% in China as of 2018.

As shown in TABLE 3, five categories of EVs with various
low initial SoC but the same other parameters are chosen for
simulation because of more possibility in recharging half-
way. Other parameters referred from [28] include the follow-
ing: battery energy capacity is 24.3 kwh, aerodynamic drag
coefficient CD is 0.6, vehicle frontal area Af is 3.504 m2,
rolling resistance coefficient fr is 0.01, vehicle mass com-
posed of curb weight (including battery weight) and vehicle
load capacity is 2800 kg, coefficient η for energy consump-
tion estimation is 1.5, and energy threshold ε is 25%.
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TABLE 2. Edge parameters for experiments.

TABLE 3. EV parameters for experiments.

B. CASE STUDY
We design two cases for comparison in UPCN QoS analysis
and optimization between our method and the traditional
method with unlimited PCS capacity assumption.

In QoS analysis, UPCNs with different capacities are
researched under the same topology shown in Fig. 6. UPCN
capacity is classified by the amount of all charging piles in
the network, changing from 28 to 48 in the step of 2. For each
category, 30 randomly selected UPCNs with various amount
of charging piles among PCSs are researched, since it is care-
less to neglect charging pile’s distribution. What’s more, two
analytical methods share the same feasible route searching
algorithm whose coefficients α and β are set as 0.5 and 20.

In QoS optimization, UPCN capacity expansion problem
formulated in section V is worked out: for each PCS, original

charging pile amount is setting as 2, and charging pile amount
after optimization is limited by PCS’s scale. Two methods
based on different QoS analytical tools independently search
for optimal solutions with M varying from 1 to 13 in the
step of 2. Based on our method, GA is utilized for optimal
solutions as explained in section V. Based on the traditional
method, changes in the amount of charging piles among PCSs
make no difference in the travel cost excluding waiting time
and further the EV flow distribution. Therefore, greedy algo-
rithm assigning new charging pile to PCS with the heaviest
congestion sequentially is applied for solution, which is suf-
ficient for optimizing charging network with fixed EV flow.

C. RESULT ANALYSIS
In UPCN QoS analysis, we compare two methods’ results
from waiting time, blocking probability and throughput.
Fig. 7a depicts the average waiting time of UPCNs with var-
ious capacities. While average waiting time basically extents
as average throughput of each charging pile increases, results
obtained under the unlimited capacity assumption has a para-
dox marked in Fig. 7a: average waiting time decreases even
if charging piles need to serve more EVs. Fig. 7b explains the
paradox by showing the average waiting time and blocking
probability analyzed by a queueing model with 1 charging
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FIGURE 7. (a) Average waiting time of EVs in UPCNs with different capacities. (b) Average waiting time and blocking probability in a
PCS with 1 charging piles and 3 parking lots.

FIGURE 8. UPCN average waiting time and blocking probability when network capacaity is 36, 34, 32, 30 and 28 respectively. (a)-(e) Results of our
proposed method. (f)-(j) Results of the traditional method.

pile and 3 parking lots. According to the queueing model,
average waiting time prolongs as the traffic intensity (ratio
of arrival rate to service rate) increases, and then plunges
to negative when blocking probability exceeds 1. In reality,
blocking probability exceeding 1 means extreme congestion
in the PCS that no EV accept charging service, leading to
meaningless negative waiting time.

Fig. 8 reveals average waiting time as well as blocking
probability of UPCNs whose capacity varies from 36 to 28 in
the step of −2. Red points in Fig. 8 illustrate congested
networks with high blocking probability but low average
waiting time. As explained by Fig. 7b, these unreasonable
results imply unbearable traffic intensity in several PCSs,
blaming for unlimited capacity assumption where EVs lack
of motivation to avoid congested PCSs.

Fig. 9a depicts modified average waiting time of UPCNs
by removing the results of congested networks shown
in Fig. 8, and corrects the paradox represented in the Fig. 7a.

These results are close as expected when average throughput
of each charging pile is low, because unlimited capacity
assumption is rational when UPCN capacity is sufficient.
However, the impact of different assumptions on PCS service
capacity appears with average throughput of charging pile
increasing. Fig. 9b shows the ratio of neglected waiting time
under the unlimited capacity assumption to travel time. It is
reckless to not consider the effect of waiting time with high
proportion especially under high average throughput condi-
tion. However, results in Fig. 9a seems to be strange that aver-
age waiting time is actually shorter under limited capacity
assumption, as network throughput is unchanged according
to our results. Supposing discrepancy between each PCS’s
throughput to be the reason, we conducted further research.

For a queueing system, traffic intensity is an intuitive
indicator to estimate system busyness, and variance of sev-
eral queueing systems’ traffic intensity naturally indicates
differences between systems’ busyness. In UCPN with fixed
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FIGURE 9. (a) Modified average waiting time of UPCNs. (b) Ratio of neglected waiting time to travel time.

TABLE 4. Optimization result.

FIGURE 10. Variance of traffic intensity.

throughput, lower variance of traffic intensity means more
balanced EV flow distributed among PCSs. Fig. 10 repre-
sents the variance of traffic intensity calculated from each
category of UPCNs. Combining Fig. 10 and Fig. 9(a), it is
reasonable to conclude that limited capacity assumption leads
to more balanced load among PCSs and further the shorter
average waiting time. In addition, more balanced load among
PCSs is actually the macro reflection that EVs avoid popular
PCSs spontaneously by rescheduling routes, which is possi-
ble under limited capacity assumption.

In QoS optimization, GA parameters are set as following:
generation number is 10, population number is 30, efficient σ

FIGURE 11. Average waiting time after QoS optimization.

is 1.67, crossover rate is 0.7 and mutation rate is 0.2. Final
results are illustrated in Fig. 11. Whereas average wait-
ing time after optimization basically decreases as increased
charging pile amount grows, our method shows higher effi-
ciency, especially in low network capacity condition. What’s
more, traditional method obtains an unsatisfactory result:
when amount of increased charging pile grows from 7 to 9,
average waiting time even prolongs. It seems that traditional
method fails to grab the law behind UPCNQoS optimization.

Detailed results of our method in the case that M is 5 are
shown in TABLE 4. The optimal solution decreases average
waiting time from 54.8 minutes to 24.33 minutes by adding
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FIGURE 12. EV flow distribution. (a) Before optimization. (b) After optimization.

3 charging pile in node 25 as well as 2 charging piles in node
31. In addition to simply reducing the average waiting time,
we notice significant change in EV flow distribution among
PCSs which further influences average waiting time.

For more comprehensive presentation of difference in EV
flow distribution before and after optimization, Fig. 12 uses
size of edges to describe EV flows rate and color of nodes to
describe average waiting time.

In summary, our method shows advantages in simulat-
ing EVs spontaneous behavior of avoiding popular PCSs
by adjusting routes, which is important to QoS analysis
and optimization of UPCN with low capacity. Traditional
method ignoring waiting time at PCSs under unlimited capac-
ity assumption is unreasonable especially in congested net-
works, and exposed limitations in reflecting impact of UPCN
capacity on EV flow distribution which leads to optimistic
estimation in QoS analysis and low performance in QoS
optimization.

VII. CONCLUSION
In this paper, we construct a novel UPCN model with
independent quantification and adjustment of PCS capac-
ity in order to explore the impact of network capacity on
QoS analysis and optimization. We design a QoS analysis
method for this model by creatively introducing queueing
process at PCSs into the conventional traffic assignment
model and searching feasible routes for EVs recharging half-
way. Finally, we demonstrate an application of our model
and its QoS analysis method in UPCN capacity expansion for
superior QoS.

We simulated the urban public charging network for EV on
the classic Sioux Falls traffic network enhanced by randomly
added public charging stations. Results indicate that realizing
the importance of conventionally neglected queueing delays
at the stations, the proposed method manage to simulate the

trade-off in EV charging station selection between nearby
hotspots and distant idle ones to save trip time. In this case,
EVs prefer travelling further to seemingly distant but rela-
tively idle charging stations to rushing into nearby crowded
hotspots. Such reasonable practice reshapes EV distribution
in the UPCN, network QoS, and it becomes essential to QoS
optimization as the EV population booms or network capacity
shrinks. Moreover, we have shown the fact that the queueing
delay at the stations account for a considerable portion in the
EV’s total trip time, and provoked the conventional assump-
tion of zero queueing delay.

In the future, we are going to analyze UPCN QoS by
dynamic ODmatrix to simulate change of EV travel demands
at different time, and simplify the feasible route search algo-
rithm to promote this method to more complex network.
We will also explore more realistic mechanism of UPCN
topology and capacity on EV behavior patterns from travel
cost function.
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