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ABSTRACT Reconfigurable SRAM-based Field Programmable Gate Arrays (FPGAs) are everyday more
attractive due to their high integration, performance, flexibility, and upgradability. Run-time reconfiguration
improves the reconfigurable computing paradigm allowing to rewrite just a portion of the FPGA configu-
ration memory on-line. This enhances the flexibility and provides opportunities for new high-performing
architectures able to adjust in-flight the hardware to the current payload. However, the performance of
reconfigurable architectures is bounded by the efficiency of the reconfiguration procedure, which in turn
is bounded by the amount of configuration frames to be rewritten in the memory. Furthermore, the lack of
tools and design software to implement optimized reconfigurable architectures makes their performance
less efficient than expectation. In this work, we propose an approach to enhance the performance of
reconfigurable systems by reducing the reconfiguration time of reconfigurable resources. Our method is
based on a frame-driven routing algorithm able to drastically reduce the number of configuration memory
frames used in the design. We evaluate the optimization achieved with our algorithm on several benchmark
circuits of different size and we investigate the performance and the routability for different placement
solutions. Experimental results confirm that our approach reduces the reconfiguration time up to 40% with
respect to traditional reconfiguration approaches for a wide range of circuits.

INDEX TERMS Frame, partial reconfiguration, reconfiguration time, routing algorithm, SRAM-based
FPGAs.

I. INTRODUCTION
Reconfigurable computing is increasingly gaining ground
with respect to the classical hard-coded and programmable
systems. In fact, hard-coded designs provide high perfor-
mance at the cost of the flexibility, since the hardware
data-path is specific to the application but fixed at the pro-
duction stage. In programmable systems, instead, software
algorithms can be freely implemented after production on
a fixed general-purpose hardware, providing high flexibil-
ity, this time at the cost of performance. Reconfigurable
computing represents a synthesis paradigm combining the
flexibility of the software with the performance of the hard-
ware. In fact, in reconfigurable systems both data-path and
algorithms can be customized on the same support device,
even after deployment [1]. For this reason, the last decade
has seen a sharp increase in the usage of SRAM-based Field
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Programmable Gate Arrays (FPGAs) to implement High
Performance Reconfigurable Computing (HPRC) systems
[2], [3]. In fact, due to the possibility to modify or rewrite
after the start-up their configuration settings, FPGAs rep-
resent the golden devices for implementing reconfigurable
applications.

The possibility to access after the deployment the FPGA
configuration memory, which controls the application func-
tionality, makes them flexible and provides opportunities for
innovative, upgradable, and robust architectural solutions for
a wide range of applications [4], [5].

When just a portion of data-path is modified at run-time,
we talk about Partial Reconfiguration (PR). This feature
allows the user to select during the design phase the area
of the device that can be modified after deployment and
to perform such procedure without stopping the application
[6], [7]. This allows several optimizations on the system
performance, enabling time-space partitioning, area saving
and power reduction techniques.
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Unfortunately, the performance of the reconfigurable
application itself is bounded by the reconfiguration time.
In fact, the time needed to perform this procedure is still high
and depends mainly from two components: the amount of
data to be rewritten inside the configuration memory and the
interface used for accessing the memory.

The growing interest in partially reconfigurable systems,
leads to the development of several configuration interfaces
devoted to efficiently load the partial configurations from
the off-chip non-volatile memory to the FPGA’s configu-
ration memory. Some examples are the slower Serial Con-
figuration Mode and JTAG Partial Reconfiguration, and the
faster Parallel Port Configuration Interfaces and the Xilinx
Internal Configuration Access Port (ICAP) [8]. Even if sev-
eral optimizations of such interfaces have been investigated
(e.g., [9]–[11]), few solutions have been suggested to act on
the amount of data to be rewritten in the configuration mem-
ory. In details, the atomic addressable configuration memory
unit for Xilinx 7 Series FPGA is the frame, a 3,232 bits
word [8]. This represents a strong architectural limit for fast
reconfiguration, considering that the time needed for a frame
memory transfer is of hundreds of microseconds (µs).

A recent approach proposed an implementation flow to
reduce the configuration time by reducing the area of the
implemented circuit [12], thus directly reducing the overall
amount of configuration data. Anyway, the optimal place-
ment solution provided by the vendor tool is not considered
anymore, leading to potential side-effects, such as routing
congestion. Furthermore, this approach could result critical
or unfeasible for large designs.

In [13], we introduced a preliminary approach to reduce
the amount configuration memory data of a circuit mapped
on a SRAM-based FPGAs without modifying its topology.
We achieve this result only acting on routing resources with-
out modifying the optimal placement solution provided by
commercial tools. In fact, after an in-depth analysis of the
routing structure, we were able to realize a routing algorithm,
FeDRA (Frame-driven Routing Algorithm) that is able to
route circuits reducing the number of used frames and thus
reducing the configuration time up to the 40%.

In this paper, we present and evaluate the FeDRAalgorithm
applying its optimization to larger circuits and analyzing the
performance of our algorithm from the point of view of the
execution time and routability with different area constraints.
Experimental results demonstrate that FeDRA can success-
fully implement optimized designs also for larger circuits,
under tight area constraints, and when different designs are
placed in the same reconfigurable area.

A. THE MAIN CONTRIBUTION
The main contribution of our optimization technique is rep-
resented by its efficiency coupled with its non-intrusiveness
in the system performance and in standard reconfigurable
design process. In fact, our solution doesn’t need any dif-
ferent configuration interface and it is applied only at the
routing stage, leaving all the other steps of the application

development executed by vendor tools. Additionally, to the
best of our knowledge, it is the first FPGA routing algorithm
exploiting the awareness of the link between configuration
memory organization and configurable resources.

The main intuition behind this work is that evaluating
resources from the point of view of their configuration set-
tings rather than from their topological position allows to
perform the optimization on the reconfiguration time without
renouncing to the optimal and already optimized placement
provided by the vendor tool. Additionally, it scales efficiently
with the congestion of the circuits and does not introduce
any relevant overhead in the other performance parameters,
such as resources and time overhead. The rest of the paper is
organized as follows: in Section II and III the background and
the state of the art on the FPGA fabric, configuration mem-
ory, reconfiguration procedures and implementation flow
are provided; Section IV describes the FeDRA algorithm;
SectionV presents the experimental results while conclusions
and future works are discussed in Section VI.

II. BACKGROUND
A. RECONFIGURABLE FPGA ARCHITECTURE
In general, reconfigurable hardware provides high flexibility
and upgradability since its functionality can be customized
to obtain a variety of applications. Although several recon-
figurable architectures have been proposed in the past, FPGA
represents the most consolidated solution. The characterizing
feature of the FPGA is to act as a blank hardware where
any design can be tailored, providing on a unique device
the performance of the hardware and the flexibility of the
software. This duality relies on a two-layer fabric: one layer
of configurable resources on the top a configuration memory
layer.

The resource layer consists of a regular array of basic
configurable blocks containing logic and routing resources.
Logic is devoted to implement logical and arithmetic opera-
tions and typically consists of Look-up Tables (LUTs) storing
the truth table of the wanted function and Flip-Flops (FF) as
storage element for sequential behavior. Programming bits
define LUTs truth tables and FFs activation.

Connections among logic nodes are implemented with
programmable routing to build the interconnect structure.

As for the logic, each switch point in the connecting tissue
is programmed by few bits: programmable switches are con-
figured to switch among different logic block inputs/outputs,
vertical and horizontal junctions, and different hierarchy lev-
els of segment length. The configuration layer consists of
an array of memory cells storing the configuration settings
for programmable resources. These binary values determine
whether routing segments are activated to connect nodes and
the functionality of specific logic resources.

The collection of data inside the configuration memory
univocally defines a specific circuit for a given hardware
task. The procedure of writing the binary information inside
the configuration memory is called reconfiguration. A first
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configuration is loaded inside the memory at the start-up;
when configuration data are written at run time, the procedure
is called Dynamic Reconfiguration while Partial Reconfigu-
ration consists in writing only a subset of configuration data
at runtime.

The most flexible configuration storage in commercially
available FPGAs are volatile SRAM cells, which allow fast
and repeatable reconfiguration in a well-known technology.

Nowadays, among the others, Xilinx SRAM FPGAs result
preferable for implementing reconfigurable applications.
In fact, with respect to other vendors counterpart, Xilinx
provides more powerful and documented CAD tools, higher
working frequency and its architecture results more suitable
for modular partial reconfiguration [14], [15].

III. THE XILINX 7-SERIES ARCHITECTURE
Each basic programmable unit of the 7 Series Xilinx FPGA is
made by two parts: the Control Logic Block (CLB) that con-
tains the programmable logic, and the Switch Matrix (SM)
that contains the programmable interconnections. The pro-
grammable logic consists of LUTs and FFs [16].

Programmed LUTs functions and activated FFs implement
the logic nodes of the programmed design. In order to connect
the inputs and outputs of different CLBs, the programmable
routing resources inside the switch matrices are used. The
programmable routing resources are called Programmable
Interconnect Points (PIPs) and make the configurable link
between a switch matrix input and a switch matrix output.
Each output of the switch matrix is connected to a hardwired
segment, which is connected to the input of another switch
matrix or to inputs or outputs of a CLB. The collection of
PIPs and wires builds the nets that route the circuit.

Additionally, following the trend of providing more inte-
gration, in the current FPGA architecture the programmable
resources are interleaved to hardwired components such as
integrated microprocessors, Digital Signal Processing (DSP)
units and memory blocks to implement user memories
(BRAMs). This is done to provide to the users specialized
hardware blocks for implementing functionalities that could
be not optimized or resource-consuming when implemented
in programmable logic. A formalization of the current archi-
tecture is provided in Figure 1.

The Tiles are grouped in Clock Regions, sub-portions of
the FPGA fed by the same Global Clock Line (GCL) to
properly manage the clock distribution.

The behavior of the programmable resources is defined
by the content of the configuration memory layer. The con-
figuration memory content is a binary file, called bitstream,
generated after synthesis and implementation. The bitstream
is organized in a regular structure of various bit arrays span-
ning in vertical the whole device area. This structure is called
frame and it is the smallest addressable configuration mem-
ory segment for reconfiguration [8].

The regular organization of the resources inside the FPGA
array is somehow translated in the configuration memory
structure, which shows the same regularity. With our tool

FIGURE 1. Overview of the current FPGA architecture: on the left the
basic Tile unit is shown, with detail of the programmable resources and
their functions; on the right the two layers fabric is schematized with the
configuration memory layer and the programmable resource layer
integrated with hardwired resources.

COMET [21], we observed that the frames relative to Tiles
belonging to the same Clock Region are stored sequentially.
Anyway, the order in which the bitstream portions relative to
different Clock Regions are stored is different with respect to
the coordinates provided byXilinx Vivado Tool and this order
changes for each device model.

Fig. 2 shows how the stream of bits in the bitstream
is grouped in frames and how these frames are mapped
with respect to the programmable resource layer for the
Kintex-7 FPGA. In fact, to link a sub-portion of the bitstream
to the FPGA region it describes, the following steps need
to be performed: all the bits must be grouped in frames
of 3,232 bits; this collection of frames must be divided in sub-
sections, each one of them relative to a given Clock Region;
finally, such regions must be reordered to match the FPGA
structure.

Typically, the top half of the Clock Regions (according to
the device view) is stored in reverse order in the first half
of the bitstream. The bottom half Clock Regions appear in
the second half of the bitstream in the same order of the
device, as shown in Fig. 2.

For the Xilinx Kintex-7 XC7K325T FPGA, the array of
Tiles is organized in a matrix of 50× 350. The configuration
memory instead can be seen as a frame matrix 3, 240 × 7.
In fact, each column of Tiles of every Clock Region is pro-
grammed by bits that belong to the same frame and the posi-
tion of the bits controlling the storage, the logic elements and
interconnection resources is periodic inside the configuration
memory.

The entire Tile is described by a sub-matrix 36 × 64
of configuration bits. Each column of 64 bits along the y
axes belongs to the same frame. In other words, each frame
(partially) configures resources belonging to 50 different
Tiles along the vertical axes within a Clock Region.

In Figure 3.a two contiguous Tiles are shown. Figure 3.b
shows their correspondence with configuration memory
frames: in details, each CLB is configured by 10 of the
36 sub-portions of frames, while the remaining 26 program
the routing resources. In Figure 3.c is reported the bitmap of a
portion of configuration memory relative to the same portion
of the device. The image has been obtained with COMET on
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FIGURE 2. An overview of the Bitstream logic organization for Xilinx 7 Series FPGA. This example is relative to the Kintex-7 FPGA.

FIGURE 3. Xilinx Kintex-7 Tiles topology (a) and configuration memory
correspondence with configuration memory frames (b) and bits (c).

a sample design programmed on the Kintex-7. Each column
of pixels represents a portion of 64 bits of a frame and the
white pixels represent the configuration memory bits set to 1.
It is also possible to see the different bits distribution in the
part devoted to program the routing and the CLB sides [21].

A. RECONFIGURATION TIME AND TEQUINQUES
The feature of accessing FPGA configuration memory after
deployment can be exploited in different ways and for differ-
ent purposes. Before defining them, a general formal defini-
tion of reconfiguration time trec is provided in (1):

trec = Aatomic memory unit ·Nbits per unit ·tdownload bit (1)

The Aatomic memory unit is the amount of basic addressable
memory segments to be reconfigured and it is related to
the implemented circuit; Nbits per unit is the data size of the
atomic addressable memory unit and it is a term related to the
architecture of the target reconfigurable device; tdownload bit is
the average time for each bit memory transfer and it depends
from the used configuration interface.

For Xilinx 7 Family the atomic memory unit is the frame,
which is a 3,232 bits word, and the time needed for down-
loading each frame through the ICAP is around 100 µs.

Considering the reconfiguration time definition in (1) is
clear that what can be optimized without re-thinking the
architecture or the configuration interface is the number of
used frames, acting at the design level.

In Fig. 4.a, an example of configuration memory usage for
a given design is provided, followed by the typical Partial
Reconfiguration techniques.

FIGURE 4. Overview of the typical Reconfiguration Techniques.

The used frames can be interpreted as frames to be
re-written to refresh their content or as frames to be modified
to change the circuit behavior. The Scrubbing, in Figure 4.b is
typically used when the whole content of the FPGA configu-
ration memory needs to be rewritten; in this situation, all the
configuration memory frames are reloaded, thus the off-chip
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memory from which configuration data are read contains the
full bitstream. This technique is mostly used in aerospace
applications, where radiation effects can cause bitflips inside
the memory cells: by re-writing the correct content inside
the cells is possible to avoid or recover malfunctioning
[3], [18], [19]. Anyway, the typical partial reconfiguration
approach, shown in Figure 4.c, consists in configuring only
the configuration frames belonging to the target Reconfig-
urable Region (RR) that contains the design that should be
modified on-line. This technique relies on defining during
the development phase the area that will contain resources
to be dynamically allocated (or refreshed) during the device
mission and producing a-priori their relative partial bit-
streams [6], [10], [20]. In this case, the off-chip memory
contains all the partial bitstreams relative to the possible
configurations of the target reconfigurable area. In both the
techniques all the configuration frames are transmitted to
the FPGA’s configuration memory independently from their
content: thus, even empty frames (i.e., not programmed) are
written into the configuration memory. The best approach
in terms of reconfiguration time is the Capillary one, shown
in Figure 4.d, that has been proposed [21] in order to down-
load exclusively the used frames. This technique requires
more effort during the development process, but truly mini-
mizes the reconfiguration time since it minimizes the number
of frames to be reconfigured.

IV. STATE OF THE ART
In order to obtain the FPGA implementation of a circuit from
its Hardware Description Language (HDL) design, the fol-
lowing steps need to be performed within the vendor tool:
Synthesis, Technology Mapping, Placement, Routing and
Bitstream Generation. Even if FPGA design development
process follows conceptually the same steps of ASIC devel-
opment process, each phase has a different meaning. The
Synthesis and the Technology Mapping steps translate the
HDL description to a gate level description of the circuit that
uses the functional blocks of the target technology: within the
FPGA these blocks are LUTs, FFs, In/Out pins, BRAMs and
DSPs. The Placement assigns the abstract functional blocks
identified in the previous steps to the physical resources of the
target FPGA while in the Routing stage the routing segments
to connect the logic blocks that produce the wanted connec-
tions among logic nodes are identified. Typically, these two
last steps are referred as a unique step called Implementation
(or Place&Route, P&R) since they are strictly related. Once
the Implementation of the design is completed, the config-
uration data to be stored inside the configuration memory
describing the target implemented circuit are coded into the
Bitstream binary file.

Considering that FPGA fabric has a finite amount of pro-
grammable resources, the P&R design stage is more critical
since, differently fromASIC, it is constrained by the effective
availability of the resources. Additionally, in FPGAs, the
performance, and in some cases even the feasibility, of the
implementation is strongly dependent from the quality of

P&R solution and the trade-off among resources utilization,
power end delay results evenmore difficult to reach due to the
lower degree of freedom. For this reason, FPGAs placement
and routing algorithms have been a crucial point of research
both in literature and in practice.

Routing algorithms can be classified according to the
algorithmic approach and to their cost function. From the
algorithmic point of view, the geometric routing approach has
been individuated as one of the most effective for FPGA rout-
ing [22]. Among this category of algorithms, the most used
are the Maze Router, the A∗ Search and the Pathfinder [23].
When the routing constraints are tight, the Boolean-based
algorithms are preferred, since they present the advantage of
considering nets simultaneously [24].

In addition to the primary goal, which is to successfully
complete the routing of the circuit, routing algorithms typi-
cally evaluate their decisions also to minimize or maximize a
given parameter or to satisfy conditions. This secondary goal
can be defined as cost function or as routing policy.

FPGA routing algorithms typical policies are the mini-
mization of the delay, minimization of the power consump-
tion, mitigation of congestion or reliability enhancement.
Some examples for these categories are respectively the
TRACER_fpga [25], the algorithm proposed by Roy [1],
CeRA [26] and RoRA [27].

Cost functions can also try to satisfy more than one of
these parameters at the same time, anyway the final outcome
is always a trade-off. For instance, TRACER minimizes the
circuit delay by minimizing the path length, but at the same
time it has a long execution time and does not consider routing
density. Power consumption minimization typically happens
at the cost of the area, such as the reliability enhancements.
Above all, all these algorithms are by definition computation-
ally intensive and typically run in complex Computer Aided
Design (CAD) toolchains for FPGA development.

Anyway, if the routing problem is complex, the place-
ment is even more crucial. Considering that Placement typ-
ically has the greatest impact on overall design performance,
the Routing solution is strongly dependent from the quality
of the Placement: a poor Placement can lead to weak perfor-
mance both in terms of power consumption and delay, and in
the worst case, even to the unfeasibility of the routing [28].
Furthermore, differently from Routing, the exhaustive explo-
ration of the placement solutions space and the achievements
in obtaining effective heuristic placement algorithms repre-
sent still open problems [29].

When Partial Reconfiguration is involved, the development
flow becomes even more complex: reconfigurable and static
areas must be identified at the beginning of the process;
the interfaces between static and reconfigurable areas should
be defined in such a way that the requirements of different
circuits to be allocated in the same dynamic area are satisfied;
hardware modules for dynamic areas should be synthetized
and implemented in a separate flow with respect to static
circuitry in order to create all the partial bitstreams to be used
at run-time.
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Beside the optimizations performed during the develop-
ment process, when reconfiguration is involved in the com-
putation, the procedure itself can introduce a huge overhead
in the application, nullifying the delay and power saving
achievement obtained in the implementation step on the cir-
cuit. Considering that in some cases the time consumed by
the reconfiguration procedure represents a huge portion of
the application execution time, it is essential to minimize its
overhead to maximize the overall performance of the system.
Typically, this is performed exclusively in the application
layer, playing with hardware tasks scheduling [30]–[32].
Anyway, to consider the reconfiguration time as optimization
goal even during the design implementation stage can truly
enhance the overall system performance.

To the best of our knowledge, the unique work in literature
following this approach is [12], where Vansteenkiste et al.
suggested a Place & Route tool, called TPaR for enhancing
the performance of FPGAs dynamic reconfiguration. This
work targets the optimization of reconfigurable applications
in the implementation stage. Its goal is to reduce the area
occupied by the reconfigurable circuit and thus the time
overhead needed for the update of the relative configuration
memory portion. Additionally, it represents one of the few
works aimed to fill the lack of automatic tools for the devel-
opment of reconfigurable applications.

Anyway, considering the complexity and the cruciality of
placement and the efficacy of vendor placer in performing
delay, wire length and congestion optimizations, to discard
the vendor optimal placement solution could result in a loss
of performance. Additionally, when the amount of resources
used by the design increases, it becomes more difficult (if not
impossible) to play the optimization proposed in [12].

The proposed FeDRA algorithm is a geometric-based
algorithm based on the reconfiguration time minimization
cost function. This is done selecting routing resources that
introduce the minimum overhead in terms of configuration
settings to be updated at runtime. In order to achieve such
optimization without penalty in other performance parameter
such as delay, congestion and power consumption, FeDRA
has been developed to be integratedwithin the vendor tool and
to start from the vendor optimal Placement solution. In fact,
considering that routing represents up to 70% of FPGAs
resources, it is reasonable to perform the frame optimization
on it without interfering with the placement of logic nodes,
which is already optimized from the vendor tool and typically
performed looking ahead to the optimal global routing.

V. THE FRAME DRIVEN ROUTIN ALGORITHM: FeDRA
The main idea behind our approach is to reduce the recon-
figuration time of the partial reconfiguration process on
SRAM-based FPGAs by exploiting a frame routing policy
in order to reroute FPGA connections using the mini-
mum number of frames. In this section, we first summa-
rize the bitstream and frames decoding performed. Then,
we describe the key concept, which relies on an in-depth
analysis of the bitstreamwith respect to the routing resources.

Later, we describe the FeDRA approach, presenting the main
algorithm routines.

A. BITSTREAM ANALYSIS AND FRAME DECODING
As is it possible to perceive, the optimization of the config-
uration procedure by minimizing the number of frames used
to implement a circuit requires a detailed knowledge of the
bitstream encoding. In addition to the current trend of the
digital design to increase the abstraction level, the lack of
information from the vendors about the details of their FPGA
fabric is still high. The first part of the study consists in an
in-depth investigation and taxonomy of the Family 7 routing
resources. Their organization can be retrieved from their
architectural routing format [33]. PIP segments are identified
by their direction with respect to the hardwired segments they
are connecting and the coordinates of the switch matrix they
belong on the FPGA.

To build the database, we extracted all the available
Programmable Interconnect Points. The time to process the
whole extracted PIP list could be enormous and the list con-
tains several replicas of the same primitive resource relative
to different Tiles in the FPGA.

For this reason, the Essential PIPs have been pruned
(21,081 Essential PIPs on 124millions PIPs for the Kintex-7).
To find correlation between PIPs and configuration memory
bit coordinates, we realized a TCL script executed inside the
vendor tool, which sequentially programs the FPGA with
one Essential PIP and gives back its Frame Address Register
(FAR) [8]. Once the coordinates of the Essential PIPs are
individuated, all the others can be easily retrieved due to the
high regularity of the FPGA [13]. Finally, we used COMET
tool to verify and formalize the information obtained with this
methodology [17].

After this process we were able to link each routing
resource inside the FPGA to the number and the position of
the frames involved in its configuration.

B. ROUTING POLICY
After a close examination of the bitstream database we were
able to notice that routing resources are programmed by a
variable number of bits within a variable number of frames.
Furthermore, often happens that the bits used to config-
ure resources on the same Tile column belong to the same
frames, as it is shown in the examples in Figure 5.

Typically, the number of bits used for each routing resource
is not fixed. Each PIP is programmed by bits belonging from
1 up to 4 different frames crossing a Switch Matrix. Since
each frame spans in vertical on 50 Tiles, a routing resource
can be programmed by frames common to resources in the
same switch matrix such as in other switch matrices in the
same column [17].

Starting from this key concept, it is possible to reduce the
number of total frames by locally changing the routing of a
net (signal driver from the output of the CLB to the input of
one or more CLBs), this without any change in the original
(and optimal) placement from the vendor tool.
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FIGURE 5. The three main types of Programmable Interconnect Points
(PIPs) of a routing switch matrix: 1, 2 or 4 programmed frames.

In fact, in each Switch Matrix several PIPs exist to cover
the same distance and direction. Each SwitchMatrix Junction
has in average 32 PIPs that start/insist on it. These PIPs share
the same driver and among them there is more than one PIP
going in a given direction. During the routing process the
algorithm selects among them the one that minimizes the
overall number of frames and at the same time properly routes
a net, respecting the signal integrity.

Even if the FeDRA algorithm performs the same compu-
tation, two optimizations are possible:
• Relative Routing Policy: among all the available PIPs
with the same behavior and considering the used frames
in the same column of tiles, the PIP that introduces less
additional frames is selected.

• Absolute Routing Policy: if no matching with already
used frames exists, among all the available PIPs with
the same behavior, the one that is programmed by the
smallest number of frames is selected.

In Figure 6 and 7, an example of both Optimization Poli-
cies on a sample net is reported: the net in Figure 6 is the

FIGURE 6. An example of standard net routed by the vendor tool showing
the sequence of PIPs used without considering the frame reference
overlapping.

Standard one, routed by the vendor tool, while in Figure 7 the
one routed using the Frame-Driven Algorithm.

FIGURE 7. The net of the example of Fig. 6 after the FeDRA optimization:
by means of the absolute and relative policies 3 frames have been saved.

Both the nets take signals for the Output 15 of the bottom
CLB to Input 14 of the top CLB crossing 3 Switch Matrices.
To implement the net in the standard way 8 frames are used,
2 for the first PIP (starting from the bottom), other two for
the second one and 4 for the last one, and no one of them is
shared between resources.

In the net of Fig.7, obtained with FeDRA, one frame is
saved with the routing of the first two PIPs according to
the Relative Policy, since Frame #9402 is shared by the two
resources.

Other two frames are saved in the last step, since a resource
that needs just 2 frames instead of 4 is used. Thus, it is
possible to see that with our approach 3 of 8 frames are saved.

C. FeDRA ROUTING ALGORITHM
The goal of FeDRA is to find a complete routing solution for
a circuit and at the same time to minimize the number of used
frames. The algorithm performs its computation starting from
the Vivado placement solution of the circuit, which consists
in a description of how logic nodes and In/Out pins are
connected. The placement information extracted with a TCL
script from Vivado, is used as constraint for the optimized
circuit and coded in a format suitable for the Frame-driven
Router that re-shapes all the nets connecting placed nodes to
perform the frame saving. In Figure 8 a simplified version of
the algorithm is reported. At the beginning of the execution,
the routing solution for the optimal Vivado placement is
empty. The net information obtained from the vendor tool is
iteratively extracted until all the nets of the circuit have been
routed.

The path connecting the source and the drain/s of each net
can be decomposed in several steps, individuating at each iter-
ation a temporary source and a temporary drain that could be
connected through a single PIP. For each couple of temporary
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FIGURE 8. The FeDRA algorithm pseudo-code.

sources and drains a subset of PIPs exists that satisfies the
connectivity requirements. For all the PIPs available on this
subset, a cost function is computed and evaluated in order
to select the resource that minimizes the overall number of
frames (Fig. 9).

FIGURE 9. An example of cost function computation and evaluation
performed by the FeDRA algorithm.

The computation is based on a very long flag vector,
the Current Design Frame Vector, which traces the frames
already used in the FPGA (1 in the corresponding position
if used, and 0 if empty). Every time a new PIP is evaluated,
the additional frames potentially introduced to program it are
interpolated through simple bitwise logic operations with the
Current Design Frame Vector.

In fact, the bitwise or between the PIP Frame Vector rel-
ative to the PIP under evaluation and the Current Design
Frame Vector returns the overall frame usage if the resource
is used in the routing solution. The bitwise xor among the
so obtained temporary vector and the original one provides
the absolute number of additional frames introduced by the
resource, which is used as cost function.

If the obtained cost in terms of frame overhead is smaller
than the present one, the cost is updated, the current PIP is
saved as the temporary optimal one.

When all the available PIPs have been processed, the opti-
mal one is added to the routing solution, the Current Design
Frame Vector is updated according to this choice and the
temporary drain becomes the new temporary source for the
next step. This procedure is repeated until the whole net is
routed and so on, until the whole circuit rerouting is complete.
A more detailed description could be found in [13].

VI. EXPERIMENTAL RESULTS
The FeDRA algorithm has been developed as a software tool
integratedwith theXilinxVivado IDE 2017.2. It can elaborate
synthesized designs and bitstreams of the Xilinx 7 Family
FPGA. In [13] we evaluate our algorithm for 5 different
benchmark circuits implemented in Vivado in standard con-
dition (i.e., with the board frequency as timing constraint and
without area constraint) proving that FeDRA can successfully
re-route and save from more than 35% up to the 41% of
reconfiguration time with respect to the vendor tool imple-
mentation. This evaluation has been made implementing the
five different benchmark circuits on the Kintex-7 XC7K325T
device and comparing the routing solutions obtained with
Vivado Place and Route tool with the one obtained substitut-
ing the routing step with FeDRA. In this work, we extend this
evaluation by applying FeDRA optimization to larger circuits
and introducing different placement constraints. At the same
time, we evaluate the performance of our router in terms of
execution times and the routability, analyzing the obtained
solution with respect to vertical and horizontal long lines and
short segments.

In detail, benchmark circuits have been implemented both
with the Xilinx Vivado tool flow and by the routing stage with
FeDRA.

To obtain circuits with congested area we added area
constraints in the placement stage. After the implementation
was completed, the Configuration memory bitstreams have
been produced for the two versions. The bitstreams have
been loaded on the target device for the evaluation of the
reconfiguration time [13].

The frames usage comparison among the original and the
optimized versions has been obtained with the Frame Ana-
lyzer, an ad-hoc software developed for the purpose. The
Frame Analyzer takes the bitstream as input and returns the
number of frames programmed (i.e., with at least one bit
set to 1). For each benchmark a report on FeDRA routing
solution and execution time has been produced and evaluated.
The evaluation framework used for the analysis is reported
in Figure 10.

This allows us to observe a positive trend on the opti-
mization achievable with respect to the size of the circuits,
the occupied area and its congestion, and to characterize the
performance of our router in terms of routing solutions and
execution times.

VOLUME 8, 2020 116233



L. Bozzoli, L. Sterpone: Optimized FeDRA for Reconfigurable SRAM-Based FPGAs

FIGURE 10. FeDRA Evaluation framework: the comparison among designs obtained with the original development flow and the one which integrates
FeDRA is performed on the target devices for reconfiguration times and with the Frame Analyzer software for the frame usage count. The execution times
and the routability analysis are extracted from the FeDRA reports.

A. BANCHMARK DESCRIPTION AND EVALUATION IN
STANDARD CONDITIONS
The evaluation performed to prove the feasibility and the
advantages of our solution has been done on nine circuits:
seven ITC’99 benchmarks [34], a Cordic Core [35] and the
miniMIPS [36] processor. The circuits have been imple-
mented on a Kintex-7 XC7K325T SRAM-based FPGAs and
the resources are detailed in Table 1. The circuits have been
implemented using the nominal board frequency of 100 MHz
and without inserting area constraints. In Table 2, we reported
the frame usage comparison between the original circuit ver-
sion and the one obtained by FeDRA. The results demonstrate
an average optimization of the frame usage of 35%. Any
impact is observable on the delay of the circuit and a minimal
overhead in terms resources in standard condition. In fact,
the PIPs overhead introduced by our routing policy it is
negligible and it scales with the circuit size. In fact, the addi-
tional percentage of resources becomes almost infinitesimal
for bigger circuits: it goes from 0.97% for b05 to the 0.16%
for miniMIPS [13].

TABLE 1. Characteristics of benchmark circuits implemented with
Xilinx Vivado 2017.02.

TABLE 2. Benchmark routing frame usage comparison between original
and FeDRA routing algorithm in standard condition.

Please notice that it is possible to observe a slight depen-
dence between the optimization and the size of the circuits.
In fact, we observed a higher optimization for smaller circuits
with respect to the large ones. This is due to the different num-
ber of registers, In/Out ports and the heterogeneous number
of Nets. For instance, the miniMIPS has a lower optimization
versus b22 and b17 mainly because of the higher routing
congestion.

B. AREA CONSTRAINT AND ROUTABILITY ANALYSIS
In order to further analyze the performance characteristics of
the proposed FeDRA algorithm, we perform the evaluation
of the frame saving considering a restricted placement area.
Please consider that this is the typical scenario for reduc-
ing the area overhead of implemented circuits. Considering
this purpose, the benchmark circuits have been implemented
forcing the placement in a limited FPGA area.

We reported in Table 3 the benchmark circuits compression
metrics in terms of used resources and congestion percentage
of the area. The slices required are the ones used by the
circuit to implement its logic and memory elements while
the available slices are the number of slices available for
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TABLE 3. Circuit compression metrics.

the considered placement area. The module congestion is
relative to the utilization of the available slices. Please note
that in some cases the utilization is lower (e.g., benchmark
circuit b17) due to the higher usage of memory slices related
to the higher demand of In/Out ports and memory elements.

Figure 11 reports an example of unconstrained and con-
strained placement area for the benchmark circuit b18.
In Table 4, the frames used by the benchmark circuits imple-
mented within the placement bounding box before and after
the optimization are reported. We observed that the optimiza-
tion slightly decreases with the size of the circuits, going from
a maximum of 39.2% to a minimum of 32.2% for the biggest
circuit. We show in the graph of Figure 12 the comparison

FIGURE 11. Standard (left) and compressed (right) placement solutions
for b18 benchmark.

TABLE 4. Benchmark routing frame usage comparison between original
and FeDRA routing algorithm with high congestion.

FIGURE 12. Frame Saving without Area constraints (Standard) and with
Placement Area Constraints (Constrained).

between the frame saving obtained in standard condition and
the one obtained with placement area constraints. It is possi-
ble to observe that the impact of the congestion is minimal
and even positive in some cases. For example, in case of
smaller circuits like b05, few resources give less optimization
opportunities and a constrained area allows the overlap of
more configuration frames. Vice versa, when the number
of resources increases, we observe a negligible degradation
of frame saving.

Dealing with the algorithm performance in terms of exe-
cution time, in Fig.13 we report as an example the result
obtained for b12 for 6 different area constraints. To make this
evaluation, we measured the execution time of the algorithm
working with different area constraints, starting from the
smallest one (1:1) and progressively relaxing the constraint
along X axes to an area 8 times larger of the minimum
one (8:1). As it is possible to observe, we have the longest
execution times for the corner cases. In fact, we can see
that the execution time trend is to decrease with the area
reduction until the 1.5:1 constraint, and then to increase again.
We performed a detailed analysis of the routing delay related
to the different routing switches used by the circuits mapped
on the FPGA. We perform a routability analysis in terms of
short and long lines usage. The result of this analysis applied
to the benchmark b12 is reported in Figure 14.

FIGURE 13. The proposed FeDRA algorithm execution times with
different area constraints for the benchmark b12.

Thanks to this analysis, we observed that the Horizontal
Long Lines quantity decreases with the horizontal area reduc-
tion, while the amount of Vertical Long Lines increases to
compensate the Horizontal Lines and to avoid the usage of
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FIGURE 14. The Horizontal Long Lines, Vertical Long Lines and Short
Segments ratio on the benchmark b12 for different area ratios.

enormous quantity of Short Segments, which require more
routing time and add delay in the circuit.

On the other side, the Short Segments usage is high also
for the 8:1 implementation (the circuit is larger, and resources
are far from each other) and decreases for the 4:1 implemen-
tation.

This drop is due to the increased usage of shorter nets
that are not introducing routing congestion. In fact, when we
reduce further the circuit area, the number of Short Segments
increases, this time due to the effect of congestion. Further-
more, we can attribute the long execution time of the bigger
areas to the fact that the circuit is larger, nets are longer, and
more resources need to be used. So, when the circuit shrinks,
the time required to route it decreases. At the same time, as the
circuit has harder area constraints, the congestion increases,
requiring more resources and more time to be routed.

C. RECONFIGURABLE MODULES ALLOCATION/
DEALLOCATION AND SWAPPING
In general, a reconfigurable application exploits partial recon-
figuration for three main tasks: area efficiency, power saving
and reliability. In fact, the possibility to modify the content
of the module and to implement a different functionality
is useful to time-multiplex the area and to virtually have
more resources then the ones physically available. On the
other hand, the possibility to erase and eventually rewrite the
content of a portion of configuration memory allows to have
a system which power consumption scales with the payload,
and it is fully programmed only when the maximum effort
is needed. Additionally, as mentioned previously, with the
refresh of the configuration memory it is possible to avoid
or recover application failures. Except for the last purpose
where also unused frames should be refreshed, the capillary
reconfiguration can be used as strategy. In fact, whenmodules
are allocated if needed and deallocated if in idle to perform
power saving (e.g., [37], [38]), only the used frames are
involved in the reconfiguration. When different hardware
tasks need to be allocated in the same reconfigurable region
to perform space/time partitioning and area saving, the sit-
uation is different. If blanking configurations are not used,
the frames involved in the swap between two hardware tasks
in a given reconfigurable region are all those frames that are

FIGURE 15. Example of Frames overlapping in routing frames for one
Tiles column.

used in both designs, as shown in Figure 15. Since just the
frames left to zero in both designs can be excluded from the
procedure, smaller is the number of used frames, higher is the
probability that empty frames coincide.

In order to confirm this, we made an additional analysis on
the benchmarks to extend the evaluation to the case where,
besides being allocated or deallocated, a swap between two
designs must be performed in the same reconfigurable region.
To perform a fair analysis, we coupled them according to their
size and we made a comparison among the frames involved
in the reconfiguration for the two situations with standard and
FeDRA routing.

The results of this analysis are shown in Table 5. It is
possible to see that with the standard routing, when modules
swapping is required, a higher number of frames is consid-
ered. Anyway, when FeDRA optimization is applied, frame
saving is achieved also in this scenario. As it is possible to see
from the last column of Table 5, the frame saving goes from
more than 37.62% for smaller circuits, to the 32.05% for the
biggest, following the same trend of previous analysis.

TABLE 5. Frames involved for allocation/deallocation and Swapping of
benchmark hardware tasks with Standard and FeDRA routing.

D. DISCUSSION
The result obtained thanks to FeDRA optimization demon-
strates its efficiency. The link between programmable logic
and configuration memory is a key point for the optimiza-
tion of reconfigurable applications. This is generally true for
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FPGA designs, since the low-level awareness can be a power-
ful tool for implementing fine-grained optimization and relia-
bility techniques. In the reconfigurable scenario this becomes
evenmore crucial, considering that the configurationmemory
becomes part of the application itself. Unfortunately, the cur-
rent FPGA design trend goes in the direction of providing
higher abstraction to the users. The lack of information about
low-level resources organization from vendors makes chal-
lenging the development of efficient reconfigurable architec-
tures. Another problem is that the body of knowledge and
the tools for reconfigurable computing is scattered rather
than unified. The analysis we performed on the configuration
memory organization, bitstream encoding and its connection
to resources allowed us to have the intuition behind the key
idea of the proposed optimization. In fact, directly acting on
the frames we are able to play at a deeper level, having a
relevant reconfiguration time reduction without any apprecia-
ble impact on the programmable resource layer topology and
performance.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we discuss a novel approach to reduce the
reconfiguration time by reducing the number of configured
frames of the FPGA interconnection network. Experimental
results on a various set of benchmark circuits show an average
reduction of reconfiguration time of 35% with respect to the
traditional workflow, showing a negligible degradation even
for extremely large circuits, thigh area constraints and in the
case run time modules relocation.

As future work, we will perform evaluations for further
improving our algorithm: to investigate the effect of the
nets routing order on the frame saving; to make selective
optimizations with FeDRA, by living static nets and critical
paths routed by the vendor; and the possibility to cross-
correlate the routing of different circuits to further reduce the
reconfigured frames in the case of modules swapping in the
same reconfigurable region. Additionally, we plan to make a
comparison among standard and FeDRA approaches in terms
of power consumption of the rerouted nets. Finally, we are
currently studying the UltraScale Xilinx architecture, in order
to extend the FeDRA optimization to other FPGA families.
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