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ABSTRACT Vehicle tracking based on surveillance videos is of great significance in the highway traffic
monitoring field. In real-world vehicle-tracking applications, partial occlusion and objects with similarly
appearing distractors pose significant challenges. For addressing the above issues, we propose a robust
multivehicle tracking with Wasserstein association metric (MTWAM) method. In MTWAM, we analyze
the advantage of the 1-Wasserstein distance (WD-1) on partial occlusion and employ the WD-1 as the
similarity criterion to measure the similarity between tracklets and detections. Moreover, for distinguishing
different objects with a similar appearance, we improve the feature presentation of vehicles by developing
target-specific feature sparse coding (TSSC). To demonstrate the validity of this method, we present a
quantitative evaluation of both the UA-DETRAC dataset and our vehicle highway surveillance videos dataset
(VecHSV). In both cases, our method achieves state-of-the-art performances.

INDEX TERMS Vehicle tracking, highway surveillance videos, Wasserstein association metric,
target-specific sparse coding.

I. INTRODUCTION
Monitoring systems play an important role in the daily
management of highways. Vehicle tracking based on surveil-
lance videos, for which the goal is to provide a continu-
ous trajectory to each target, is the main component of a
monitoring system [1]–[4]. Although significant success has
been achieved in detecting objects in static images, vehicle
tracking based on surveillance videos remains challenging as
a result of factors such as nonuniform continuous changes in
the appearance of the vehicle target duringmovement, mutual
obstructions between vehicles, motion blurring, and illumina-
tion changes [5]. The key to vehicle tracking in surveillance
videos is accurately generating the object trajectories; that is,
marking each object with its bounding box and class label
while preserving its identity. Numerous vehicle-tracking
methods based on surveillance videos formulated the task
as a state estimation problem using filter-based strate-
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gies, such as the Kalman filter [6]–[8] and the particle
filter [9]–[11]. However, these approaches must assume a
dynamic model a priori and have trouble distinguishing
objects close to other targets. Therefore, these methods typi-
cally predict the states of targets in a short amount of time but
do not perform well in complex scenarios. The vast majority
of recent methods are based on the tracking-by-detection
approach, which builds trajectories via associated detections.
In general, these methods typically consist of the following
components: a detection method and detection association
method based on a similarity measure. The detection method
finds bounding boxes enclosing instances’ specific object
categories and has recently provided reliable detections in
complex scenes due to the development of deep learning
techniques. Thus, the methods of detection association are
crucial for this task. In detection association, input frame
detections are linked to the short tracklets by trackers such as
globally-optimal greedy (GOG) [12] and continuous energy
minimization CEM [13] approaches, thereby, short tracklets
are grown sequentially using frame-by-frame association up
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to the current frame and eventually become long trajectories.
However, these trackers [12]–[15] used in detection associa-
tion exhibit a limited ability to identify vehicles with similar
appearances, owing to the limited ability to characterize the
intraclass fine-grained features. Moreover, partial occlusions
also confuse these trackers, which can easily identify the
occluded target as an occlusion target by mistake and result
in tracking failure. To associate the tracklet and detection of
the same object while distinguishing different objects with
a similar appearance, it is crucial that the improvement of
the feature presentation of vehicles not only involves seman-
tic features but also retains detailed local features. Thus,
we analyzed the characteristics of convolutional neural net-
work (CNN) feature layers and found a suitable target feature
representation manner: target-specific feature sparse coding
(TSSC). In addition, to handle frequent partial occlusions,
we analyzed the advantage of the 1-Wasserstein distance
(WD-1) [16] for the feature similarity measure and employed
the WD-1 as the similarity criterion to measure the similarity
between tracklets and detections in consecutive frames.

Based on the above analysis, we propose a two-stage
multivehicle tracking with Wasserstein association met-
ric (MTWAM) method to track vehicles in highway surveil-
lance videos. In the first stage, we generate vehicle proposals
(VPs), which are the image patches for each vehicle in each
surveillance video frame, by the faster region-convolutional
neural network (faster R-CNN) model. Each VP contains a
bounding box and confidence score but does not include the
target identity. In the second stage, we develop a Wasserstein
tracklet-detection association to identify and track vehicles.
The Wasserstein tracklet-detection association includes VPs’
fine-grained feature coding by TSSC, a 1-Wasserstein dis-
tance (WD-1) to measure the similarity of tracklet-detection
pairs, and the Kuhn-Munkres algorithm to identify vehicles
across neighboring frames. The contributions of this paper
are as follows:

1) We propose a novel vehicle-tracking method called
MTWAM for surveillance videos, which combines rich
semantic and fine-grained features that are robust against
appearance changes and possess sufficient discriminative
power for similarity distractors. Compared to existing meth-
ods, our method provides state-of-the-art accuracy.

2) We analyze the properties of different level features in
CNNs and select the features that not only involve semantic
features but also retain detailed local features. Moreover,
we develop TSSC for the selected features. This TSSC guar-
antees the ability to capture fine-grained vehicle features,
while improving the computational efficiency in detection
association.

3) We introduce the WD-1, which is used to measure the
similarity of the vehicle features by TSSC across adjacent
frames and is robust against partial occlusions. Experiments
demonstrate that our method has discriminative power for
vehicle-specific identification.

The remainder of this paper is organized as follows:
Section II presents related works. Section III, part A describes

the proposal generation methods, while part B presents
the Wasserstein tracklet-detection association by means of
target-specific feature sparse coding, Wasserstein distance as
the similarity measure and detection-tracklet association by
the Kuhn-Munkres algorithm. Experimental results and com-
parisons are provided in section IV, and section V concludes
the paper.

II. RELATED WORKS
A. VEHICLE PROPOSALS GENERATION
In recent years, object detection based on static images
has achieved great successes. Numerous models based on
handcrafted features [17]–[24] have been applied to static
image object detection. Recent developments in state-of-
the-art object detection methods are all based on deep
CNNs [25]–[28]. Reference [29] proposed using a CNN
during the stage of detection-proposal classification. Sub-
sequently, [30] developed the spatial pyramid pool-
ing (SPP) layer to overcome the fixed-size input constraint.
Reference [31] improved the speed by proposing the Region
of Interest (RoI) pooling layer, which shares the feature
map of the entire image with each proposal. Reference [32]
combined region proposals with object classification by
developing the region proposal network (RPN) to accelerate
proposal generation. Compared to [31], [32], which use a
proposal stage and a classification stage, the method of you
only look once (YOLO) [33] and its extension [34]–[36]
exclude the proposal stage. In YOLO [33], the final feature
map is divided into grid cells and then trained to detect objects
in each cell. The YOLOv2 [34] adopts anchor boxes that
are similar to faster R-CNN and uses features stacked from
different layers to address object size variation. Moreover,
[35] adopts default boxes for different feature layers at vary-
ing resolutions. Compared to faster R-CNN, these YOLO
methods exhibit high speeds and low recall rates. In object
proposal generation, faster R-CNN typically achieves high
recall rates for individual frames, which is important to note
because this rate is the upper bound of video object tracking
performance.

B. MULTI-OBJECT TRACKING BY TARGET ASSOCIATION
Existing methods for multi-object tracking are mainly based
on a tracking-by-detection approach [12]–[15], [37]–[42],
which sequentially associates the detections of input frames
with tracklets and builds trajectories. During this process,
a robust association strategy plays an essential role.

Reference [13] formulated multitarget association by min-
imizing a continuous energy function. Similarly, [12] for-
mulated the problem using a cost function and proposes a
greedy algorithm that sequentially instantiates tracks using
shortest path computations on a flow network. Reference [14]
used motion dynamics as a cue to distinguish targets
with a similar appearance. Moreover, [15] incorporated
the relative motion network (RMN) model within the
Bayesian filtering framework and the Kalman filter for online
association.
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FIGURE 1. Overview of multivehicle tracking with Wasserstein association metric method. This method consists of two stages: vehicle proposals
generation and Wasserstein tracklet-detection association. We adopt the faster R-CNN to generate vehicle proposals in vehicle proposals generation.
In Wasserstein tracklet-detection association, we represent each detection and tracklet by means of TSSC, then we calculate each tracklet-detection pair
similarity via WD-1 and introduce the Kuhn-Munkres algorithm to optimize the tracklet-detection association performance.

However, these methods do not perform as well when
identifying vehicles with similar appearances due to the
limitations of the object-specific appearance representa-
tions. Similar to our approach, [41] exploited a high-
performance detector with a deep learning appearance
feature. Reference [42] combined motion and appearance
information through a deep association metric and achieved
good performance. However, these do not have enough
robustness on partial occlusions. In this paper, we aim to solve
these challenges and propose our MTWAM method.

C. OTHER WD-BASED TRACKING METHODS
The Wasserstein distance (WD), also named Earth Mover’s
Distance (EMD), is a natural distance metric for comparing
two probability distributions. In the context of visual track-
ing, several EMD-based trackers that minimizes the EMD
between the candidate and reference feature histograms have
been proposed. Reference [43] employed color signatures
with EMD and proposed Differential Earth Mover’s Dis-
tance (DEMD) algorithm, which was the first work using

the EMD and color signatures in visual tracking. Refer-
ence [44] combined the Gaussian Mixture Model (GMM)
with the DEMD algorithm for visual object tracking. In [45],
the Mean Shift tracker with EMD was proposed. In addi-
tion, [46] combined the Gyroscope information and presented
gyro-aided iEMD algorithm. However, multi-object tracking
has higher computational complexity than visual tracking.
Therefore, WD is rarely applied to multi-object tracking
due to its computation efficiency. In this paper, to improve
computation efficiency, we propose target-specific sparse
coding on selected CNN features and introduce the iter-
ative WD [47] to measure the similarity of the vehicle
features.

III. METHODOLOGY
In this paper, we propose a method that decomposes
the task of vehicle tracking in videos into two subprob-
lems: target detection in each frame and target association
between adjacent frames. Therefore, our method consists
of two parts: vehicle proposals generation and Wasserstein
tracklet-detection association, as illustrated in Fig. 1.
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Vehicle Proposals Generation: We detect the vehicle in
successive frames using an offline CNN model for the train-
ing set. Thereafter, the VPs are obtained, which contain
bounding boxes and confidence scores but do not include
target identities.
Wasserstein Tracklet-Detection Association: We asso-

ciate each vehicle detection with a tracklet in the
previous frame. First, we represent each detection and track-
let by means of TSSC; for simplicity, we use features
of the tracklet’s terminal object to represent its features.
Then, each tracklet-detection pair similarity is calculated
via WD-1. To improve the accuracy of vehicle identification,
we introduce the Kuhn-Munkres algorithm to optimize the
tracklet-detection association performance.

A. VEHICLE PROPOSALS GENERATION
Vehicle proposals indicate the possible object locations in
each frame and are crucial to object tracking performance.
Considering that faster R-CNN exhibits high recall rates at
each frame, in this work, we adopt the faster R-CNN frame-
work to generate VPs. The faster R-CNN framework contains
RPNs, which generate initial proposals, and a fast R-CNN
detector for subcategory classification and bounding-box
regression, which make detection results more reliable.
In this section, we introduce the two-stage approach in
faster R-CNN. In the RPN, the input image is fed into a CNN
that was pretrained on a large-scale highway surveillance
video dataset, as introduced in section IV part A, and forward
propagated to generate featuremaps. Then, a specific network
is utilized over the feature maps’ output by the last convolu-
tional layer in the CNNmodel to generate the initial proposal
coordinates. Let (xTi , y

T
i ,w

T
i , h

T
i ) denote the i-th initial box

proposal at time T , where x, y,w, h represent coordinates of
the box center and width and height of the box proposal,
respectively.

Furthermore, in the fast R-CNN detection stage, the pro-
posal features are RoI-pooled from the feature maps accord-
ing to the initial box coordinates from the RPN and can be
used for object classification and bounding-box regression.
Therefore, we can obtain VPs b = (X ,Y ,W ,H , c) in each
frame, where X ,Y ,W ,H again represent the coordinates of
the box center and the width and height of the box proposal,
respectively, while c represents the class confidence score.

These VPs obtained from the fast R-CNN stage overlap
with one another to a great extent; that is, redundancies exist
because many proposals represent one object and result in
inferior performance. To remove distractions, we can adopt
nonmaximum suppression (NMS) based on the class con-
fidence score c to avoid redundancy. Following the NMS
process, the proposals with a class confidence score above the
confidence threshold of 0.5 are selected for the association
process.

B. WASSERSTEIN TRACKLET-DETECTION ASSOCIATION
Another difficulty in vehicle tracking tasks is vehicle iden-
tities with similar appearances, and the obstructions among

vehicle targets add to this challenge. We adopt the faster
R-CNN algorithm, described in section III part A, to gen-
erate VPs. In this section, we propose a novel Wasserstein
tracklet-detection association method, which contains the
target-specific sparse feature coding, the similarities measure
of tracklet-detection pairs based on WD-1 and the associa-
tion optimization by the Kuhn-Munkres algorithm to achieve
target identification and generate the trajectory.

We make the following observations: Although the target
appearance exhibits nonuniform changes during the monitor-
ing process, it interferes with factors such as partial occlu-
sions, illumination changes, and motion blurring. The CNN
model trained on the large-scale dataset can capture the target
invariant features, which means that even when interfered
with the above various factors, the similarity of features of
the same target between adjacent frames is greater than that
of different targets. Specifically, each target is represented
by sparse coding in the CNN feature space and transforms
the target-specific feature into the distribution. Thereafter,
the associations are generated based on the distribution simi-
larity measure across adjacent frames, as illustrated in Fig. 2.
In view of this observation, we develop the Wasserstein
tracklet-detection association method. We also present the
pseudocode of Wasserstein tracklet-detection association.

1) WASSERSTEIN DISTANCE AS SIMILARITY MEASURE
As a measure of calculating similarity between tracklets and
detections, WD-1 is robust to partial occlusion. In this chap-
ter, we introduce WD-1 as a target-specific feature similarity
measure and transform the feature similarity measure into a
linear programming problem.

In this section, we briefly introduce the WD-1 as shown
in Fig. 3. As mentioned above, we use features of the track-
let’s terminal object to represent its features. Given vT−1j
representing the feature of vehicle j in frame T − 1 and vTi
representing the feature of vehicle i in frame T , we have
one-dimensional vectors for both of them. Taking the WD-1
measure, the similarity between vT−1j and vTi is defined
by (1) to (5).

vT−1j = {lu}u=1,...,k (1)

vTi = {qε}ε=1,...k (2)

D∗(vT−1j , vTi )
M
= min

fuε
(
k∑

u=1

k∑
ε=1

duεfuε(lu, qε)) (3)

subject to

k∑
u=1

k∑
ε=1

fuε(lu, qε) = 1 (4)

fuε(lu, qε) ≥ 0, 1 ≤ u ≤ k , 1 ≤ ε ≤ k (5)

where D∗ is the optimal solution to this linear programming
problem by finding a flow F = [fuε]. fuε(lu, qε) is the flow
from the u-th bin of vT−1j to the ε-th bin of vTi , and duε is the
ground distance between the u-th bin of vT−1j to the ε-th bin
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FIGURE 2. A, B, C are vehicles detected in frame T, and a, b, c are vehicles detected in the adjacent frame
T+1. We compute the Wasserstein distance for each pairing and select the one with minimum WD-1 value
in total. In this case, (A-a, B-b, C-c) is the successful association we generate.

FIGURE 3. WD-1 comparison of two target-specific feature vectors.

of vTi . Here, we take a similar example to explain flow
fuε(lu, qε) and ground distance duε: given two distributions,
one can be seen as a mass of earth properly spread in space,
the other as a collection of holes in that same space. The
WD-1 measures the least amount of work needed to fill the
holes with earth; a unit of work corresponds to transporting

a unit of earth by a unit of ground distance. Here, the flow
fuε(lu, qε) represents the volume of earth from the earth mass
to the holes and the ground distance duε represents the work
of transporting a unit of earth from the earth mass to the holes.
Thus, WD-1 is known as the earth mover’s distance. Once we
have found the optimal solution flow and the optimal flow F,
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the WD-1 is defined by (6).

WD(vT−1j , vTi ) =

k∑
u=1

k∑
ε=1

duεfuε(lu, qε)

k∑
u=1

k∑
ε=1

fuε(lu, qε)

(6)

Robustness to Partial Occlusion: Compared with the orig-
inal appearance, when the target is partially occluded, its
appearance features will cause interference and will have
less similarity with each other. When this similarity is in the
L2 distance or the L1 distance, the distances between the
target features are linearly combined, while the Wasserstein
distance provides a natural way to conduct set-to-set com-
parisons. For each element in a set, it considers only the dis-
tances with nearest neighbors in the other set. In other words,
the more similar the distribution is, the more the difference
will be minimized, while the less similar the distribution is,
the less the property can be fully utilized. TheWD-1 helps the
system automatically discover a proper alignment between
the part that is not obscured and the original appearance
and transform the distribution of the unobscured part into
the distribution of the original appearance using a minimal
‘‘cost’’. Thus, a similarity measure based on the WD-1 can
minimize the noise from partial occlusion and discriminate
targets.

Additionally, we indicate that WD-1 is robust with respect
to the similarity measure by two experiments in section IV
part G.
Computation Complexity: The efficiency of the Wasser-

stein distance calculation is an important issue. The time com-
plexity of the traditional algorithms for solving the Wasser-
stein distance is O(n3 log(n)), which is higher than other
traditional measures. To solve theWasserstein distance faster,
we adopt a regularized Wasserstein distance [47] using an
iterative algorithm, which is defined by (7):

DS (v
T−1
j , vTi ) = min

P∈5(vT−1j ,vTi )
〈P,M〉F −

1
λ
h(P) (7)

where h(P) =
∑
u,ε
Pu,ε log(Pu,ε) is information entropy of P.

The parameter λ determines the trade-off between the two
terms. The entropy-regularized Wasserstein distance is also
called the Sinkhorn distance and can be solved by iterating
the Sinkhorn update, whose computational complexity is
only O(n2).

2) TARGET-SPECIFIC FEATURE SPARSE CODING
In the previous section, we introduced WD-1 as a similarity
measure, which exhibits strong robustness against partial
occlusion. However, the main problem ofWD-1 is its compu-
tational complexity. To overcome this limitation, we propose
the target-specific feature sparse coding method based on the
CNN feature layer, which aims to maintain the fine-grained
features of vehicles for identifying a vehicle while improv-
ing the WD-1 computational efficiency. The method for
target-specific feature sparse coding is as follows.

Given the proposals of bounding-box coordinates
(X ,Y ,W , H), according to (8) and (9), the bounding-box
coordinates are mapped to the layer in the CNN, and the
layer selection process takes place, as described in section IV
part F.

(x, y,w, h) = (X /θ, Y/θ, W/θ, H/θ) (8)

θ = 5βj (9)

where βj represents the strides of the layer in the CNN and θ is
the product of all previous strides. Moreover, (X ,Y ,W , H)
denotes the coordinates of the center point of the i th bound-
ing box and the width and height of the bounding box in
the input image, respectively. Likewise, (x, y,w, h) denotes
the same properties in the selected feature layer. It should
be emphasized that numerous channels exist in the selected
feature layer. Specifically, each feature layer of the CNN
contains multiple channels. For each channel in the selected
feature layer, we obtain the matrix centered at coordinates
(x, y) and with a width w and height h when projecting the
proposed coordinates onto it. Then, we calculate the response
value of each channel according to (10) and then concatenate
the response value of each channel as the target feature.More-
over, we set the response values below the threshold to zero
to make the target feature sparse owing to the significantly
smaller response value in the channels. For all experiments,
we set this threshold to 0.

lu =
y+h/2∑
j=y−h/2

x+w/2∑
i=x−w/2

ηij (10)

v = (l1, l2, l3 . . . lk)u=1,...,k (11)

where ηij represents the value of coordinate (i, j) in a channel
of the feature map, and lu represents the response value of the
u-th channel.Moreover, v represents the target-specific sparse
feature concatenated by the response value of k channels.

3) DETECTION-TRACKLET OPTIMAL ASSOCIATION BY THE
KUHN-MUNKRES ALGORITHM
The last section described the TSSC for coding each tar-
get feature and the similarity measure based on WD-1 of
detection-tracklet pairs in two consecutive frames. Here,
based on the results of the similarity measure, we intro-
duce the Kuhn-Munkres algorithm [48] to optimize the
detection-tracklet association. From the perspective of the
similarity measure of all vehicle targets in two adjacent
frames, it is intuitive that if all targets are correctly matched
with their tracklets in a specific time interval, then the total
distance of detection-tracklet pairs is at a minimum. More-
over, each target belongs to at most one tracklet; therefore,
this detection-tracklet association problem is a typical assign-
ment problem, and we introduce the Kuhn-Munkres algo-
rithm to solve it. The Kuhn-Munkres algorithm is a com-
binatorial optimization algorithm that solves the assignment
problem in polynomial time, and it is described as follows:
We assume here that d detections and t tracklets are given

at frame T and We define S as the non-negative distance
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matrix where each element of S represents theWD-1 distance
between each detection-tracklet pair, defined as (12) (13):

S = [sij]d×t (12)

sij = WD(vTi , v
T−1
j ) (13)

The element sij represents the WD-1 distance from the
i-th detection target at frame T to the j-th tracklet that is the
identified target at frame T−1, which is computed by (7). The
calculation process of the Kuhn-Munkres algorithm is shown
as follows:

step 0: Input the d × t matrix called the cost matrix.
step 1: For each row of thematrix, find the smallest element

and subtract it from every element in its row. Go to Step 2.
step 2: Find a zero Z in the resulting matrix. If there is

no starred zero in its row or column, star Z . Repeat for each
element in the matrix. Go to Step 3.

step 3: Cover each column containing a starred zero.
If min(d, t) columns are covered, the starred zeros describe
a complete set of unique assignments. In this case, Go to
DONE; otherwise, Go to Step 4.

step 4: Find a noncovered zero and prime it. If there is no
starred zero in the row containing this primed zero, Go to
Step 5. Otherwise, cover this row and uncover the column
containing the starred zero. Continue in this manner until
there are no uncovered zeros left. Save the smallest uncovered
value and Go to Step 6.

step 5: Construct a series of alternating primed and starred
zeros as follows. Let Z0 represent the uncovered primed zero
found in Step 4. Let Z1 denote the starred zero in the column
of Z0 (if any). Let Z2 denote the primed zero in the row
of Z1 (there will always be one). Continue until the series
terminates at a primed zero that has no starred zero in its
column. Unstar each starred zero of the series, star each
primed zero of the series, erase all primes and uncover every
line in the matrix. Return to Step 3.

step 6: Add the value found in Step 4 to every element
of each covered row, and subtract it from every element of
each uncovered column. Return to Step 4 without altering any
stars, primes, or covered lines.

DONE: Assignment pairs are indicated by the positions of
the starred zeros in the cost matrix. If sij is a starred zero, then
the element associated with row i is assigned to the element
associated with column j.

IV. EXPERIMENTS AND ANALYSIS
A. DATASETS
The appearance of vehicles in highway surveillance videos
is affected by illumination changes, viewing angle varia-
tions, motion blurring, and partial occlusion. Considering
that the highway surveillance video dataset is very sparse
and few researchers have thoroughly considered the above
factors, we collected surveillance data from many highways
in Guangdong Province, China, produced a new highway
surveillance video dataset. In addition to themonitoring scene
of the various situations mentioned previously, the dataset,

Algorithm 1 Pseudocode of Wasserstein Tracklet-Detection
Association
Input:

The t tracklets of previous T frames, which include each
target’s bounding box bT−1i , class scores cT−1i , trackID
and its feature vector vT−1i . The d detections at frame T ,
which include its bounding box bTi and class scores cTi .

Output:
TrackID of each detection at frame T .

1: begin
2: for i = 1 to d do
3: calculate each detection’s feature vectors vTi by TSSC.

4: for j = 1 to t do
5: Calculate the distance sij between i-th detection fea-

ture vectors vTi and j-th tracklet feature vector vT−1j
by WD.
Add this distance sij into the distance matrix S.

6: end for
7: end for
8: Targets association with by Kuhn-Munkres algorithm

based on distance matrix S.
9: return Each trackID of detection at frame T .

called the VecHSV dataset, with over 90,000 images and
annotations, and a total of 0.7 million bounding boxes
of 5,370 vehicles are labeled, including special scenes such as
tunnels and interchanges and 80 videos that are selected from
over 20 hours of image sequences at 18 different locations.
Moreover, these videos are recorded at 25 frames per seconds
(fps) with the JPG image resolution of 1920 × 1080 pixels
and the mean length is about 1,150 frames. Certain sample
images are illustrated in Fig. 4.

Moreover, we also experiment with our method on the
UA-DETRAC benchmark [49] that consists of urban traffic
surveillance with annotated vehicle tracks.

B. EVALUATION METRIC
We adopt the performance evaluation metrics of CLEAR
MOT [50] for vehicle tracking, which are provided in the
vast majority of the literature, including the multiple object
tracking accuracy (MOTA), the number of ID switches (IDs),
the percentages of mostly tracked (MT) and mostly lost (ML)
out of all the tracks, the number of fragments (FM) and the
multiple object tracking precision (MOTP). The IDs met-
ric describes the number of times that the matched identity
of a tracked trajectory changes, and FM is the number of
times that trajectories are disconnected. Both the IDs and FM
metrics reflect the accuracy of tracked trajectories. The ML
metric measures the percentage of trajectories lost more than
80% of the time based on the ground truth. Similarly, the MT
metric measures the percentage of tracked trajectories more
than 80% of the time based on the ground truth. The MOTA

VOLUME 8, 2020 47869



Y. Zeng et al.: Robust MTWAM in Surveillance Videos

FIGURE 4. Certain scenarios in the VecHSV dataset, including (a) Partial occlusion; (b) Illumination changes; (c) Rainy days; (d) Camera motion; (e) Foggy
day; (f) Dusk.

metric is defined as (14):

MOTA = 100× (1−

∑
t
(f nt + f pt + mmt )∑

t
gtt

) (14)

where f nt , f pt , mmt and gtt are false negatives, false
positives, mismatches and the ground truth at frame t ,
respectively.

Additionally, the MOTP metric is defined by (15):

MOTP = 100×

∑
i,t
d it∑

t
ct

(15)

where ct is the number of matches found for time t , and d it is
the distance between detections and their ground truth.

C. QUANTITATIVE RESULTS
We apply our method to the VecHSV dataset and UADE-
TRAC dataset with an NVIDIA GTX1080 GPU and an Intel
Xeon E3-1230 CPU. For the experiment on the VecHSV
dataset, in the training phase, we use 60 sequences to train
a faster R-CNN for detecting vehicles, and we follow [32] to
set the hyper-parameterstrain and train for 70,000 iterations
using stochastic gradient descent (SGD) for optimization.
Specifically, the models are initialized using weights pre-
trained on ImageNet [51]. We finetune the network with a
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TABLE 1. Evaluation of the vechsv dataset for different methods.

learning rate of 0.001 for 50,000 iterations and then reduce
the learning rate to 0.0001 for another 20,000 iterations.
In addition, batch size is set to 8 and momentum of 0.9 and
a weight decay of 0.0005 is used in our experiments. In the
test phase, similar to other tracking-by-detection methods,
we first use our trained faster R-CNNmodel after the training
phase with the original nonmaximum suppression included
to obtain the vehicle bounding boxes and class scores in
each frame. Then, we sequentially build trajectories based
on the frame-by-frame association with the present frame
in the Wasserstein tracklet-detection association. Moreover,
we reproduce the six state-of-the-art methods on VecHSV
dataset and all results are presented in TABLE 1.

According to the results, our approach, regardless of
whether using the L2 distance to measure the dissimilar-
ity of each detection-tracklet pair or WD-1 distances, is a
strong competitor to other online tracking methods in terms
of MOTA. Moreover, we surpass the online state-of-the-art
methods in terms of the number of ID switches. Additionally,
our method achieves better performance on the MT score and
the ML score, which also implies the effectiveness of our
methods for maintaining consistent trajectories. At the same
time, we also have a higher MOTP score, which proves that
our method can precisely estimate target positions. Note that
in ourmethod, as a dissimilaritymeasure of detection-tracklet
pairs in a consecutive frame, theWD-1 distance surpasses the
L2 distance with a higher MOTA score and fewer IDs. This
result also demonstrates the conclusion in the experiment of
section G that the WD-1 distance helps to associate detection
when targets are partially occluded.

We also apply our method to the UA-DETRAC dataset.
The training strategy is the same as the training on the
VecHSV dataset, and we use 52 sequences in the train-
ing set to train a faster R-CNN for detecting vehicles,
and the other eight for testing1 (including sequence num-
bers: 39781, 40152, 40181, 40752, 41063, 41073, 63521,
and 63525). We also reproduce the six state-of-the-art
methods on UA-DETRAC dataset, all results are presented
in TABLE 2.

In this experiment, our method is still competitive. In par-
ticular, we achieve the second best performance in terms of
MOTA with 0.2 point below the best performing one and the
fewest number of ID switches and fragments of all online
methods. In addition, we achieve a much lower percentage
of ML as well as a high percentage of MT. At the same time,

TABLE 2. Evaluation of the detrac dataset for different methods.

TABLE 3. Runtime record for different methods.

our approach also performs slightly better than other methods
on the MOTP score.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
Here, we take one tracklet-detection association operation as
the unit for computational complexity. We assume that in a
specific time interval with d detections and t tracklets, both
detections and tracklet are represented as a sparse feature
coding, which is a 1×k vector. The computational complexity
is

O(dtk2)+ O(n3) (16)

where the first term computes the Wasserstein distance of
each tracklet-detection pair. As mentioned in section III
part B.1, the regularized Wasserstein distance is employed
to accelerate the computational efficiency. The second term
indicates the computational complexity for the assignment of
detections-to-tracklets by the Kuhn-Munkres algorithm.

The runtime results of each method are presented in
TABLE 3. Our approach achieves a runtime record of approx-
imately 0.3 s per frame, which is slower than the other meth-
ods. However, there is space for improvement, e.g., by accel-
erating the computation of the WD-1. We will focus on these
points in our future work to promote both accuracy and speed.

E. QUALITATIVE RESULTS
A portion of the qualitative results is illustrated in Fig. 5.
We can draw the following conclusions. These bounding
boxes proposed by the faster R-CNN exhibit no obvious false
positives, and when facing partial occlusion, vehicle tracks
are consistent across successive frames, benefitting from the
Wasserstein tracklet-detection association.

F. FEATURE SELECTION
It is well known that CNNs offer powerful capabili-
ties for learning feature representations, and these feature
representations are the key to helping CNNs yield remark-
able results. In [52], it was found that different CNN layers
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FIGURE 5. Qualitative results for the highway monitoring video datasets. Bounding boxes of the same color represent the same vehicle across successive
frames.

encode different features. The higher layers capture more
semantic information and serve as a category detector, while
the lower layers encode more fine-grained features and can
better discriminate the target from distractors with similar
appearances. This observation is verified using the highway
surveillance videos dataset, as illustrated in Fig. 6. Therefore,
it is important to select CNN feature layers that not only

capture fine-grained features but also encode less noisy and
irrelevant information for characterizing target vehicles.

In this section, we design the experiments for selecting
the feature layer in the Visual Geometry Group (VGG) [25]
model. First, we prepare one subset from the VecHSV and
UA-DETRAC datasets that has 30 video clips that contain
some similarity appearance samples. Then, we build upon
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FIGURE 6. Heat maps using a feature map of the VGG network.

TABLE 4. Target-specific affinity metric on different feature maps with.

the target-specific features in the different feature layers to
reduce the interference of target detection errors. The target
features are encoded in different feature layers according to
the ground truth coordinates instead of the proposal coordi-
nates generated by the faster R-CNN.Moreover, we adopt the
WD-1 as a similarity measure and associate detections to its
tracklets by the Kuhn-Munkres algorithm.

In this experiment, we choose the number of ID
switches (IDs) as the evaluation metric because it is sen-
sitive to ID mismatches, and the results are provided
in TABLE 4.

In the VGG_M_1024 model, the performance of the
target-specific feature coding by the conv4 layers, compared
to the conv3 and conv5 feature layers, is more sensitive to
discriminating intraclass vehicles with similar appearances,
which could be attributed to the noisier and more irrelevant
information contained in the conv3 layer feature maps and
the lack of fine-grained information in the conv5 layer feature
maps.

G. ROBUSTNESS ANALYSIS OF THE WASSERSTEIN
DISTANCE
To measure the similarity between detections and tracklets
across adjacent frames, it is crucial to select suitable sim-
ilarity measures. In this section, we verify the robustness
of the WD-1 by means of two experiments and compare it
with traditional similarity measures. We also use features of
the tracklet’s terminal object to represent its features in the
similarity measure process.

1) RELATIVE DISTANCE COMPARISON FOR TARGET PAIR
A suitable similarity measure should be capable of mini-
mizing the noise effects and maintaining a large ‘‘margin’’
between the positive target pair and negative target pair.
In this experiment, we experiment on ten video sequences,
and each target feature is coded by the TSSC method. Then,
we called this margin the relative distance, which is defined
as follows.

We assume these are the h target pairs in two adjacent
frames. Given a positive similarity cost rpi computed between
a positive target pair (a pair of detection responses belong-
ing to the same vehicle i) and a negative similarity cost rnij
computed between a negative target pair (a pair of detection
responses belonging to different vehicles; one belongs to
vehicle i at frame T , the other one belongs to vehicle j at frame
T − 1), we have the following as shown in (17) to (19):

rpi (M , i) = M (vTi , v
T−1
i ) (17)

rnij(M , i, j) = M (vTi , v
T−1
j ),i 6= j (18)

r̃ni (M , i) =
1

h− 1

h∑
j=1,j6=i

rnij(M , i, j) (19)

where M (·) is the unified presentation of the similarity cost
between feature vectors, for example, the computation by (7)
when using WD-1. vTi and vT−1i are the feature vectors in
two adjacent frames from the same vehicle; otherwise, vTi and
vT−1j represent different vehicles when i is not equal to j. r̃ni
represents the vehicle i′smean value of all negative similarity
costs.

RD(M , i) = − log(rpi /r̃
n
i ) (20)

M∗ = argmax
M

RD(M , i) (21)

where RD(M , i) represents the relative distance of vehicle i
between the positive similarity cost and the mean value of
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FIGURE 7. Relative distance of target pairs with different metrics. In each subgraph in this figure, the x-axes represent the vehicle ID, while the y-axis is
the relative distance of this vehicle in a particular measure. From each subgraph, we can see that the relative difference in the WD-1 is the largest,
followed by the L2 and L1 distances, with the smallest difference under the J-S divergence. This result implies that the WD-1 is more suitable for
measuring the target-specific similarity across adjacent frames.

all negative similarity costs under measure M . We select the
similarity measure by maximizing the relative distance.

As illustrated in Fig. 7, we compare the WD-1 with the
L1 and L2 distances and the Jensen-Shannon (J-S) diver-
gence [53], which are widespread uses of the distribution
similarity measure. When using the WD-1 as a similarity
measure, the relative distance RD(i) is at a maximum, which
means that the WD-1 has a more powerful robustness in
maintaining discrimination across consecutive frames.

2) WASSERSTEIN DISTANCE PERFORMANCE IN PARTIAL
OCCLUSIONS
Partial occlusion is a major problem in surveillance because
the appearance information of the occluded target is inter-
rupted. In the Methods section, we have described that the
important advantage of the WD-1 over other measures on
target-specific feature similarity is its robustness to partial
occlusion; this conclusion is proved by the experiments in this
section. We compare the robustness of various measures on
the similarity measure for a target that is partially occluded
before and after.

We define a given continuous frame in which one
car obstructs another. Specifically, vehicle B is gradually
occluded by vehicle A. Here, oP represents the distance
between the feature of vehicle B in frame T and the feature
of vehicle B in frame T − 1, while on represents the distance
between the feature of vehicle B in frame T and the feature
of vehicle A in frame T − 1, both of which are a function

of the occlusion ratio or . We select thirty sequences that have
partial occlusions and use1R to represent the average relative
distance between these two distances, which is similar to but
not the same as the RD(M , i) defined in the last experiment
and is intended to represent the performance in discriminating
against occlusion target A, as per the following (22) to (24):

op(or) = M (vTB , v
T−1
B ) (22)

on(or) = M (vTB , v
T−1
A ) (23)

1R(or) =
1
nse

nse∑
i=1

oni − o
p
i

oni
. (24)

whereM (·) is also a unified presentation of the similarity cost
between feature vectors, which is the same as that in the last
experiment, nse is the number of video sequences that have
partial occlusions. As the occlusion ratio gradually increases,
op increases and on decreases; thus, 1R gradually decreases,
whichmeans that the discrimination between targets becomes
weaker. As illustrated in Fig. 8, compared to other measures,
the WD-1 can effectively distinguish the occlusion target
from the occluded target in various contexts. For example,
when the occlusion ratio is less than 0.2, the WD-1 does
not change substantially, but the divergences of the L1 and
L2 distances and the J-S divergence decrease significantly.
When the occlusion rate reaches 0.5, the WD-1 maintains
a relatively strong performance, while the other measures,
particularly the J-S divergence, lose the ability to distinguish
between the occlusion target and the occluded target.
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FIGURE 8. Average relative distance with different metrics under
occlusion.

V. CONCLUSION
In this work, we propose a robust deep learning method
for multivehicle tracking in surveillance videos. The method
combines a popular still-image detector with Wasser-
stein tracklet-detection association. Due to the Wasserstein
tracklet-detection association, our method can track targets
with a similar appearance and achieves robustness with
respect to partial occlusion. Experiments demonstrate the
effectiveness of our proposed method. In the future, we will
combine our work with graph convolutional network to anal-
ysis and predict traffic flow [54].
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