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ABSTRACT To keep pace with the current rapid evolution of mobile data requirements, IEEE 802.11 was
evolved to provide more desirable performance to fulfill the needs of fifth-generation (5G) and Internet of
Things (IoT) networks. It provides two different access contention-based schemes; Distributed Coordination
Function (DCF) which not differentiates between different services, and Enhanced Distributed Channel
Access (EDCA) which provides differentiation between various services through four priority Access
Categories (ACs). The dilemma of the conventional IEEE 802.11 networks is the static assignation of
parameters in DCF and EDCA regardless of the number of associated stations and no matter what kind
of service is required by each station (i.e., the activity of ACs). Consequently, this led to a significant
degradation in the performance of the network, especially in the case of ultra-dense load network. Therefore,
in this paper, we introduce a novel algorithm for EDCA considering a dynamic assignation of Arbitration
Inter-Frame Space Number (AIFSN) and guidance Contention Window (CW) depending on the number of
associated stations and ACs activeness status. Based on the analytical models of EDCA, a game-theoretic
method is proposed to make each associated station adapts its transmission probability within the guidance
CW. The purpose of guidance CW is a pre-stage to detect the selfish stations which pick up a very low CW
to maximize its throughput regardless of the overall network throughput. Simulation results show that the
proposed game-based algorithm can obtain higher performance than the standard 802.11 networks in terms
of normalized throughput, data dropped during retransmissions limit threshold exceeding, and mean average
delay for sensitive delay applications.

INDEX TERMS EDCA, high density WLANs, multiple access, selfish nodes, 5G.

I. INTRODUCTION
Recently, IEEE 802.11 networks have become an essential
key to deploying dense networks and play a coaxial role
for many ongoing technologies such as fifth-generation (5G)
and Internet of Things (IoT) technologies [1]–[3]. Due to
the rapidly increasing mobile data growth, exploitation of
the unlicensed band by the interconnection of the IEEE
802.11and cellular networks could not be dispensed with eas-
ily. According to Cisco’s white paper [4], Mobile data traffic
has grown 17 times between 2012 and 2017 (reached 11.5 EB
per month); and will increase 7 times between 2017 and 2022
(will reach 77 EB per month). At the same time, the capacity
of cellular networks is keeping increasing; it’s anticipated
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that the increasing rate of mobile data traffic will outstrip
the network capacity. So, the network capacity is unable
to keep up with the current rapidly evolving mobile data
requirements. To keep pace with this, the interconnection of
wireless local area networks (WLANs) and cellular networks
(e.g. mobile traffic offloading through WLANs, LTEWLAN
aggregation (LWA)) can improve the capacity and enhance
the overall performance of the network [5].

Mobile traffic offloading [6], [7], where the cellular net-
work traffic is offloaded to the supplementary networks
(e.g. IEEE 802.11 Networks [8], Device to Device (D2D)
communications [9], [10], small cell networks (SCNs) [7]).
IEEE 802.11 Networks becomes the favored supplementary
offloading networks due to its advantages: ease of deploying,
higher data rates, cost-effective, unlicensed spectrum, conve-
nient because of most cellular network users has equipment
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contains both of 802.11 and cellular modules whichmean that
there is no need to upgrade the user equipment (UE). LWAhas
evolved as a promising technology to improve the network
capacity and quality of service (QoS) as a step toward 5G
networks [5]; it can utilize both WLAN and LTE spectrums
at the same time and combined between the advantages of
LTE and WLAN access technology [11].

Current IEEE 802.11 networks confront the challenges
of inefficient uplink utilization due to contention. IEEE
802.11 Medium Access Control (MAC) adopts carrier sense
multiple access with collision avoidance (CSMA/CA). The
two basic access methods in IEEE 802.11 networks are called
Distributed Coordination Function (DCF) and Point Coordi-
nation Function (PCF) [12]. DCF is a contention-based access
method and was proposed to support the best effort services,
while PCF is a contention-free access method in which an
access point (AP) coordinates with associated nodes through
sending polling messages.

To extend the support of QoS in IEEE 802.11 networks,
IEEE proposed the 802.11e amendment to differentiate
between different services. IEEE 802.11e proposed two
access methods called Enhanced Distributed Channel
Access (EDCA) which is an enhanced version of DCF,
and Hybrid Coordination Function Controlled Channel
Access (HCCA) which is an extension of PCF [13]. EDCA
method differentiates between different services through
four different Access Categories (ACs): the highest priority
Voice (VO) AC, Video (VI), Best Effort (BE), and the lowest
priority Background (BK) AC. The key concept of EDCA
is that the differentiated access between different ACs is
through assigning different Contention Window (CW) size
and Arbitration Inter-Frame Space Number (AIFSN) [14].

The dilemma of the EDCAmethod is the static assignation
of parameters of CW size and AIFSN value regardless of how
many stations are associated and the current presence status of
ACs, which causes degradation in the network performance in
the case of dense load network and causes waste of resources
for absent ACs. Another dilemma is the selfish behavior of
some nodes which choose a very small CW to increase their
channel access and therefore the channel access opportunity
for well-behaved nodes decreases [15]. Consequently, these
dilemmas led to more collisions which impact on the overall
performance of the network.

Therefore, these challenges greatly inspire us to propose a
novel algorithm of EDCA for resolving the aforementioned
dilemmas, the main contributions of this paper are summa-
rized as follows:
• We propose an ACs presence-aware algorithm to
dynamically tune the AIFSN value for each AC by seiz-
ing the AIFSN values of the absent ACs and also seizing
the IFS value of the unused HCCA mode.

• To take the condition of the dense load AP into account,
we adapt the guidance CW size depending on the num-
ber of associated nodes in each AC, and then each node
will adapt its transmission probability within the guid-
ance CW using a game-theoretic approach to maximize

its performance with considering of the overall perfor-
mance of the network.

• We propose a mechanism to allow the AP to detect and
punish selfish and malicious behavioral nodes depend-
ing on the guidance CW.

The proposed algorithm simulation results showed that the
overall performance of the dense load AP is improved in
terms of normalized throughput, data dropped during retrans-
missions limit threshold exceeding, and mean average delay
for sensitive delay ACs.

The rest of the paper is organized as follows. Section II
outlines the EDCA scheme, game theory, and related work.
Section III details the novel proposed mechanism: determi-
nation of ACs presence status, counting of nodes in each AC,
tuning of the guidance CW, adaptation of the transmission
probability for each node depending on game theory, and
detection of selfish behavioral nodes. In section IV, we eval-
uate the performance of the proposed mechanism via simula-
tion. Finally, we conclude the paper in Section V.

II. PRELIMINARIES AND RELATED WORK
A. DCF & EDCA SCHEMES
The DCF scheme is a contention-based access mechanism
designed by IEEE [12]. Every station has to sense the channel
before it can send. If the channel is idle longer than a time
interval called Distributed Inter-Frame Space (DIFS), the sta-
tion will initiate the backoff stage as a step towards seizing
the medium. In contrast, if the channel is busy, the station
has to wait until the medium turns to idle state again for a
time longer than DIFS [16]. In the backoff stage, the station
will randomly select an initial backoff counter from a range
[0, (CW - 1)], where CW value is within a range from
the minimum contention window (CWmin) to the maximum
contention window (CWmax). The backoff counter decreases
by 1 when the medium state is idle. Once the backoff counter
reaches zero, the station can immediately send the data.
In case the medium state becomes busy during the decrement
of the backoff counter, the counter will be paused until the
medium turns to idle state for a time longer than DIFS [17].
The initial CW is set to CWmin; in case of collision occurred,
the old CW (CWold) of the failed transmission nodes will
be multiplied by 2 up to CWmax. In contrast, in the case of
successful data transmission or reaching the retransmissions
limit, the CW is reset to CWmin [12]. The updating of CW is
given by

CW =

{
CWmin on a success
min (CWmax , 2 ∗ CW old ) on a collision

(1)

IEEE developed the DCF scheme to EDCA scheme to
provide a differentiation between different types of services.
The EDCA differentiates between different services through
four ACs from the highest priority to the lowest as follows:
VO (for voice services), VI (for video services), BE (for
best-effort services), and BK (for Background data). The
EDCA assigns static parameters to each AC which includes
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TABLE 1. EDCA ACs parameters.

CWmin, CWmax, Arbitration Inter-Frame Space (AIFS), and
transmission opportunity (TXOP) as listed in Table 1 [13].
In EDCA scheme, each station will sense the channel for
being idle for a time longer than AIFS instead of DIFS, which
is given by

AIFSm = SIFS + AIFSNm ∗ δ (2)

where AIFSNm is the AIFSN number for AC class m, SIFS
is the Short Inter-Frame Space, δ is the slot time duration.

Besides, the EDCA produces TXOP as a contention-free
period (CFP); during this period, each node can seize the
channel for a TXOP period and transmit as many data frames
as possible until the interval of the data frames transmission
does not exceed the limited TXOP period [18].

B. GAME THEORY
Game theory is an effective mathematical tool to study
the strategies and decision making in conflict of inter-
est or cooperative situations between multiple players, this
theory attracted great attention of many researchers from the
wireless community [19]. Every game consists of three main
components: players (e.g., people, organizations, network
nodes), strategies (i.e., set of decisions), and payoff or utility
functions. Each player must take into account the decisions
taken by the other players to optimize its decision to max-
imize its own payoff. A strategic game is represented as
follows [20]:

G =< K , (Si)i∈K , (ui)i∈K > (3)

where K is the number of players, Si is the set of available
strategies for player i, ui is the utility function of player i.
In general, games can be classified into cooperative or

non-cooperative games. In a cooperative game, all players
collaborate and coordinate their strategies to maximize the
system utility and obtain a social equilibrium. On the other
hand, in a non-cooperative game, each player takes a decision
autonomously to maximize its own utility without knowing
the choices of the other players [20]. Non-Cooperative games
have been widely used to research several topics in wire-
less networks (e.g., Medium Access Control (MAC) game,
admission control, and power control). The objective of non-
cooperative games is to discover the equilibria in wireless
networks with self-interested nodes [21].

A game solution, called Equilibrium, explains the players’
optimal set of strategies and the resulted utility from these

strategies. One of the most known equilibria is the Nash Equi-
librium (NE); NE is a combination of strategies such that no
player has a motivation to change his/her strategy to achieve
a greater utility, which meets the following criterion [19]:

ui
(
s∗i , s

∗
−i
)
≥ ui

(
si, s∗−i

)
, ∀i ∈ K , ∀si ∈ Si (4)

where, s∗i is a NE strategy for player i, and s∗
−i is NE strategies

set for all other players except player i. There are many
methods that lead a game towards a NE; the most common
are Best Response, Gradient, and Jacobi method.

Game theory has become an effective tool for improving
the overall performance of wireless networks. Applications
and Challenges of game theory for wireless networks are
studied in [22]–[25], and for MAC challenges are studied
in [20], [26].

C. RELATED WORK
There have been a lot of researches on addressing the
dilemma of performance degradation and providing more
QoS support in dense load WLANs. Here we discuss a few
which are most related to this paper. In [27], a backoff scheme
for WLANs is proposed with QoS support by doubling the
CW when the channel is found busy not only on collision
state. This procedure may decrease the collisions between
the competing nodes, but it will increase the average delay
for voice and video ACs. In [28], the authors introduced
an efficient back-off scheme to increase energy efficiency
and decrease collisions. It adjusts the CW size according
to the collision probability and uses temporary back-off
within the existing back-off counter. In [29], the authors
improved the binary exponential backoff (BEB) based on the
estimated number of the competing nodes which adapt the
CWmin before the contention phase to enhance the overall
network throughput and the packet delivery ratio. The authors
of [30] improved the wireless full-duplex cognitive MAC
protocol that effectively resolved the problem of reactivation-
failure in multichannel non-time slotted cognitive radio net-
works. In [31], the authors improved the energy efficiency
while providing the QoS for 5G networks by maximizing
the effective power efficiency (EPE) of SISO and MIMO
channels.

In [32], with introducing an analytical model, an adap-
tive CW algorithm is proposed to consider the estimated
number of stations in each AC; an improving shown in the
network throughput and retransmissions, but the algorithm
used a very large size CWmin compared to the number of
stations which will cause a degradation in term of delay in
dense load condition. In [33], the authors proposed a dynamic
CW tuning scheme by considering the collision probability.
In [34], the authors proposed an adaptive AIFSN scheme
based on the network load to enhance QoS support. In [35],
we proposed an adaptive CW and AIFSN tuning scheme by
taking into account the number of associated nodes in each
AC and the activity of ACs to improve the global normalized
throughput of the network and decrease the mean average
delay of sensitive delay services.
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Within the framework of game theory, in [36], a game-
theoretic adaptive CW mechanism is proposed for heavy
load DCF WLANs. This mechanism makes each node to
adjust its CW size independently to improve the performance
of the network in which there will be a tradeoff between
the throughput, mean delay, and the retransmission attempts.
In [37], the authors proposed a dynamic CWmin game-based
mechanism called G-EDCA to improve the network through-
put and decrease the frame drop rate by considering the prob-
lem of selfish behavioral nodes. In [38], the authors proposed
a game-theoretic adaptive AIFSN scheme based on the QoS
measurements and proposed an admission control algorithm
based on the network capacity to increase the throughput of
low priority AC.

III. THE PROPOSED ALGORITHM
As discussed in the previous sections, providing high
throughput and low delay for sensitive delay services, espe-
cially in dense load condition networks, is very critical and
considered as a vital key to keeping pace with the current
rapid evolution of mobile data requirements. In EDCA mode
of the IEEE 802.11 networks, the associated stations access
to the channel by adjusting their CWs.

Therefore, unsuitable tuning of CWby some selfish behav-
ioral stations to increase the transmission probability by
exploiting small values of CWwill lead tomore collisions and
dramatic degradation in the overall performance of the dense
load AP. Besides that, the static assignment of AIFSN values
regardless of the absence state of any AC and the activity
of HCCA mode will waste resources that can be exploited
by the non-absent ACs. So, we proposed an algorithm to
adapt the values of CW and AIFSN with detection of self-
ish nodes by taking into account the number of associated
nodes in each AC and the activity of ACs to improve the
overall efficiency of the uplink access (i.e., transmissions
to the AP) in dense load IEEE 802.11 network with the
support of QoS differentiation. Our algorithm includes six
phases:

a. Detection of actually present ACs and the number of
stations in each AC.

b. Tuning of AIFSN.
c. Tuning of the guidance CW.
d. Advertising the calculated values of the Guidance CW

and AIFSN.
e. Game theoretic based adaptation of transmission

probability.
f. Detection of selfish behavioral stations.

A glossary of notations used in the proposed algorithm is
presented in Table 2.

A. DETECTION OF PRESENT ACs AND THE NUMBER OF
STATIONS PER EACH AC
To join the WLAN and start the data transmission process,
each station must send an association request to the AP in
order to acquire an Association Identifier (AID). Fig. 1 shows

TABLE 2. Glossary of notations.

FIGURE 1. Association request frame in IEEE 802.11.

the structure of the association request frame, which con-
tains a subfield called QoS Capability includes flags for
all types of ACs. These flags are set to 0 or 1 by the
stations to inform the AP about needing QoS ACs to data
transmission.

At the AP, we created three counters for Voice, Video, and
Best Effort ACs to count the number of stations for access
category m (Km), where m is equal to 0, 1, and 2 for voice,
video, and Best Effort ACs respectively. For each AC flag
equal to 1 received by the AP, the corresponding AC counter
will be incremented by 1.

In contrast, the corresponding counter will be decremented
by one in case of disassociation. These counters will give us
an accurate number of the currently associated station in each
AC. In case any counter has a zero value, this means that the
corresponding AC is not active (i.e., absent).
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TABLE 3. The dynamic tuning of AIFSN.

B. TUNING OF AIFSN
As mentioned earlier, the allocation of the fixed value of
AIFSN to different ACs is considered to be a waste of
resources, particularly in the case of inactivity for any AC.

Accordingly, the active ACs can exploit opportunistically
the AIFSN values of the absent ACs to improve its perfor-
mance. According to [39], the best effort AC is the most
traffic used in IoT networks.

So, the best effort AC can benefit from the absence of
higher priority ACs (i.e., voice and video ACs) by seizing its
AIFSN values to decrease the media access delay. In addi-
tion, the centralized scheme HCCA is not practically used.
In HCCA, the PCF Inter-Frame Space (PIFS) interval is
used by stations to transmit data within the Contention Free
Period (CFP) and used by the Hybrid Coordinator (HC) to
start or end the CFP.

Hence, in our proposed algorithm, the active ACs will
seize the AIFSN of the absent ACs and will seize the
PIFS interval when the HCCA mode is disabled. But,
if the data transmission cannot be completed before the
incoming scheduled beacon starts, stations are not permitted
to send data. The dynamic tuning of AIFSN is listed in
Table 3.

C. TUNING OF THE GUIDANCE CW
As listed earlier in Table 1, IEEE 802.11 standard allocates
a static value of CWmin and CWmax for each AC. So, in the
condition of dense load AP, the static allocation will cause
a precipitous fall in the network performance in terms of
the overall throughput and the average delay during a high
number of collisions. This problem also occurs as the selfish
stations attempt to select a small CW in order to increase the
transmission probability.

Hence, we propose the concept of the guidance CW, which
is a preliminary step for two processes as follows:

a. Adaptation of transmission probability: where each
station adapts its probability transmission in a game-
theoretic approach within the guidance CW

FIGURE 2. Beacon format in IEEE 802.11.

b. Detection of selfish stations: where the AP detects any
station adapts its probability transmission with CW
value lower than the guidance CW.

In our proposed Algorithm, we adapt the values of CWmin
and CWmax of the guidance CW depending on the number of
stations in each AC as follows [35]:

CWmin,m = 2ceil(log2 (
km
2 ))
− 1 (5)

CWmax,m = min(2ceil(log2 (2km)) − 1,CWmaxphy) (6)

where CWmaxphy is the maximum value of CWmax restricted
by the physical layer.

D. ADVERTISING THE NEW VALUES OF
GUIDANCE CW AND AIFSN
In IEEE 802.11 networks, theAP sent a beacon frame periodi-
cally (every 102.4 ms) to inform all associated stations about
the network information and parameters. Consequently, all
stations which are associated with the network can be updated
with the Basic Services Set (BSS) parameters. As shown
in Fig. 2, the beacon frame contains a field called EDCA
Parameter Set, which includes the AIFSN, ECWmin, and
ECWmax parameters for each AC. ECWmin and ECWmax
are the exponent form of CWmin and CWmax as follows:

CWmin,m = 2ECWmin,m − 1 (7)

CWmax,m = 2ECWmax,m − 1 (8)

In our algorithm, after adaptation of the AIFSN and the
guidance CW, the AP will advertise the associated stations
with the new values through the fields of AIFSN, ECWmin,
and ECWmax. From (5)-(8), the new calculated ECWmin,
and ECWmax of the guidance CW will be as follows:

ECWmin,m = ceil(log2(
km
2
)) (9)

ECWmax,m = min(ceil(log2(2km)),(log2(CWmaxphy))) (10)

E. GAME-THEORETIC BASED ADAPTATION OF
TRANSMISSION PROBABILITY
In this stage, through a game-theoretic approach, all associ-
ated stations will adapt its transmission probability within the
guidance CW by tuning only CWmin for lower complexity
purposes. Game theory is an effective method to clarify the
effect of station actions on the others, and on the network
performance.
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In our proposed algorithm, each associated station in each
AC will be considered as a player and the adaptation of its
transmission probability will be considered as its strategy.
Each associated station will adapt its transmission probability
in order to maximize the payoff function which aims to
maximize the network throughput, minimize the data dropped
during retransmissions limit threshold exceeding, and mini-
mize the access delay in the network.

First, the equations of the throughput and the access delay
in the EDCA algorithm should be defined to determine the
proposed payoff function. These equations are addressed in
some analytical models [32], [40]–[42]. Let 9m refer to the
transmission probability of AC class m inside the station,
which expressed in (11), as shown at the bottom of this
page, [40]; where βm is the probability that backoff counter
can be decreased by one for access category m,Cm is the col-
lision probability of access category m for a station, rm is the
retransmissions limit for access category m, Dm is the max-
imum times for doubling the CW after a collision for access
category m. βm, and Cm are defined as follows [40]–[42]:

β0 = 1

β1 =
(
(1−90) (1− ξ0)Ktotal

)(DIFF1)

β2 = β1 ∗ (
∏1

j=0
(
1−9j

) (
1− ξj

)Ktotal )(DIFF2)

β3 = β1 ∗ β2 ∗ (
∏2

j=0
(
1−9j

) (
1− ξj

)Ktotal )(DIFF3)

(12)

Cm = Im + (1− Im)8 (13)

where Ktotal is the number of all stations in the network, ξm is
the transmission probability of AC class m outside the station,
Im is the virtual collision probability of AC class m with
a higher priority class within the same station, DIFFm =
(AIFSNm − AIFSNm−1), and 8 is the collision probability
between different stations (i.e., the external collision proba-
bility). Im,8, and ξm are defined as follows [40]–[42]:

I0 = 0
I1 = 90

I2 = 1− (1−90) (1−91)
I3 = 1− (1−90) (1−91)(1−92)

(14)

ξm = 9m(1− Im) (15)

8 = 1− (1−ξtotal)Ktotal−1 (16)

where ξtotal is the total transmission probability for a station
and equal to

∑3
m=0 ξm.

According to the EDCA analytical models, the saturation
throughput is the maximum throughput that the network can
reach under saturation conditions. The saturation condition
means that all stations always have data to send. Let λ refers to
the probability of at least one transmission (succeeded or col-
lided) being in a time slot, µm refers to the probability of a

succeeded attempt for AC class m in the time slot, and ν refers
to the probability of a collided transmission in the time slot,
which are defined as follows [40]:

λ = 1− (1− ξtotal)Ktotal (17)

µm =
Ktotal ∗ ξm (1− ξtotal)Ktotal−1

λ
(18)

ν =
λ− Ktotal∗ξ total (1− ξtotal)

Ktotal−1

λ
(19)

The saturation throughput for AC class m (Xm) is defined as
follows [40]–[42]:

Xm =
λ∗µm ∗ E [Pm]

(1− λ) ∗ δ +
∑3

m=0 λ ∗ µm∗TSm+λ ∗ ν ∗ TC
(20)

where E [Pm] is the mean payload size of AC class m, δ is the
slot time duration, TSm is the average time of a successful
transmission for AC class m, and TC is the average time
of a collided transmission. TSm, and TC are calculated as
follows [40], [43]:

TSm = TH + TE[Pm] + SIFS + ACK + AIFSm + 2σ (21)

TC = TH + TE[P∗m] + AIFSm + σ (22)

where TH is the transmission time of the frame header, TE[Pm]
is the transmission time of the E [Pm], TE[P∗m] is the transmis-
sion time of the longest collided mean payload, and σ is the
propagation delay. The average access delay is represented as
follows [44]:

Am = ξtotal (Ktotal − 1)
[
TSm + TC ∗

8

1−8

]
+ TSm

+TC ∗
8

1−8
+ CWm ∗ δ (23)

Finally, after counting the number of stations in each AC
(first phase of the proposed algorithm), and also defining the
saturation throughput and the medium access delay equa-
tions, the proposed game can be defined. In our proposed
algorithm, the game is defined as< Ktotal, (ξi)i∈K , (ui)i∈K >,
each station will adapt its transmission probability by tuning
its CW within the CW guidance to optimize its payoff. The
payoff function of each station is formulated as the perfor-
mance of station in terms of the saturation throughput and
the media access delay (i.e., each station will try to increase
its throughput and decrease its access delay). The proposed
payoff function is formulated depending on the weighted sum
method [45] as follows:

ui (ξi) = α1
Xm

Xm[max]
− α2

Am

Am[max]
(24)

where α1 and α2 are the weighted coefficients. The terms of
throughput and access delay are normalized since they do not

9m =
2βm ∗

(
1− Crm+1

m

)
(1+ 2Cm) ∗

(
1− Crm+1

m

)
+ CWmin,m ∗ (2Cm)

Dm ∗
(
1− C(rm−Dm+1)

m −
1−Cm
1−2Cm

)
+

1−Cm
1−2Cm

(11)
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FIGURE 3. The normalized payoff function.

have the same dimension unit. The weighted coefficients can
be adapted by stations depending on their objectives.

The normalized payoff function for a different number of
associated stations (10, 20, 30, 40 and 50) is shown in Fig. 3.
It is clear that this function is concave. According to the
formulated payoff function, it is clear that two statements
affect on the transmission probability. We assume that all sta-
tions can listen to each other, and then they form a coalition.
All stations must adapt its transmission probability within the
guidance CW to maximize the throughput and minimize the
delay. In case of any station adapts its transmission probabil-
ity outside the range of the guidance CW, the AP can detect
the malicious behavior of this station and expelled it from
the network. Therefore, every station is forced to cooperate
to reach an NE and a satisfying point for all other stations
which will affect on the overall network performance. So our
proposed game is acting like a cooperative one. Hence, if this
problem is optimized, the optimal probability of transmis-
sion, which is also a Pareto solution, will be obtained.

In our algorithm, we used the best response method to lead
the game towards NE. Therefore, each station selects its best
strategy against the other stations’ previous strategies. The
NE is the point at which each station in the network has
selected the best response to the other players’ actions. So,
each station must maximize its payoff function by solving the
following equation:

ξi (t + 1) = argmax0<ξi<1 ui(ξi, ξ−i) (25)

By solving dui(ξi, ξ−i)/dξi = 0, the best response (ξ∗i ) can
be calculated. As we mentioned before, every station selects
its best response against the actions of the other station in the
last stage. Hence, each station will select its strategy at stage
(t + 1) as follows:

ξi (t + 1) = argmax0<ξi<1 (α1
Xm
Xtotal

− α2
Am

Atotal
) (26)

After obtaining the optimal transmission probability, the
CWmin can be adapted through (11) and (15) within the
CWmin of the guidance CW.

FIGURE 4. The flowchart of the proposed algorithm.

F. DETECTION OF SELFISH BEHAVIORAL STATIONS
As we mentioned before, the selfish behavioral adaptation
of the CW by malicious stations results in more collisions
and degradation in the overall performance, especially it may
cause a rapid collapse in a dense load AP. We introduced the
concept of the guidance CW as a preliminary stage to detect
the selfish stations. The guidance CW will make the AP able
to detect any station that adapts its CW with a lower value
than the guidance CW. The minimum time the channel is idle
before any class m transmission within the guidance CW is
calculated as follows:

Tmin,idle = SIFS + (AIFSNm + CWmin,m,guidance) ∗ δ (27)

In this stage, the AP senses the channel and calculates
how much time the channel is idle before any transmission.
In the case of the calculated idle time before transmission by
a station is lower than Tmin,idle, this indicates the station is
selfish. Consequently, the AP can punish the selfish station
by disassociation. In Fig. 4, the flowchart of the proposed
algorithm is illustrated.

Since the game theory is known to be complicated, we used
it as partial game theory to reduce complexity and offer
more simplicity. In the presented scheme, we used the game
theory only in the phase of transmission probability adap-
tation but didn’t use it in the rest of the algorithm. Also
to reduce the complexity of the scheme, we used a direct
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FIGURE 5. The normalized throughput of the network.

method at the AP to count the number of associated stations
instead of an estimation method. Additionally, we limited the
scheme to 3 ACs and excluded the Background AC for lower
complexity.

IV. PERFORMANCE EVALUATION
In this section, we investigate the performance of the pro-
posed algorithm through a set of forty different simulated
scenarios considering both low and high density loads.
The scenarios consist of 32, 64, 128, 256, or 512 Best
Effort (BE) stations and repeated with different combinations
of Voice (VO) and Video (VI) stations. We assumed that the
network is in saturation condition (i.e. all stations always have
data frames to send to AP).

The proposed algorithm is simulated with the Riverbed
modeler and compared with the traditional IEEE 802.11
EDCA [46], [47], and QCAAAE algorithms [35]. We asses-
sed the proposed algorithm in terms of the network through-
put normalized to the total traffic submitted, themean average
End-to-End delay, and the data drop rate due to exceeding
of retransmission attempts. The simulation parameters are
illustrated in Table 4.

The simulation results of the global normalized throughput
are shown in Fig. 5. It is clear that the proposed algorithm
has a higher normalized throughput than the conventional
EDCA and QCAAAE algorithms, especially in high-density
conditions. In all scenarios that include 512 BE stations, the

TABLE 4. Simulation parameters.

normalized throughput increased on average 37% compared
to the traditional EDCA and 8% compared to QCAAAE.

Regarding the drop rate due to exceeding of retransmis-
sions limit, it is obvious from Fig. 6 that the proposed
algorithm has a lower drop rate than the other algorithms;
this improvement is most noticeable in cases of high-density
scenarios. In all scenarios includes 512 BE stations, the drop
rate of the proposed algorithm decreased on average from
4.82 Mb/s (EDCA), 2.45 Mb/s (QCAAAE) to 1.09 Mb/s.

The simulation results of the mean average delay of
the network are shown in Fig. 7, it is clear that the pro-
posed algorithm has a lower mean average delay than the
other algorithms, except for two scenarios. In 256 BE with
30 VI and 512 BE with 30 VI scenarios, the delay of
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FIGURE 6. The drop rate due to exceeding of retransmissions limit.

FIGURE 7. The mean average delay of the network.
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FIGURE 8. The normalized throughput of voice stations.

FIGURE 9. The mean average delay of voice stations.

FIGURE 10. The normalized throughput of video stations.

EDCA is lower and decreased from 4.8s to 2.6s from
12.2s to 6.6s, respectively. But on the other hand, the nor-
malized throughput (which has more priority) of the pro-
posed algorithm is increased in these scenarios from 74.4%
to 98.1% and from 62.6% to 89.7%, respectively. Also,
the data drop rate is decreased in the proposed algorithm from
8.02 Mb/s to 0.25 Mb/s and from 8.47 Mb/s to 1.9 Mb/s,
respectively.

Concerning the services that are sensitive to data loss and
delay, as shown in Fig. 8 to Fig. 11, it is quite notable that
the normalized throughput and the mean average End-to-End
delay of voice and video stations are improved compared
to the other algorithms. In most of the simulated scenarios,
we also have noted that the proposed algorithm has solved
the delay caused by the QCAAAE in voice and video services
with also maintaining a higher throughput at the same time.
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FIGURE 11. The mean average delay of video stations.

TABLE 5. The average retransmission attempts.

FIGURE 12. The average retransmission attempts of the network.

TABLE 6. The mean average delay in ACs.

The average number of retransmission attempts of all sce-
narios is listed in Table 5. The simulation results of the
average retransmission attempts of (32BE, 64BE, 128BE,
256BE, 512BE) scenarios are shown in Fig. 12. It is clear that
the proposed algorithm has fewer collisions than conventional

FIGURE 13. The average normalized throughput in ACs.

EDCA. The average number of retransmission attempts
decreased on average 49.6% compared to the traditional
EDCA and 8.98% compared to QCAAAE.

Fig.13 and Table 6 show the average normalized through-
put and the mean average delay in all scenarios in which all
ACs have existed; it is quite notable that the proposed scheme
satisfies the priority between different ACs.

V. CONCLUSION
In this paper, we proposed a novel mechanism based on
the EDCA mechanism to address the dilemma of the rapid
degradation in the performance of high-density networks due
to the static assignation of CW size and AIFS interval; also to
solve the dilemma of selfish stations which select a very small
CW to increase its channel access opportunity without con-
sidering the performance of the network and other stations.
Our proposed algorithm adapted dynamically the CW size
and AIFSN value with taking into account the activity status
of each AC and the number of associated stations in each AC.
We proposed the concept of the guidance CW as a pre-stage
for the detection of the selfish stations. So, the APwill be able
to detect any station which adapts its CWwithout considering
the guidance CW through comparing between two metrics:
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the actual idle time of the channel and the minimum idle time
of the channel within the guidance CW. In our algorithm, each
station adapts its transmission probability within the guidance
CW through a game-theoretic approach, the payoff function
is defined as a function of both the saturation throughput and
the medium access delay. Simulation results show that the
proposed mechanism, especially in high-density scenarios,
can effectively increase the overall throughput (increased on
average 37% compared to the standard EDCA) and decrease
both the data drop rate due to exceeding of retransmissions
limit (decreased on average 77% compared to the standard
EDCA) and the mean average delay particularly in the ser-
vices that are sensitive to the data loss and delay.
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