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ABSTRACT The cross-view multimedia are widely existed and attract many attentions in recent years.
Nevertheless, it is noted that the phenomenon, that data in different classes from same view are more similar
than that in same class from different views, is usually presented for cross-viewmultimedia data. The intrinsic
imperfection leads disappointing performance for cross-view multimedia recognition or classification.
To solve this problem, in this paper, we propose a novel discriminative learning framework with low-rank
constraint, which can be applied for view-invariant low-dimensional subspace learning. The advantages
of our framework include three aspects. Firstly, to unlock the latent class structure and view structure,
a self-expressed model by dual low-rank constraints are presented, which can separate the two manifold
structures in the learned subspace. Secondly, two effective discriminative graphs are constructed to guide
the affinity relationship of data in the above two low-dimensional projected subspaces respectively. Finally,
the joint semantic consensus constraint is designed to be integrated into the learning framework, which
can explore the shared and view-specific information for enforcing the view-invariant character in semantic
space. Experimental results on several public cross-view multimedia datasets demonstrate that our proposed
method outperforms existing excellent subspace learning approaches.

INDEX TERMS Multimedia analysis, multi-view discriminative analysis, cross-view feature learning, low-
rank representation.

I. INTRODUCTION
With the rapid development in the age of multimedia appli-
cations, data collected from different sensors usually have
diverse representations. Even if the data generated from same
sources while they can still represent different forms [1]–[7].
Therefore, data processing techniques become particularly
important in many areas, such as data transmission [8]–[12],
restoration [13],image fusion [14],and feature extrac-
tion [2]–[4], [15]–[19] and so on. In the real world, an object
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can be described under various conditions, including differ-
ent angles or illumination, multiple modals or descriptions,
etc [15], [16], [20]. Hence, cross-view data are frequently
seen and attract gradually considerable attentions in mul-
timedia data analysis [17]–[19]. Although multimedia data
from different views can providemore completed information
for object and promote discrimination ability in terms of
theory, it brings some challenges that the data from same
view but different classes are much more similar than that
within same class but across multiple views due to the large
divergence between views.Moreover, for the cross-view data,
large discrepancy about the contents of different views also
bring difficulties to their applications, e.g. an image obtained
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from certain angle may include some special parts, which are
invisible in other views.

Many methods have been proposed to solve the cross-
view feature learning in the past decades. One straightforward
approach is to re-measure the distance of the cross-view
samples by projecting them into an common space. The most
typical way is Canonical Correlation Analysis (CCA) [21],
of which primary purpose is to respectively learn two trans-
formation matrices of double views to discover a view-
invariant space by maximizing the correlation between two
projections onto cross-view samples. After that, for enhanc-
ing discriminative ability of the common space, Discriminant
Canonical Correlation Analysis (DCCA) [22] is put forward
by semantic constraint. However, both of these unsupervised
and supervised methods are only available to two-views data.
To overcome this problem, multi-view CCA [23], [24] and
Generalized Multi-view Analysis (GMA) [3] were proposed
to adapt to multi-view dataset. To further extend their appli-
cations, Multi-view Discrimination Analysis (MvDA) [25]
is proposed, which learns the multi-view discriminative sub-
space by using the consistency constraint of multiple linear
transformations.

Similarly, cross-modal data retrieval attracts many atten-
tions and have been widely used in the field of multimedia
analysis. Cross-modal data is isomorphic with cross-view
data. Each modality has individual distribution character,
so how to bridge the gap between different modalities is the
most important problem for cross-modal retrieval. There is
a way to fix up this difficulty by learning common latent
subspace between various modalities, such as Cross-modal
Factor analysis [26], generalized multi-view analysis [3]
and cross-modal learning matent representation [27]. These
methods realize the unsupervised learning in a pair-wise
way by projecting samples into the common subspaces.
When the semantic labels are available, a set of supervised
feature learning methods for cross-modal data have been
proposed, such as Supervised coupled-dictionary learning
with group structures for multi-modal retrieval [28], local
group based consistent feature learning [29] and adaptive
hierarchical semantic aggregation [30]. In addition, there
are some methods consider semi-supervised cross-modal
feature learning, which can solve the problem with part
of labeled data, such as generalized semi-supervised struc-
tured subspace learning [31], adaptive semi-supervised fea-
ture selection [32] and Robust graph-based semi-supervised
learning [33].

Recently, low-rank learning [34]–[42] widely catches
people’s eyes, which can explore the intrinsic latent struc-
tures of data. Low-Rank Representation (LRR) [34] adopt
low-rank constraint to find a novel data representation.
After that, Supervised Regularization-based Robust Sub-
space (SRRS) [35], [36] is proposed to present the class
label as the regularization term to learn a discriminative sub-
space, which puts the low-rank constraint and dimensionality
reduction into a unified learning framework. Most recently,

Low-Rank Embedding (LRE) [37] is put forward to learn
low-rank representation and embedding structure jointly.
In [40], structurally incoherent low-rank 2D locality pre-
serving projection (SILR-2DLPP) is proposed to learn the
projection subspace with the unconnected structure of data.
However, the above mentioned methods merely project high
dimensionality samples into a low dimensionality space,
but neglect the intertwined view and class latent structures
existed in cross-view data.

By contrast, we broaden the model and assume that
there are shared and specific information between differ-
ent view from the same class, which makes our approach
more suitable for describing cross-view multimedia data.
Based on mentioned considerations, we design a neo-
teric cross-view feature learning algorithm that named
Joint Cross-View Subspace Learning (JCSL) algorithm via
unlocking structures based on dual low-rank constraints
to find the discrimination common subspace. In gen-
eral, the main contributions of our proposed JCSL are as
follows:
• We use dual low-rank constraints to disassemble the
daedal structures underlying cross-view data into two
mutually independent structures that are class struc-
ture and view structure respectively. Hence, different
from the conventional methods, our proposed method
seeks two different low-dimensional manifold spaces for
the above two mixed structures, which will make the
learned subspace to separate class and view structures
effectively.

• We set up an unlocking mechanism to particularly
describe class structure and view structure by designing
two graphs to guide the neighbor relationships among
each pair of samples. The discrimination unlocking
makes two potential structures work by minimizing
within-class data from between-view and maximizing
between-class data from same view.

• We develop a joint discriminative semantic consensus
constraint for cross-view data alignment, which can
explore their shared and view-specific structures so that
our framework can capture the hidden concordant prop-
erty from different views, and be more adaptive to clas-
sification task.

The rest of this paper are organized as follows. We briefly
introduce some of the techniques involved in our framework
in Section II. In Section III, the proposed cross-view fea-
ture learning algorithm and its theoretical knowledge and
optimization scheme are presented. Experimental setting and
results, parameters analysis are provided in Section IV. In the
end, the summarization is reached in Section V.

II. RELATED WORKS
Our work involves two kinds of related techniques: 1) low-
rank decomposition and 2) linear regression to serve as the
basis of our proposed framework. Next, the two related works
will be briefly introduced as follows.
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A. LOW-RANK REPRESENTATION BASED
SUBSPACE LEARNING
LRR seeks a simple and efficient robust subspace to fit noisy
and damaged data [43]. Assuming X = [X1,X2, . . . Xk ] is
a matrix including samples from k subspaces, which can be
composed of a linear combination of atoms in dictionary and
sparse noise matrix. Specially, we use X itself as dictionary,
the LRR can be modeled by

min
Z ,E
‖Z‖∗ + λ ‖E‖1

s.t.X = XZ + E

where Z is the low-rank representation matrix. ‖·‖∗ denotes
the nuclear norm of matrix, which can be seen as a good
surrogate for lank minimization and used to constrain the
rank of Z . The noisy data E is sparse generally, which can
be handled by l1-norm constraint. λ is the balanced parameter
between linear representation and noise. LRR use a rank min-
imized matrix to build a linear subspace to uncover the latent
structures hidden in data, which is feasible for most simple
data. However, it may failed for cross-view data in realistic
world due to their complicated and changeable structures.

For cross-view data, the samples will present a particular
phenomenon that the samples between different view of same
class are far away, while ones from different categories but the
same view are closer. To address this problem, we hope to
establish two subspaces for class and view structures respec-
tively, which can characterize the two potential structures
among the cross-view data. In addition, we have designed an
unlocking-structure mechanism to make the data within-class
more closer by ignoring the view influence, and achieve better
results.

B. LINEAR REGRESSION
Assuming that there is a data matrix X = [X1,X2, . . . Xm]
with m samples, whose column is an n-dimensional feature
vector. Also, Y = [Y1,Y2, . . . Ym] denotes its corresponding
expected output matrix. Linear regression aims to find a
parameter matrixW to map the data to expected output space,
and the relationship between data and their outputs can be
well established by W . Specially, for the classification task,
the label can be used as the expected output to construct the
regression loss function as follows.

min
W
‖Y −WX‖22

Although the linear regression is uncomplicated, its
extended versions are quite rich. Many extended nonlinear
models can also be obtained by introducing hierarchical
structures or high-dimensional mappings based on linear
models. In many supervised learning, linear regression model
is also adopted as empirical risk function and prediction
knowledge by semantic constraint frameworks.

Nevertheless, for the cross-view data, the conventional
regression model cannot explore the complicated latent struc-
tures within semantic space due to their distribution discrep-
ancy. For this reason, we propose an joint learning scenario

that enable the view-shared structure and view-special struc-
ture within semantic space to be revealed, which can be
used to give more reasonable guidance to feature learning for
cross-view data.

III. CROSS-VIEW FEATURE LEARNING
In this section, we give a detailed discussion on our neo-
teric cross-view feature learning framework, which is based
on robust low-rank constraint. Then, an feasible solution is
developed through iterative scheme.

A. NOTATIONS
Assuming that there is cross-view data X = [X1,X2] consist-
ing of two views. The ith view Xi ∈ Rd×mi is from L different
classes, where d is the dimensionality of training data and
mi is the number of the samples belonging to the ith view
(m =

∑
i mi). We construct two graphs to learn two cross-

view subspaces that are class structure matrix Zc ∈ Rm×m

and view structure matrix Zv ∈ Rm×m. Furthermore, we use
the error matrix E ∈ Rp×m to fit the representation residual.
P ∈ Rd×p is the learned projection feature subspace,
where p is dimensionality of common subspace. In addition,
we design three regression parameter matricesW0,W1,W2 ∈

Rp×L , where L is the number of classes for different cat-
egories of sample data, to explore the shared and specific
information from semantic space.

B. OBJECTIVE FUNCTION
We design a cross-view feature learning framework though
unlocking class and view subspace structures with low-rank
constraint, of which the model can be formulated as follows:

min
P,Zc,Zv,E,
W0,W1,W2

D(Zc,Zv,E)+ α0(P,Zc,Zv)

+ J (W0, {Wm},P, {Xm}, {Ym})

+ R(W0, {Wm})

s.t. PTX = PTX (Zc + Zv)+ E,

PTP = I ,m = 1, 2 (1)

where the first term D(Zc,Zv,E) is the dual structure rep-
resentations for the cross-view data based on low-rank
constraints. The second term 0(P,Zc,Zv) is the discrim-
ination unlocking term, ensuring that samples from same
class close to each other, while the ones from the differ-
ent classes but within same view far away. The third term
J (W0, {Wm},P, {Xm}, {Ym}) explores the joint information
within the semantic space. The last term R(W0, {Wm}) elimi-
nates the trivial solution.
Dual Low-Rank Constraint: Generally, we use a low-rank

representation matrix to approximate the internal structure
of samples. However, the samples from different views but
within same class have large divergence due to these two
interlaced structures. On the contrary, the samples from same
view but different classes are more similar due to the latent
connection from view structure. The relationship of these two
significant structures are shown in Figure 1. Hence, we adopt
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FIGURE 1. Cross-view data with two significant structures.

class structure matrix Zc and view structure matrix Zv as
two individual subspaces to capture the intrinsic cross-view
underlying subspace structures. Thus, we define the first term
as follows:

D(Zc,Zv,E) = ‖Zc‖∗ + ‖Zv‖∗ + λ ‖E‖1 (2)

where we use the nuclear norm and l1-norm to constraint the
low-rank representations of two independent structures and
the sparsity of the error matrix E , respectively. λ is a positive
parameter to balance them.
Discrimination Unlocking Structure:We have established

a framework with dual structure for cross-view data above.
Nevertheless, it is difficult to estimate underlying informa-
tion for cross-view structures. So, we define two supervised
unlocking regularizers to cluster within-class samples and
decentralize between-class samples as follows:

0c =
∑

i,j
(Yc,i − Yc,j)2V c

i,j

0v =
∑

i,j
(Yv,i − Yv,j)2V v

i,j (3)

where Yc,i and Yc,j are the ith and jth columns of the pro-
jection matrix for class structure as Yc = PTXZc ∈ Rp×m .
Correspondingly, Yv,i and Yv,j are the ith and jth columns of
the projection matrix from view structure as Yv = PTXZv ∈
Rp×m. V c

i,j and V
v
i,j represent two weight matrices of these two

supervised regular terms, which are defined as follows:

V c
i,j =

{
1, if xi ∈ N c

k1
(xj), and li = lj,

0, othervise

V v
i,j =

{
1, if xi ∈ N v

k2
(xj), but li 6= lj,

0, othervise
(4)

where li and lj are the labels of sample xi, xj, respectively. xi ∈
N c
k1
(xj) denotes that xi is k1 nearest neighbor of data xj within

the same class. xi ∈ N v
k2
(xj) means that xi is the k2 nearest

neighbor of the same view data xj. We use two regularizers
by the linear discrimination analysis to implement unlocking
between the dual structures, and construct the the following
term based on Fisher criterion.

0(P,Zc,Zv) = tr(PTXZcLc(PTXZc)T )

−tr(PTXZvLv(PTXZv)T ) (5)

FIGURE 2. Representation for view and class respectively.

where Lc and Lv are the Laplacian matrices of V c and V v.
In addition, the orthogonal constraint PTP = I is imposed
to eliminate the trivial solution and reduce the redundancy.
In this way, two interleaved structures hidden in cross-view
data can be unlocked as shown in Figure 2. Hence, by means
of discrimination unlocking term, we can get a common
subspace in which the within-class data, regardless of their
views, are closer while between-class data in the same view
are far away from each other.
Joint Learning Constraint: It is noted that the regression

within semantic space, which is helpful to earn more discrim-
inant, can be used to guide the feature learning. Nevertheless,
different from single view data, the between-view shared and
view-specific information are both existed within the seman-
tic space for cross-view data. So, a special regression scheme
that explores the shared and view-specific structures simulta-
neously is expected to give better feedback guidance to cross-
view feature learning. To address this problem, we formulate
joint learning term in cross-view data in order to reconstitute
the feature subspace to capture the view-shared and view-
specific structures, with the principles illustrated in Figure 3.
Hence, we define the J (W0, {Wm},P, {Xm}, {Ym}) term as:

J (W0, {Wm},P, {Xm}, {Ym})

=

∥∥∥(W0 +W1)TPTX1 − Y1
∥∥∥2
F

+

∥∥∥(W0 +W2)TPTX2 − Y2
∥∥∥2
F

(6)

where Yi =
[
Y 1,Y 2, . . . ,Ymi

]
is a label matrix for training

samples in ith view. If jth sample belong to the kth category,
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FIGURE 3. Joint shared and view-special structures learning: W0 and Wi (i = 1, 2) are jointly optimized to explore
the shared and view-specific structures within semantic space, which can lead to a more effective and discriminative
cross-view feature learning.

the kth element of Y j is equal to L−1 while others to be−1 as
Y j = [−1,−1, . . . ,L − 1, . . . ,−1]T ∈ RL . We use a weight
matrixW0 to quantify the view-shared structure that is owned
jointly by all views. Furthermore, the weight matricesW1,W2
are used to elicit the view-specific components. In this way,
the view-shared and view-specific structures can adapt to
various kinds of cross-view data more effectively.
Regularization Constraints: The last term is the regulariza-

tion term as follows:

R(W0, {Wm}) = ε ‖W1‖
2
F + ε ‖W2‖

2
F + γ ‖W0‖

2
F (7)

where ε and γ are the positive parameters to balance the reg-
ularization terms. In addition, the Frobenius norm used here
aims to prevent the overfitting and enhance the generalization
of our model.

In the end, we substitute all the terms into the comprehen-
sive objective function, which can be written as:

min
P,Zc,Zv,E,
W0,W1,W2

∥∥∥(W0 +W1)TPTX1 − Y1
∥∥∥2
F
+ ε ‖W1‖

2
F

+

∥∥∥(W0 +W2)TPTX2 − Y2
∥∥∥2
F
+ ε ‖W2‖

2
F

+ γ ‖W0‖
2
F + ‖Zc‖∗ + ‖Zv‖∗ + λ ‖E‖1

+ α0(P,Zc,Zv)

s.t. PTX = PTX (Zc + Zv)+ E,PTP = I (8)

C. OPTIMIZATION
To solve Eq.(8), we introduce an auxiliary matrix M and
rewrite it as the following form:

min
P,Zc,Zv,E,

M ,W0,W1,W2

∥∥∥(W0 +W1)TMTX1 − Y1
∥∥∥2
F
+ ε ‖W1‖

2
F

+

∥∥∥(W0 +W2)TMTX2 − Y2
∥∥∥2
F
+ ε ‖W2‖

2
F

+ γ ‖W0‖
2
F + ‖Zc‖∗ + ‖Zv‖∗ + λ ‖E‖1

+ α0(P,Zc,Zv)

s.t. PTX = PTX (Zc + Zv)+ E,

PTP = I ,MTM = I ,P = M (9)

The above minimization is an nonconvex problem with
the multi-variable, which is difficult to be solved directly.
So, we develop an alternating numerical scheme to solve
each variable iteratively. Firstly, we transform Eq.(9) to the
following augmented Lagrangian function:

min
P,Zc,Zv,E,Q

M ,W0,W1,W2

∥∥∥(W0 +W1)TMTX1 − Y1
∥∥∥2
F
+ ε ‖W1‖

2
F

+

∥∥∥(W0 +W2)TMTX2 − Y2
∥∥∥2
F
+ ε ‖W2‖

2
F

+ γ ‖W0‖
2
F + ‖Zc‖∗ + ‖Zv‖∗ + λ ‖E‖1

+ < Q,PTX − PTX (Zc + Zv)− E >

+
µ

2

∥∥∥PTX − PTX (Zc + Zv)− E∥∥∥2
F

+ α0(P,Zc,Zv)+ β ‖P−M‖2F (10)

where Q is the Lagrange multiplier and µ, β are the penalty
parameters. <,> denotes the inner product operator of two
matrices. Then, by merging some terms, the function in
(10) is rewritten to a new form with a quadratic term as
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follows:

min
P,Zc,Zv,E,Q
M ,W0,W1,W2

∥∥∥(W0 +W1)TMTX1 − Y1
∥∥∥2
F
+ ε ‖W1‖

2
F

+

∥∥∥(W0 +W2)TMTX2 − Y2
∥∥∥2
F
+ ε ‖W2‖

2
F

+ γ ‖W0‖
2
F + ‖Zc‖∗ + ‖Zv‖∗ + λ ‖E‖1

+ η(P,Zc,Zv,E,Q, µ)−
1
µ
‖Q‖2F

+ β ‖P−M‖2F (11)

where η(P,Zc,Zv,E,Q, µ) = α0(P,Zc,Zv) +
µ
2

∥∥PTX−
PTX (Zc + Zv)− E +

Q
µ

∥∥∥2
F
. Obviously, the variables P,Zc,

Zv,M ,W0,W1,W2 and E cannot be addressed simultane-
ously, but they are solvable individually when fixing other
ones. To solve each sub-problem, η is approximated by the
first order Taylor expansion. Taking t as the iterative step,
then each sub-problem for each variable can be formulated
as follows:

Updating Zc:

min
Zc

1
µρ
‖Zc‖∗ +

1
2

∥∥Zc − Zc,t +∇Zcη∥∥2F (12)

where ∇Zcη = 2αXTPtPTt XZc,tLc − QTt P
T
t X −

µXTPt (PTt X − PTt X (Zc,t + Zv,t ) − Et ) and ρ =
∥∥PTt X∥∥22.

It is noted that the Eq.(12) is a nuclear-norm minimization
problem, which can be addressed by singular value decom-
position effectively [44].

Updating Zv:

min
Zv

1
µρ
‖Zv‖∗ +

1
2

∥∥Zv − Zv,t +∇Zvη∥∥2F (13)

where ∇Zcη = −2αXTPtPTt XZv,tLv − QTt P
T
t X −

µXTPt (PTt X −P
T
t X (Zc,t+1+ Zv,t )−Et ). Similar to Eq.(12),

Eq.(13) can be solved in the same way.
Updating E :

min
E

1
2

∥∥∥∥E − (PTt (X − X (Zc,t+1 + Zv,t+1))+
Qt
µ
)

∥∥∥∥2
F

+
λ

µ
‖E‖1 (14)

The above equation is a standard element-wise l1-norm
minimization problem, which can be solved by thresholding
shrinkage algorithm directly [45].

Enforcing the derived function to be zero, P can be updated
by

Pt+1 = (2αXZnXT + µXnXTn )
−1(βM + Xn(E − Q/µ)T )

(15)

where we define Zn = Zc,t+1LcZTc,t+1 − Zv,t+1LvZTv,t+1 and
Xn = X − X (Zc,t+1 + Zv,t+1) for simplicity.

Algorithm 1
Input: data matrices X1,X2,Y1,Y2,parameters λ,α,ε,γ ,Lc,Lv
Initialize: E0 = 0, θ = 10−6, β = 1,ψ = 1.1, µ = 0.1,

µmax = 106, tmax = 102, t = 0;
while not converged or t ≤ tmax do
1. Optimize Zc,t+1 in Eq.(12);
2. Optimize Zv,t+1 in Eq.(13);
3. Optimize Et+1 in Eq.(14);
4. Optimize Pt+1 in Eq.(15);
5. OptimizeMt+1 in Eq.(16);
6. OptimizeW0,t+1 in Eq.(17);
7. OptimizeW1,t+1 in Eq.(18);
8. OptimizeW2,t+1 in Eq.(19);
9. Pt+1← orthogonal(Pt+1);
10. Optimize the multiplier Qt+1 by
Qt+1 = Qt + µ(PTt+1(X − X (Zc,t+1 + Zv,t+1))− Et+1)

11. Update the parameter µ by µ = min(µmax , ψµ);
12. Check convergence by∥∥PTt+1(X − X (Zc,t+1 + Zv,t+1))− Et+1∥∥∞ < θ ;
13. t = t + 1.
end while
Output: Zc,Zv,E,P,M ,W0,W1,W2

UpdatingM :

min
M

∥∥∥(W0 +W1)TMTX1 − Y1
∥∥∥2
F

+

∥∥∥(W0 +W2)TMTX2 − Y2
∥∥∥2
F
+ β ‖P−M‖2F

s.t. MTM = I (16)

It is difficult to solve the problem(16) with non-convex
constraints directly on Eucildean space. We use a gradient-
based approach to optimize the problem on the Stiefel
manifold [46].
UpdatingW0:

W0,t+1 = (MTX1XT1 M +M
TX2XT2 M + εI )

−1

×(MTX1(Y T1 − X
T
1 MW1)

+MTX2(Y T2 − X
T
2 MW2)) (17)

UpdatingW1:

W1,t+1 = (MTX1XT1 M + εI )
−1MTX1(Y T1 − X

T
1 MW0)

(18)

UpdatingW2:

W2,t+1 = (MTX2XT2 M + εI )
−1MTX2(Y T2 − X

T
2 MW0)

(19)

In the end, we summarize the detailed optimization for
problem (11) in Algorithm 1, in which we set those param-
eters µ,µmax , θ, ψ, tmax empirically and tune them through
the experiments.
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FIGURE 4. Average recognition rates of comparison methods on the
Wikipedia dataset.

FIGURE 5. Parameters analysis of our proposed method on CMU-PIE
faces Case8(a,b) and COIL-100 Case1(c,d), where the value from -4 to
4 denotes

[
10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104,

]
.

D. COMPLEXITY ANALYSIS
In this section, we would analyze the computational com-
plexity of our proposed algorithm. In Algorithm 1, the most
complicated iteration are steps 1,2 and 4-8. The compu-
tational complexity of the SVD decomposition applied in
steps 1 and 2 is O(n3). Since the matrices Zc and Zv are two
low-rank matrices, the cost is reduced to O(rn2), in which
r is the rank of the low-rank matrix and n is the number
of samples. The computational complexity of an inverse
operation for an mth order matrix is O(m3). Therefore, step
4 and 5 will cost O(d3), where d is the dimensionality of
each sample.Steps 6-8 are just the matrix multiplication with
O(p3), where p is dimensionality of learned feature subspace.
In fact, r and p are far less than d . Hence, the compre-
hensive computational complexity of the proposed algorithm
is O(d3).

IV. EXPERIMENTS
In this section, we firstly introduce the four multimedia
datasets used in our experiments. Then, we figure the experi-
ment settings. We compared our proposed method to several
existing excellent feature learning methods. The classifica-
tion experiments are tested on the learned features of com-
parison methods. We select fifty percentage of the dataset
as the training set, and the testing set includes the rest of
data. All the unknown matrices in Algorithm 1 are initialized
randomly. The parameters are empirically set to obtain the
best performance and their analysis can be found in Figure 5.

Furthermore, each experiment are conducted 5 times and the
average performance evaluations are reported to show the
advantages of our proposed method.

A. DATASETS AND EXPERIMENTAL SETTING
Extended YaleB face database consists of 16128 images,
including 64 images in different illumination conditions and
9 postures.We crop the face images to 32×32.We divide each
person’s images into four poses P1,P2,P3,P4 in experiments,
which are approximately positive, so that the samples can be
more relevant to our experiments. We further partition each
two poses into one group, where V1[P1,P2] and V2[P3,P4].

CMU-PIE face database contains 68 different persons,
and each subject has 9 different poses with 21 different illumi-
nation variations. We adopt samples from 5 poses, including
P05, P09, P14, P27, P29. We select different classes of poses
to constitute different pairs of training and testing set, and
crop the face images to 64× 64.

COIL-100 object database includes 100 objects, a total
of 7200 images. Each object obtained 72 images that are
caught with 5 degree rotation. The object images are cropped
to 32 × 32 and divided into two subsets as ‘C1‘ and ‘C2‘.
In addition, C1 contains the images in two point of view
V1[0◦, 85◦] and V2[185◦, 265◦]. Similarly, C2 obtains the
images in V3[90◦, 175◦] and V4[270◦, 355◦].
Wikipedia dataset consists of 10 semantic categories

with 2866 image-text pairs. Each pair of samples con-
tains an image feature with a dimension of 4096 and a
100-dimensional text feature. Due to the inconsistency of
image features and text features in the database, we adopt
PCA to reduce the dimensionality of the image feature to
match text feature.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In comparison experiments, we primarily select some
existing excellent feature learning algorithms, which are
PCA [47], LDA [48], LPP [49], LatLRR [50], SRRS [36],
LRCS [51], and Robust multi-view subspace learning
(RMSL) [52]. Among them, PCA, LPP, LatLRR and LRCS
belong to the unsupervised learning; while LDA, SRRS,
RMSL, and the proposed method are supervised learning.
The k-Nearest Neighbor Classifier is a simple and classi-
cal classification algorithm. We use the kNN classifier for
performance evaluation of the extracted feature by compar-
ison methods. For CMU-PIE faces with 5 poses, we divide
each two poses into same group, where Case1:{P05,P09},
Case2:{P05,P14}, Case3:{P05,P27}, Case4:{P05,P29},
Case5:{P09,P14}, Case6:{P09,P27}, Case7:{P09,P29},
Case8:{P14,P27}, Case9:{P14,P29}, Case10:{P27,P29}.
The results of comparison methods on CMU-PIE are shown
in Tables 1 and 2. For extended YaleB faces, we select
one from V1 and one from V2 as training set from each
set of perspectives, and another perspective as a test set.
There are four experimental groups to evaluate the perfor-
mance of all experimental methods, as shown in Table 3.
For COIL-100 objects, our experimental setup is similar to
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TABLE 1. Average recognition rates (%) of comparison methods on the CMU-PIE face dataset (Case1-5).

TABLE 2. Average recognition rates (%) of comparison methods on the CMU-PIE face dataset (Case6-10).

TABLE 3. Average recognition rates (%) of comparison methods on the extended YaleB face dataset.

TABLE 4. Average recognition rates (%) of comparison methods on the COIL-100 object dataset.

extended YaleB faces. The evaluation results of the com-
parison methods are shown in Table 4. Then, we take the
image feature as the first view and text feature as the second
view.

From the recognition rates (Tables 1,2,3,4 and Figure 4),
we can conclude that the learned feature subspace by our
proposed method is more effective than that of other com-
parison ones for classification task. Moreover, performance
based on low-rank algorithm is generally better than others
due to exploring latent subspace structures.

C. PROPERTY EVALUATION
In this part, we will test the influences of the parameters and
feature dimensionality, selected in the experiments, on the
performance.

Our framework has four parametersλ, α, ε, γ . We evaluate
them respectively on CMU-PIE faces Case8 and COIL-100
Case1. Generally, we upgrade one parameter while fixing
other parameters. However, considering different values of
four parameters is too complicated. To simplify, we only
upgrade two parameters ε and γ (λ and α) while fixing the
other two parameters λ and α (ε and γ ). The reason we set
the parameter group in this way is that parameters ε and γ
both belong to the joint learning structures that can learn the
shared information and view-specific information of cross-
view data, while parameters λ and α belong to the dual low-
rank discriminative unlocking structures. The experimental
results are shown in Figure 5. From Figure 5, we can see that
the classification results are hardly sensitive to λ, ε, γ . For the
parameterα, the classification rate presents small fluctuations
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FIGURE 6. Classification rates of different dimensionality on CMU-PIE
faces Case8 and Extend YaleB faces Case1.

in a narrow range. We can obtain almost consistent classifi-
cation results in a wide range. The results point out that the
proposed method is nearly stable with different parameters
selection.

Afterwards, we evaluate the dimensionality influence of
our method in CMU-PIE faces Case8 and Extend YaleB
faces Case1, and the Figure 6 shows the evaluation results.
The results show that the performance is not sensitive to
the dimensions. For the CMU-PIE faces Case8, classifica-
tion performance increases slightly when the dimensional-
ity goes up. Performance reaches the highest around 300.
In the Extend YaleB faces Case1, classification performance
decrease slightly with dimensionality increasing.

V. CONCLUSION
To solve the cross-view multimedia data recognition and
classification problems, this paper provides a cross-view dis-
criminative subspace learningmethod based on low-rank con-
straint for feature learning of multimedia data. The proposed
framework learns projection subspace by seeking two mani-
fold fields with dual low-rank representations, which can be
used to unlock the class and view structures. To further align
the cross-view data, a discriminative joint regression con-
straint is designed in semantic space. Our method seamlessly
put the representation and semantic alignment into a unified
framework. Meanwhile, the numerical scheme is developed
to guarantee the convergence. The parameters presented in
the proposed framework are also analyzed in detail. We test
our method on four kinds of multimedia datasets, and find
that it outperforms other conventional comparison methods
and achieves competitive performance.
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