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ABSTRACT In this paper, we study the prediction of traffic flow in the presence of missing information
from data set. Specifically, we adopt three different patterns to model the missing data structure, and apply
two types of approaches for the imputation. In consequence, a forecasting model via deep learning based
methods is proposed to predict the traffic flow from the recovered data set. The experiments demonstrate the
effectiveness of using deep learning based imputation in improving the accuracy of traffic flow prediction.
Based on the experimental results, we conduct a thorough discussion on the appropriate methods to predict

traffic flow under various missing data conditions, and thus shedding the light for a practical design.

INDEX TERMS Data missing imputation, deep learning, traffic flow prediction.

I. INTRODUCTION

Intelligent Transportation systems (ITSs), which aims at
providing innovative services and making safer, more con-
venient use of traffic network, typically depend on traffic
flow information, i.e., the number of vehicles crossing a
specific region per unit time interval, as inputs to make
the underlying decision logic [1], [2]. As such, accurate
and timely traffic flow information is critical for engineers
and researchers to assess the performance of traffic sys-
tem, relieve the traffic congestion, and improve the traffic
efficiency. Moreover, to help operators response in a more
adequate way, the prediction of traffic flow has been intro-
duced [3], whereas the short term future traffic flow can
be estimated from historical observations. Especially as the
vital vehicular technology for realization of automatic vehi-
cle driving, congestion control, and the emerging cellular
vehicle-to-everything (C-V2X) based smart city [4], [5], such
topic has attracted significant attention followed by a variety
of studies, including time-series approaches [6], probabilistic
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graph approaches [7], and nonparametric approaches such as
artificial neural networks (ANNSs) [8].

In the domain of ANNs based methods, deep learning
is considered as one of the most effective and efficient
traffic flow prediction approaches. Due to the nonlinear
nature of traffic flow information, the conventional param-
eter approaches cannot exactly capture the traffic flow fea-
tures with analysis formulas. However, the nonlinearity and
randomness issues can be addressed well by deep learning
theory. Compared with the traditional shallow learning archi-
tectures, deep neural network is able to model deep complex
non-linear relationship by using distributed and hierarchical
feature representation [3]. Currently, deep learning has made
certain progress in the domains including speech recognition,
computer vision, and natural language processing. Under
the guide of deep learning theory, many neural network
variants have been proposed to solve the traffic forecasting
problem [9].

However, the prediction of traffic flow relies heavily on the
complete data set of historical observations collected from a
variety of senor sources. With the densely deployed traffic
sensors and the new emerging sensor techniques in the fifth
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generation mobile communication (5G) era, the amount of
traffic data is exploding [11]. The availability of huge amount
of traffic data has the potential to lead to a great revolution in
the development of ITSs. It is foreseeable that the future ITSs
will become a more powerful multifunctional data-driven
intelligent transportation system.

Missing data usually occurs in the real world settings and
thus limiting the performance of predicting methods [12].
To this end, it is key to handle the missing data appro-
priately before applying any machine learning algorithms.
Fortunately, in most cases, the attributes of traffic flow data
are intertwined with each other [13], [14]. According to the
identification of relationship among attributes, the values of
traffic data missing points can be subsequently determined.
Up to day, there have been many studies in the literature
regarding data missing imputation [15], [16]. The authors
in [17] illustrated that the accuracy of prediction could be
increased by the imputation methods in the presence of
missing-data perturbation. For instance, by extracting the
nonlinear cross-correlation features involved in the missing
data, an NN-based imputation method was proposed to esti-
mate the missed observation [15]. The k-Nearest Neighbors
(k-NN) algorithm was used in [12] as an imputation method
to produce some plausible values that could be used to replace
the missing values in a data set. By using the correlations
contained in the traffic data structure, deep learning based
approaches for traffic data imputation were proposed in [16],
[18]. The authors in [16] illustrated that deep learning could
be applied in the field of data imputation. A Generative
Adversarial Networks (GAN) based imputation method was
proposed in [18].

Nevertheless, most previous works only considered the
problem of data missing imputation existed in the traffic
data, and did not consider the traffic flow prediction prob-
lem in the presence of missing information from traffic data
sets [1], [19]-[21].

In this paper, we target at predicting the traffic flow using
data sets with missing-element perturbation. Specifically,
to account for that the missing data can occur with var-
ious patterns, we analysis four different practical struc-
tures and adopt three models of them, i.e., data missing
at random (DMR), block data missing (BDM), and multi-
block data missing (MBDM). Based on these data missing
models, we present two different methods for the imputa-
tion, including mean imputation and deep learning based
imputation. Three deep learning methods including Stacked
Autoencoders (SAEs), Long Short-Term Memory (LSTM),
and Gated Recurrent Unit (GRU) are then used to extract
generic traffic flow features for prediction with the filled
traffic data. The effectiveness of the proposed approaches are
demonstrated via the inference experiments. Subsequential
discussions are also provided. The major contribution of our
paper can be summarized as follows:

o We consider the traffic flow prediction problem in

the presence of missing data imputation with a thor-
ough and practical analysis of patterns of missing data.

46714

Different from other traffic flow prediction methods,
the proposed scheme can not only effectively solve the
traffic data missing problem occurred in the real world
settings, but also obtain the accurate prediction results
of traffic flow.

o Deep learning based imputation and prediction (DLIP)
model is proposed to improve the accuracy of traffic
flow prediction under missing data simultaneously. The
obtained experiment results have verified the forecasting
performance of the proposed scheme. For the normal
scenarios with less than 40 percent data missing, deep
learning based imputation methods like SAEs, LSTM
and GRU can achieve less error of the prediction than the
traditional ones. Furthermore, the flexibility of the DLIP
model comes from the fact that any state-of-the-art deep
learning based method can be utilized into the model
to enhance the system performance on prediction and
imputation.

The rest of the paper is organized as follows. In Section II,
the methodology of traffic flow imputation and prediction
is introduced. In Section III, we describe our data missing
imputation models. The performance of the proposed scheme
is evaluated in Section IV before concluding the paper in
Section V.

Il. METHODOLOGY

In this section, we introduce the traffic flow prediction
problem, deep learning based methods, the general train-
ing procedure, and the proposed model for imputation and
prediction.

A. TRAFFIC FLOW PREDICTION PROBLEM

The prediction of traffic flow requires not just a sufficiently
large collection of recorded data, but more importantly, a reli-
able mechanism that extracts the intrinsic structure from
the data set and predicts the future flow. To facilitate this
task, we first structure the collected data set in the form of
sample vectors X = {x{,..., X, ..., xr}, where x; denotes
the observed traffic flow quantity during the " time interval.
Next, we leverage an unsupervised learning technique, that
adopts the autoencoder blocks to create deep networks and
is referred to as SAEs [1], for the predictor design. Par-
ticularly, let fi, ..., f, denote the univariate activation link
functions, e.g., the sigmoid function, at each layer. The pre-
dictor y at the output is then defined as a series of functional
composition, i.e.,

) = (fao...ofi) (), ey

whereas f; is a semi-activation rule [19], given by
N
H) =D wixi+3
j=1

:f(wlTxl—i—zl), l=1,...,n, )

where N, is the number of units at layer [, w = [wq, ..., w,]
is a weight matrix, and z = [z1, . . ., z»] is a bias vector.
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To this end, we can formally define the traffic flow
prediction problem as follows:
Problem Formulation: Given the input traffic flow
data x; = {x1,x3,...,x}, the problem is to use (1)
to predict the traffic flow at the time interval (f + A)
for some prediction horizon A by learning the weights
w; € RV>Ni-1 and bias z; € R”.

B. DEEP LEARNING BASED METHODS

1) SAEs

A basic autoencoder is a neural network, in which an original
signal x at the input is reproduced based on the reconstructed
error between the input x and the network’s output y. The
autoencoder model tries to learn the compressed and dis-
tributed features in hidden nodes and reproduce the input
signals at the output of the model, which consists of one input
layer, one hidden layer, and one output layer.

An autoencoder first encodes an input x to a hidden
representation A(x), and the decoding is then processed,
which the representation A(x) is backward expressed from
the hidden layer to input layer. The encoding and decoding
process can be presented as

h=fe(wx+b),
y =fawx+o), (3)

where f,(x) denotes the encoding activation function, and
fa(x) denotes the decoding activation function. In this paper,
the logistic sigmoid function

fvigm (x) = 4

14’
is considered for f,(x) and f;(x), and the weight matrix w =
wT is assumed.

The reconstruction y can be considered as the predictive
value of x, and in order to get the exactly 6 = {w, b, c}, the
reconstruction error £(x, y) needs to be minimized, i.e.,

6 = argmin L(x, y) = argmin ||x — y||2 . 5)
0 0

The SAEs [22] can be defined via an extension of the above
concept. In particular, an SAEs model consists of several
hidden layers, whereas the output of a generic hidden layer is
used as the input of the next hidden layer. For instance, in an
SAE with [ layers, an autoencoder is applied to train the first
layer with the training data as inputs, a standard predictor is
added on the last second layer to predict the short-term traffic
flow, the last output layer is used to output the predicted data.
Moreover, the hidden layers are used to learn the abstract
features, and the output of the i/ hidden layer is used as the
input of the (i + 1) hidden layer. The classic construction of
SAEs model is illustrated in Fig. 1.

2) LSTM
Except for the typical deep neural network like SAEs, recent

examples applied in ITSs include convolutional neural net-
work (CNN) [23], recurrent neural network (RNN) [24],
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FIGURE 1. The construction of SAEs model.

and GAN [18], [25]. It is worth mentioning that the RNN is
widely adopted as a suitable method to capture the temporal
and spatial evolution of traffic flow. However, previous stud-
ies proved that the traditional RNN failed to capture the long-
term evolution because of some existed challenges including
vanishing gradient and exploding gradient [26].

To address these problems, the novel structures of RNNs
like LSTM and GRU were proposed with mechanism of infor-
mation gates, which was designed to give the memory cells
ability to determine when to forget certain information. The
vital change of network structure design creates the optimal
time lags for RNNs. LSTM network was proposed [27] and
applied well in short-term traffic forecasting [28]. Compared
with the conventional RNNs, LSTM has the ability to capture
the features of time series within longer time span. Therefore,
the traffic forecasting can achieve a better performance via the
LSTM network.

The simplified architecture of LSTM methods shown
in Fig. 2(a) provides a better understanding. It is illustrated
here for the propagation of hidden states # among the neural
networks. There are three gates constituting acommon LSTM
cell as described below. The cell remembers values over
arbitrary time intervals and the gates regulate the flow of
information into and out of the cell. We denote W, and W,
as the weight parameters of the current input information
x; and the hidden state vector 4; from the neural network,
respectively.

o Forget-gate: It determines whether x; should be retained
or not. Information from the previous hidden state h;_;
and from x; is passed through the sigmoid function.
The output value of the function ranges from 0 to 1 as
the forgetting vector f; to make decisions for filtering
nonsignificant information, which can be written as

fi = frigm (Wapxe + Wighi—1) . (©)

o Input-gate: The processed value of the input-gate can be
expressed as

iy =fxigm (Wyix, + Wyihi—1) . @)

Then the historical and the current information are input
into a hyperbolic tangent (tanh) function, which can be
written as

zrt = franh Wxexy + Whehi—1) . ()
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FIGURE 2. The simplified architecture of LSTM and GRU methods.

The tanh function is a typical activation function,
given by

X —X

—e

Sann(x) = 9

e* +e”

It compresses the input data into the range [—1,1] for
outputting the preprocessed input value of cell state.
The current state value c; is updated as

=fiQc—1+i OF, (10)

and propagated into the next LSTM cell, where the
operator O represents pointwise multiplication.
Output-gate: The output value is the result of the output-
gate, given by

Oy vaigm Wxoxt + Wiohi—1) . (1)
Finally, the current hidden state is obtained as
he = 01 © franh (ct) - (12)

3) GRU

As a significant variant algorithm of LSTM, the GRU [29]
shows the comprehensive abilities in time-series forecasting
problems via the combination of the forget-gate and the
input-gate into the reset-gate.

As shown in Fig. 2(b), the update-gate is in charge
of inputting and discarding information, which covers the
work of the input-gate and the forget-gate in LSTM. The
reset-gate focuses on how much previous information to
be discarded. In GRU, the fewer parameters are computed
and processed, and the hidden state is propagated directly
among the network cells instead of being controlled by the
output-gate. Thus, GRU is similar to LSTM, but simpler to
compute and implement for speeding up the procedure of
training.
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C. TRAINING PROCEDURE
Training the traffic flow data set and extracting the features
for the prediction are the key process of the experiment.
General training procedures of deep learning based methods
contain the inputting data, the updating parameters of the
natural network by minimizing the loss function, and the
outputting the results. Take SAEs as an example, the training
procedure can be concluded as follows:

1) Given training sets x and the number of hidden
layers [;
Train the first layer as an autoencoder by minimizing
L(x, y) with x as the input;
Use the output of the first layer as the input, and train
the second layer as an autoencoder;
Iterate as in 3) to the desired number of hidden
layers [;
Predict the traffic flow with the output of the hidden
layer as the input of the prediction layer;
Fine-tune the parameters of the whole network.

2)
3)
4)
5)
6)

D. THE PROPOSED MODEL

The proposed DLIP model for traffic flow data imputation
and prediction is shown in Fig. 3. As the input matrices of
imputation model, the traffic flow data on three different
missing models are first fed into the deep natural network
and the traditional methods, respectively. After the men-
tioned training procedure using three different deep learning
based methods and the computation via conventional meth-
ods, the completed data sets are input into the prediction
model to obtain the forecasting results by using the traditional
methods and the deep learning based methods, respectively.
However, it should be noted that the prediction model is
obtained by training of a extra complete traffic flow data. The
predicted data are evaluated by the prediction and imputation
errors.
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FIGURE 4. Traffic flow with data missing on DMR model.

Ill. DATA MISSING IMPUTATION

In practice, data collected from the ground loop detectors
and video surveillance cameras are often corrupted or with
certain content missing due to device variation. As many
machine learning models rely on the complete data sets, it is
often required that the missing data shall be imputed prior to
running statistical analysis [16]. In this section, we introduce
three different structures, i.e., DMR, BDM, and MBDM,
to model the missing data [30]. Note that such framework can
readily incorporate various data missing patterns. Besides,
we also propose two different types of methods for the data
imputation task.

A. DATA MISSING MODELS
In consideration to a practical scenario, we introduce three

different patterns to model the missing data set, according
to [31].

o DMR Model: The missing data occurs in a point-wise
pattern according to a universal constant probability,
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shown in Fig. 4. Traffic flow data miss in a random
way and it is completely independent upon the missing
values.

e BDM Model: In this case, a consecutive trunk of data
points, refer to as block, disappear simultaneously,
shown in Fig. 5. The missing data distributes in the data
set in a single block way.

o MBDM Model: Different from the BDM, in this case,
the missing data occurs in several none overlapping
blocks, shown in Fig. 6. The missing data in the MBDM
model are divided into many small blocks, and these
blocks distribute in the whole data set randomly.

Actually, another pattern called missing at non-random

(MANR) due to the long-term data detector failure may exist
in the traffic flow data set. On the special pattern, there is
some correlation between the missing data and the character-
istics of the missing data itself. The location of the missing
data depends on both the missing data itself and other miss-
ing data. Consistent with previous studies [32], we assume
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FIGURE 6. Traffic flow with data missing on MBDM model.
that non-random missing data have been discovered and termed the mean of other lanes (MOL), utilizes the
deleted. correlation of traffic condition among different lanes
Among all the cases, we denote the proportion of missing to impute the missing data. Without loss of generality,
data in the complete data set as missing rate. let the k™ lane be the target lane, the imputation value
B. DATA MISSING IMPUTATION METHODS %o can be expressed as
There are many imputation methods to fill the values of data | M
missing points, which range from the simple mean imputation M=— Z X (14)
method to the complex deep learning methods based on the M — lm:L sk
intrinsic properties of data set. In this paper, we introduce
some imputation methods, given as where j is the index of data missing point in k™ lane.
1) Traditional — imputation: ~Conventional —methods However, due to the non-linear and stochastic nature
including mean imputation, nearest time distance of traffic flow,.these conventional rpethods may not
[20], and ARIMA models [33] made some progress abstract the unique nature well, which results in the
in short-term traffic flow forecasting problem. bigger prediction errors than the deep learning based
Considering the sensibility for time delay in the ITSs, methods. ) ) ) . .
2) Deep learning based imputation: With this approach,

the lower algorithm complexity, and the better univer-
sality, we choose the mean method to fit the scenario
of traffic flow imputation and prediction.

In general, such method recovers the missing data
by using the mean of other available data. Specifically,
with the traffic data obtained from M lanes, we propose
two mean imputation methods. The first mean imputa-
tion method, coined as the mean of desired lane (MDL),
only depends on the traffic data of the desired lane,
whereas the filled value fcjizo can be expressed as

~a;=0

1 N
=m;am, aj €{0,1}, (13)

with x = [x1, ..., x;, ..., xy] being the whole data set
containing the data missing points, a; indicates whether
the value of the i/ data is available (a; = 1) or not
(a; 0), whereas N and N, denote the number of
total data variables and the number of data missing
points, respectively. Our second imputation method,
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we apply more advanced deep learning based tech-
niques, i.e., the SAEs, LSTM, and GRU methods,
to deal with the data missing problem. The prediction
of traffic flow heavily relies on the complete data set
of historical observations, and the deep learning based
methods have the capability to extract intrinsic features
from the traffic flow with data missing to get a more
precise prediction. Firstly, the complete data x,,;, m €
[1, M]is regarded as the training data, once the training
model is established, the data xi; (a; = 0, m # k)
of other lanes is then used to predict the value of data
missing point in k”* lane based on the training model.
The deep learning based data missing imputation algo-
rithm is summarized in Algorithm 1. In Algorithm 1,
the traffic flow data set with data lost on three different
models is fed into the network algorithm. The first loop
is for obtaining the index of missing data. Next, the nor-
malization is conducted by preprocessing the processed
data set without missing data. Then, the normalized
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Algorithm 1 Learning Methods Based Missing Data
Imputation Algorithm
Input: Traffic flow data set x with data lost
Output: Data set X with missing data filled
1: Step 1) Obtain the index of missing data

2: for i in [0, length(x) — 1] do

3:  if x[i] is O then

4: index = i;

5: Delete the missing data, and get the processed data
set X;

6: end if

7: end for

8: Step 2) Preprocess the data set X

9: for x in X do

10 xf = Smin,

11: end for

12: Obtain the training data set X = processed(X);

13: Step 3) Train model

14: Train the network with learning method, and get the
training model;

15: Step 4) Fill the missing data

16: Predict the missing data by using the obtained training
model, and obtain the filled data set x.

17: return X

. b
Xmax —Xmin

data x is trained by the deep learning based methods,
i.e., SAEs, LSTM, and GRU. Finally, the missing data
is filled by the training of the deep neutral network and
the filled data set x is obtained.

IV. EXPERIMENTS

In this section, we conduct a series of experiments on the
traffic flow data set taken from Caltrans Performance Mea-
surement System (PeMS) database [34], and evaluate the
effectiveness of our proposed methods through a variety of
performance metrics.

A. DATASET DESCRIPTION

The experimental time-series data set used for the impu-
tation and prediction of traffic flow is collected from the
PeMS database. PeMS started in 1999, and it provides a
consolidated database of traffic data collected every 30s from
over 35,000 detectors, which are placed on state highways
throughout California. The collected traffic data are aggre-
gated into 5-minute increments for each detector station. The
traffic data used for the experiments were collected in three
months (i.e., April, May, and June) of the year 2017. The
traffic data of April and May are selected as the training data,
and the data of June are selected as the test data.

B. INDEX OF PERFORMANCE

In order to evaluate the effectiveness of the imputation
methods, as well as the accuracy of traffic flow prediction,
we introduce three different metrics, i.e., the mean absolute
error (MAE), the mean relative error (MRE), and the normal-
ized mean square error (NMSE). Formally, these metrics are
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TABLE 1. Structure of deep learning based methods.

Imputation Prediction
. Hidden Hidden Hidden Hidden
Training Model Layers Units Layers Units
SAEs 3 [100,100,100] 3 [400,400,400]
LSTM 2 [64,64] 2 [64,64]
GRU 2 [64,64] 2 [64,64]
respectively defined as follows
1 n R
MAE = - > |x; — &,
n i=1
1 no|x — X
MRE = - )" ———,
n i=1 X;
n 2
Ly i — il
NMSE = Z’—ln ., (15)
D1 %

where x; is the original traffic data, and x; is the filled or
predicted traffic data.

C. PARAMETER SETTING AND PERFORMANCE
EVALUATION

In this paper, we use the traffic flow data at time interval ¢
from other lanes to interpret the value of data missing point
at time stamp ¢ from the desired lane. As for the traffic
flow prediction, we use the traffic data among previous r
time intervals to predict the traffic flow at time interval ¢
based on the spatial correlations of traffic flow, i.e., using
Xt—1,Xt—2, ..., X;—p to predict x;.

In our inference experiment, the test data are chosen as the
data missing set due to the fact that the data missing problem
in the training data set with such rich amount of traffic data
will not greatly affect the accuracy of extracting the features
of traffic data, while the test data with small amount of data
will be greatly influenced by the data missing problem. We
use the complete test data set, and the values of these data
are replaced by zeros based on the data missing models and
data missing rates. The number of lanes is M = 5, and we
use the DLIP model to predict the 60-min traffic flow, where
sufficient data set is needed for training.

In the deep learning based data missing imputation
methods, we set the number of time intervals r = 4, and
in the traffic flow prediction, we set r = 12. The structure
of deep learning based data missing imputation and traffic
flow prediction methods are given in Table 1. The mentioned
hyper parameters are designed based on the performance in
the simulations.

In Table 2, we compare the prediction accuracy of different
deep learning based traffic flow prediction methods under
the DMR model. We observe that the prediction methods
with deep learning based imputation achieve a better per-
formance than those using mean imputation. This is mainly
because the predicted values of deep learning based impu-
tation methods are much closer to the true values than that
of mean imputation methods. Moreover, among the predic-
tion methods with deep learning based imputation, we can
clearly see that the prediction method with GRU-based impu-
tation attains a much better performance than other methods.
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TABLE 2. Comparison of prediction accuracy for different methods based on DMR model.

Imputation | Training 15% 20% 25% 30%
Methods Model MAE MRE NMSE | MAE MRE NMSE | MAE MRE NMSE | MAE MRE NMSE
SAEs 1125 5497%  3.65% 1242 6533% 4.35% 13.38 7047%  5.18% 1451 8598% 5.93%
MDL LSTM 1125 5572% 3.78% 1242 66.10%  4.48% 13.44  7046%  5.37% 1452 84.87%  6.05%
GRU 11.92  67.75% 4.48% 13.02 79.46%  5.20% 13.97 84.55%  6.10% 15.03 99.81%  6.82%
SAEs 9.04 19.72%  2.49% 9.57 20.03%  2.84% 10.26  20.59%  3.29% 10.93  21.16% 3.78%
MOL LSTM 9.37 18.93%  2.70% 10.09 19.62%  3.15% 10.88 2044%  3.67% 11.75  21.25% 4.31%
GRU 8.98 19.13%  2.50% 9.57 19.64%  2.88% 10.18  20.16%  3.26% 10.88  20.89%  3.75%
SAEs 8.01 18.64% 1.87% 7.97 18.60% 1.88% 8.23 18.41% 1.99% 8.30 18.34%  2.04%
SAEs LSTM 8.04 17.54% 1.89% 7.97 17.20% 1.87% 8.56 18.33%  2.10% 8.60 18.08%  2.14%
GRU 791 18.06% 1.83% 7.79 17.77% 1.81% 8.14 18.28% 1.93% 8.19 18.19% 1.95%
SAEs 8.02 18.55% 1.86% 8.03 18.98% 1.90% 8.03 18.37% 1.88% 8.18 18.44% 1.99%
LSTM LSTM 8.18 17.89% 1.91% 8.00 17.31% 1.90% 8.24 18.01% 1.96% 8.48 17.97%  2.10%
GRU 7.99 18.21% 1.84% 7.86 18.03% 1.84% 7.98 18.23% 1.84% 8.07 18.10% 1.94%
SAEs 7.94 19.39% 1.82% 7.99 18.53% 1.88% 7.97 18.54% 1.88% 8.06 18.55% 1.95%
GRU LSTM 7.83 17.35% 1.78% 8.07 17.41% 1.90% 8.02 17.36% 1.89% 8.25 17.60%  2.02%
GRU 7.78 18.25% 1.77% 7.86 17.95% 1.82% 7.84 17.91% 1.82% 7.92 17.97% 1.88%

TABLE 3. Comparison of prediction accuracy for different methods based on BDM model.

Imputation | Training 15% 20% 25% 30%
Methods Model MAE MRE NMSE | MAE MRE NMSE | MAE MRE NMSE | MAE MRE NMSE
SAEs 12.07 52.60% 5.68% 13.50 66.44%  6.93% 1451 7226% 7.82% 1562 84.88%  8.95%
MDL LSTM 1227  5346%  5.80% 13.65 6598%  6.94% 14.69 7130% 7.81% 15.78 82.75%  8.79%
GRU 12.19 4758%  5.86% 13.58 60.25%  6.96% 14.64 65.64%  7.84% 1572 7727%  8.77%
SAEs 10.84 23.16% 4.47% 11.82  2434%  5.26% 12.87  2552%  6.14% 13.34  26.11% 6.43%
MOL LSTM 11.15  27.06%  4.80% 12.14  28.17% 5.61% 13.24  2933%  6.55% 13.75 30.02% 6.87%
GRU 1133 21.23% 5.17% 1249 22.85% 6.14% 13.74  2445%  7.25% 1437  2531%  7.66%
SAEs 8.15 20.31%  2.02% 8.23 20.57%  2.05% 8.76 20.67%  2.31% 8.51 20.24%  2.24%
SAEs LSTM 8.35 24.23%  2.11% 8.50 2461%  2.17% 9.14 24.32%  2.53% 8.98 24.23%  2.46%
GRU 8.16 17.63%  2.05% 8.32 1795%  2.11% 9.21 1943%  2.56% 9.04 19.03%  2.48%
SAEs 8.27 21.04%  2.09% 8.39 2145%  2.14% 8.89 20.89%  2.37% 8.79 20.60%  2.33%
LSTM LSTM 8.52 25.08%  2.22% 8.73 25.68%  2.30% 9.27 24.37%  2.59% 9.27 24.37%  2.59%
GRU 8.29 17.96%  2.15% 8.52 18.39%  2.24% 9.37 19.78%  2.64% 9.42 19.75%  2.64%
SAEs 8.30 20.90%  2.12% 8.48 20.51%  2.14% 8.78 22.00%  2.38% 8.98 21.04%  2.42%
GRU LSTM 8.57 2496%  2.26% 8.76 2421%  2.29% 9.29 2648%  2.65% 9.49 2498%  2.70%
GRU 8.37 17.99%  2.20% 8.75 18.79%  2.29% 9.16 19.23%  2.63% 9.66 20.14%  2.77%

TABLE 4. Comparison of prediction accuracy for different methods based on MBDM model.

Imputation | Training 15% 20% 25% 30%
Methods Model MAE MRE NMSE | MAE MRE NMSE | MAE MRE NMSE | MAE MRE NMSE
SAEs 13.86  80.71%  7.96% 1489 79.14%  8.63% 16.07  77.75%  9.44% 16.74  77.16% 9.86%
MDL LSTM 1391 8297%  7.83% 1499 82.07%  8.60% 16.15 81.31% 9.43% 16.82  81.07% 9.84%
GRU 13.70  77.25%  7.61% 1488  76.39%  8.51% 16.16  75.69%  9.49% 16.92  75.53% 10.00%
SAEs 9.76 20.17%  3.75% 11.80  22.14%  5.77% 13.55 2386%  7.32% 14.80 25.25% 8.27%
MOL LSTM 9.76 24.38%  3.78% 11.66  26.22%  5.60% 13.30  27.84%  7.02% 1446  29.15% 7.86%
GRU 9.93 20.30%  3.95% 11.97 2228% 6.01% 13.73 24.03%  7.62% 15.04 25.53% 8.63%
SAEs 9.48 19.51%  3.62% 1096  21.55%  4.40% 10.26  20.70%  3.34% 15.86  27.26% 9.49%
SAEs LSTM 9.44 23.44%  3.59% 10.92  2525%  4.45% 10.51  2493%  3.62% 15.30  29.58% 8.77%
GRU 9.62 19.63%  3.77% 11.20 21.73%  4.73% 10.81  21.22%  3.84% 1597 2721% 9.69%
SAEs 9.53 19.32%  3.90% 11.57  2255%  5.08% 1279 2450%  5.74% 1477  25.94% 7.90%
LSTM LSTM 9.66 19.51%  4.02% 1143 2554%  5.00% 1276 27.36%  5.70% 1433 28.45% 7.44%
GRU 9.53 24.13%  3.81% 1175  22.58%  5.34% 13.08 2457%  6.13% 1495  25.99% 8.17%
SAEs 9.75 19.84%  4.08% 1072 21.34% 4.10% 11.03  21.33%  4.09% 1475  25.74% 8.00%
GRU LSTM 9.65 23.59%  3.95% 1071 2475%  4.20% 1122 2623% 431% 1429  28.61% 7.50%
GRU 9.87 19.92%  4.19% 11.00  21.52%  4.46% 11.51  21.85%  4.60% 1491 2585% 8.24%

By comparing the results of Table 2, the prediction method
with GRU-based imputation can be safely recommended for
traffic flow prediction under the DMR pattern.

Next, we investigate the performance of different deep
learning based traffic flow prediction methods under the
BDM model, as shown in Table 3. It is clear that the
traffic flow prediction methods with deep learning based
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imputation outperform the mean imputation based predic-
tion methods. Moreover, the traffic flow prediction methods
with deep learning based imputation have a comparable per-
formance. Table 4 evaluates the prediction accuracy of the
traffic flow prediction methods under the MBDM model.
Although the performance of MOL imputation method
in higher missing rates is better than the deep learning
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FIGURE 7. Comparison of NMSE for different methods based on different model.

based imputation methods, the prediction methods with deep
learning based imputation still achieve a approximative
performance with the MOL imputation based traffic flow
prediction method.

To better understand the results of the experiments,
the comparison of NMSE for different methods based on
different models is shown in Fig. 7. On the DMR and BDM
model, the deep learning based imputation methods has a
noticeable improvement in the NMSE of traffic prediction.
However, when the missing data rate is beyond 40 percent,
it has a visible influence on the accuracy of traffic flow
prediction on the MBDM model. Compared with the mean-
based imputation methods, the deep learning based prediction
methods are still recommended as the more efficient methods
to predict the traffic flow with data missing due to their
ability of extracting the internal features among training data.
Specifically, SAEs represents the fully-connected network
method without memory replay, and RNN optimizes the
network by adding the loop structure. GRU and LSTM are
both RNN-based methods, and GRU performs better in over-
coming the slow response problem of the LSTM algorithm
by capturing the long-term dependencies from training data.
Moreover, we could find the similar performance and patterns
of MAE and MRE results from Table 2 to Table 4.

V. CONCLUSION

In this paper, we conduct a comprehensive study to the
prediction of traffic flow using an incomplete data set and
via deep learning approaches. The DLIP model is proposed to
solve the imputation and prediction of traffic flow. To capture
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the impact from missing data, we introduce three different
patterns to model the missing data. Moreover, we also pro-
pose two types of methods for the imputation, i.e., the mean
and deep learning based imputation methods, to increase the
accuracy of traffic flow prediction. Based on the results of
tests, the appropriate traffic flow prediction approaches under
different data missing models have been thoroughly dis-
cussed and design guidelines for a practical implementations
are also given.

Furthermore, the proposed DLIP model provides a proper
option for solutions on prediction problems of wireless com-
munication, data processing, and engineering with missing
training data in future work. For instance, the efficient DLIP
based prediction method can be implemented to solve the
channel estimation problem under the situation losing enough
measurement of training channel data in practice.

REFERENCES

[1] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, pp. 865-873, Apr. 2015.

[2] X. Zhou, X. Cai, Y. Bu, X. Zheng, J. Jin, T. H. Luan, and C. Li, “When
road information meets data mining: Precision detection for heading and
width of roads,” IEEE Access, vol. 7, pp. 60399-60410, 2019.

[3] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic
flow prediction: Deep belief networks with multitask learning,” IEEE
Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2191-2201, Oct. 2014.

[4] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944-7956,
Aug. 2019.

[5] X. Sun, J. Zhao, X. Ma, and Q. Li, “Enhancing the user experience
in vehicular edge computing networks: An adaptive resource allocation
approach,” IEEE Access, vol. 7, pp. 161074-161087, 2019.

46721



IEEE Access

J. Zhao et al.: Traffic Data Imputation and Prediction: Efficient Realization of Deep Learning

[6]

[71

[8

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B. Ghosh, B. Basu, and M. O’Mahony, “Multivariate short-term traffic
flow forecasting using time-series analysis,” IEEE Trans. Intell. Transp.
Syst., vol. 10, no. 2, pp. 246254, Jun. 2009.

S. Sun, C. Zhang, and G. Yu, ““‘A Bayesian network approach to traffic flow
forecasting,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 124-132,
Mar. 2006.

E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, ‘“Short-term traffic
forecasting: Overview of objectives and methods,” Transp. Rev., vol. 24,
no. 5, pp. 533-557, Feb. 2007.

C. Li, Y. Fu, F. R. Yu, T. H. Luan, and Y. Zhang, “Vehicle position
correction: A vehicular blockchain networks-based GPS error sharing
framework,” IEEE Trans. Intell. Transp. Syst., early access, doi: 10.1109/
TITS.2019.2961400.

J. Zhao, S. Ni, and Y. Gong,
FBMC/OQAM signal using a joint optimization scheme,”
vol. 5, pp. 15810-15819, May 2017.

S. Ni, J. Zhao, H. H. Yang, and Y. Gong, “Enhancing downlink transmis-
sion in MIMO HetNet with wireless backhaul,” IEEE Trans. Veh. Technol.,
vol. 68, no. 7, pp. 6817-6832, Jul. 2019.

G.E. A. P. A. Batista and M. C. Monard, “An analysis of four missing data
treatment methods for supervised learning,” Appl. Artif. Intell., vol. 17,
nos. 5-6, pp. 519-533, May 2003.

T. Liu, B. Tian, Y. Ai, L. Li, D. Cao, and F.-Y. Wang, “Parallel reinforce-
ment learning: A framework and case study,” IEEE/CAA J. Automatica
Sinica, vol. 5, no. 4, pp. 827-835, Jul. 2018.

Y. Qin, C. Wei, X. Tang, N. Zhang, M. Dong, and C. Hu, ““A novel nonlinear
road profile classification approach for controllable suspension system:
Simulation and experimental validation,” Mech. Syst. Signal Process.,
vol. 125, pp. 79-98, Jun. 2019.

W. Liu, D. Wei, and F. Zhou, ‘“‘Fault diagnosis based on deep learning
subject to missing data,” in Proc. Chin. Control Decis. Conf. (CCDC),
Shenyang, China, Jun. 2018, pp. 3972-3977.

Y. Duan, Y. Lv, W. Kang, and Y. Zhao, “A deep learning based approach
for traffic data imputation,” in Proc. 17th Int. IEEE Conf. Intell. Transp.
Syst. (ITSC), Qingdao, China, Oct. 2014, pp. 912-917.

J. Poulos and R. Valle, “Missing data imputation for supervised learning,”
Appl. Artif. Intell., vol. 32, no. 2, pp. 186-196, Mar. 2018.

Y. Chen, Y. Lv, and F.-Y. Wang, “Traffic flow imputation using par-
allel data and generative adversarial networks,” IEEE Trans. Intell.
Transp. Syst., early access. [Online]. Available: https://ieeexplore.ieee.org/
document/8699108.

N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic flow
prediction,” Transp. Res. C, Emerg. Technol., vol. 79, pp. 1-17, Jun. 2017.
L. Qu, J. Hu, L. Li, and Y. Zhang, “PPCA-based missing data imputation
for traffic flow volume: A systematical approach,” IEEE Trans. Intell.
Transp. Syst., vol. 10, no. 3, pp. 512-522, Sep. 2009.

L. N. N. Do, H. L. Vu, B. Q. Vo, Z. Liu, and D. Phung, “An effective
spatial-temporal attention based neural network for traffic flow predic-
tion,” Transp. Res. C, Emerg. Technol., vol. 108, pp. 12-28, Nov. 2019.
L. Wang, Z. Zhang, and J. Chen, ““Short-term electricity price forecasting
with stacked denoising autoencoders,” IEEE Trans. Power Syst., vol. 32,
no. 4, pp. 2673-2681, Jul. 2017.

D. Jo, B. Yu, H. Jeon, and K. Sohn, “Image-to-image learning to predict
traffic speeds by considering area-wide spatio-temporal dependencies,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1188-1197, Feb. 2019.

X. Wang, R. Jiang, L. Li, Y. Lin, X. Zheng, and F.-Y. Wang, ““Capturing car-
following behaviors by deep learning,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 3, pp. 910-920, Mar. 2018.

Y. Lin, X. Dai, L. Li, and F.-Y. Wang, “Pattern sensitive prediction of
traffic flow based on generative adversarial framework,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 6, pp. 2395-2400, Jun. 2019.

J. Wang, L. Zhang, Q. Guo, and Z. Yi, “Recurrent neural networks with
auxiliary memory units,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 5, pp. 1652-1661, May 2018.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

J. Mackenzie, J. F. Roddick, and R. Zito, “An evaluation of HTM and
LSTM for short-term arterial traffic flow prediction,” IEEE Trans. Intell.
Transp. Syst., vol. 20, no. 5, pp. 1847-1857, May 2019.

J.Zhao, Y. Gao, Y. Qu, H. Yin, Y. Liu, and H. Sun, “Travel time prediction:
Based on gated recurrent unit method and data fusion,” IEEE Access,
vol. 6, pp. 70463-70472, Dec. 2018.

D. B. Rubin, “Inference and missing data,”
pp. 581-592, Dec. 1976.

“Peak-to-Average power ratio reduction of
IEEFE Access,

Neural

Biometrika, vol. 63, no. 3,

46722

(31]

(32]

(33]

(34]

M. S. Santos, R. C. Pereira, A. E. Costa, J. P. Soares, J. Santos, and
P. H. Abreu, “Generating synthetic missing data: A review by missing
mechanism,” IEEE Access, vol. 7, pp. 11651-11667, Feb. 2019.

X. Chen, Z. Wei, Z. Li, J. Liang, Y. Cai, and B. Zhang, “Ensemble
correlation-based low-rank matrix completion with applications to traffic
data imputation,” Knowl.-Based Syst., vol. 132, pp. 249-262, Sep. 2017.
Y.-F. Zhang, P. J. Thorburn, W. Xiang, and P. Fitch, “SSIM—A deep
learning approach for recovering missing time series sensor data,” IEEE
Internet Things J., vol. 6, no. 4, pp. 6618—6628, Aug. 2019.

Caltrans. (2014). Performance Measurement System (PeMS). [Online].
Available: http://pems.dot.ca.gov

JUNHUI ZHAO (Senior Member, IEEE) received
the M.S. and Ph.D. degrees from Southeast Uni-
versity, Nanjing, China, in 1998 and 2004, respec-
tively. From 1998 to 1999, he worked with the
Nanjing Institute of Engineers, ZTE Corporation.
Then, he worked as an Assistant Professor with the
Faculty of Information Technology, Macao Uni-
versity of Science and Technology, in 2004, and
continued there as an Associate Professor, until
2007. In 2008, he joined Beijing Jiaotong Univer-

sity, as an Associate Profeﬂﬂor where he is currently a Professor with the
School of Electronics and Information Engineering. Since 2016, he has been
with the School of Information Engineering, East China Jiaotong University.
Meanwhile, he was also a short-term Visiting Scholar with Yonsei University,
South Korea, in 2004, and a Visiting Scholar with Nanyang Technological
University, Singapore, from 2013 to 2014. His current research interests
include wireless and mobile communications and its related applications,
which contain 5G mobile communication technology, high-speed railway
communications, vehicle communication networks, wireless localization,
and cognitive radios.

YIWEN NIE received the B.Eng. degree in
computer science from East China Jiaotong Uni-
versity, Nanchang, China, in 2017. He is currently
pursuing the Ph.D. degree with Beijing Jiaotong
University, Beijing. His research interests include
machine learning, vehicular communication, and
UAV-aided communication.

SHANJIN NI received the Ph.D. degree from
Beijing Jiaotong University, in 2019. He is with the
National Computer Network Emergency Response
Technical Team/Coordination Center of China
(CNCERT/CC). His work focuses on the exploita-
tion of massive multiple-input multiple-output
(MIMO) communication and millimeter waves
(mm-waves) for 5G HetNets. His research inter-
ests include pilot designs for multicell massive
MIMO systems, pilot contamination reduction,

and hybrid precoding for mm-wave massive MIMO.

XIAOKE SUN received the B.E. degree in
electronic information science and technology
from Xiangtan University, Hunan, China, in 2016.
She is currently pursuing the Ph.D. degree in com-
munication and information systems with Beijing
Jiaotong University, Beijing, China. Her research
interests include 5G vehicular networks, mobile
edge computing, resource allocation, and stochas-
tic optimization.

VOLUME 8, 2020


http://dx.doi.org/10.1109/TITS.2019.2961400
http://dx.doi.org/10.1109/TITS.2019.2961400

