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ABSTRACT Detection of mitotic tumor cells per tissue area is one of the critical markers of breast cancer
prognosis. The aim of this paper is to develop a method for the automatic detection of mitotic figures from
breast cancer histological slides using a partially supervised deep learning framework. Unlike the previous
literature, which has focused on solving the problem of mitosis detection in the weakly annotated datasets
using centroid pixel labels (weak labels) only without taking advantage of the available pixel-level labels
(strong labels) of other datasets, in this paper, we design a novel partially supervised framework based on
two parallel deep fully convolutional networks. One of them is trained using weak labels and the other is
trained using strong labels, together with a weight transfer function. In the detection phase, we fuse the
segmentation maps produced by the two networks to obtain the final mitosis detections. Our system exploits
the available large sets of mitosis detection samples with mitosis centroid annotation, such as the 2014 ICPR
dataset and the AMIDA 13 dataset, and only a small set of samples with the annotation of all mitosis pixels,
such as the 2012 ICPR dataset, to perform a more accurate mitosis detection on weakly labeled data. This
enables us to outperform all previous mitosis detection systems by achieving F'-scores of 0.575 and 0.698 on
the 2014 ICPR dataset and the AMIDA13 dataset respectively.

INDEX TERMS Mitosis detection, partially supervised learning, breast cancer grading, fully convolutional

network, transfer learning.

I. INTRODUCTION

The most recommended breast cancer grading system by the
World Health Organization (WHO), is the Nottingham grad-
ing system [1]. It involves three biomarkers: tubule formation,
nuclear pleomorphism score, and mitosis (i.e., cell in the
process of nuclear division) counting. Because the spread of
cancer is highly related to cellular divisions, detecting the
mitotic cells in histopathology images and counting them is
the most important indicator for assessing the risk of metasta-
sis. Clinically, the breast biopsied tissue specimens are fixed
by paraffin and stained with Hematoxylin and Eosin (H&E)
dyes. After acquiring the images of these stained blocks,
histology slide images are obtained. In general, pathology
experts manually mark the mitotic cells on High Power Fields
(HPFs), which are microscopic observations with 40x magni-
fication. However, the manual annotation of mitoses is a very
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time-consuming task since a single Whole Slide Image (WSI)
may contain a large number of HPFs. Besides, due to the
high biological variation of mitotic cells, manual detection
is usually prone to error. Therefore, automating this process
is extremely essential for reducing the time spent annotat-
ing and the labour employed in pathology laboratories. The
detection of mitoses from histological stained slides is quite
challenging. In fact, the configurations of the shape and
texture of the cells in the different growth stages of mitosis
(prophase, metaphase, anaphase, and telophase) are varied.
For instance, in the telophase stage, a nucleus has two distinct
parts that have to be considered as one cell since they are
not yet fully divided. Besides, there are many mimic cells
(such as lymphocytes, apoptotic cells, dense nuclei) which are
extremely similar to mitoses in appearance, making it hard for
the detection process to deal with false positives. Moreover,
there is a diversity of tissue appearance in histopathology
slides, due to the different conditions of preparation and
acquisition.
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In recent years, many mitosis detection contests have been
organized, including the 2012 ICPR MITOSIS contest [2],
the 2014 ICPR MITOSIS-ATYPIA challenge [3] and the
AMIDA13 contest [4]. Thus, many publications have been
dedicated to solving the problem of mitosis detection from
H&E stained images.

The early proposed approaches [5]-[12] use manually
designed features, such as morphological, statistical and tex-
tural features to describe the mitosis appearance. However,
because of the diversity of the shapes of the mitosis and the
high similarity between mitotic and non-mitotic cells, it is
very arduous to define hand-crafted features that can well
discriminate mitoses from mimics.

Another category of features used to address this medical
problem is the category of convolutional features [13]-[22].
The advantage of features based on Convolutional Neural
Networks (CNNGs) is their ability to capture automatically
the characteristics of the appearance of mitotic cells. Current
approaches based on CNNss typically address the problem of
mitosis detection in two different ways: (1) Fully supervised.
E.g., [16] propose detecting mitotic cells using a deep regres-
sion network based on a Fully Convolutional Network (FCN).
A local maximum of the output score map is considered
to be the centroid of a mitosis. [20] apply the region-based
deep detection network Faster RCNN for mitosis detection.
The detected mitosis candidates are further classified using
a deep verification network to improve the system’s per-
formance. The principal drawback of these methods is that
they require full supervision, which is expensive since the
annotation of every mitotic pixel in the HPFs is very labour
intensive. In contrast, mitosis centroids are much easier to
mark, which is why the weakly annotated data is more abun-
dant. (2) Weakly supervised. E.g., [20] propose a solution
to address the problem of training their region-based deep
detection network in a weakly supervised way, by estimating
the mitosis bounding box labels for the weakly annotated
dataset using an FCN as a deep segmentation network. The
drawback of this method is that the FCN fails to generate
reliable bounding box annotations, which reduces the perfor-
mance of the detector by introducing inaccurate supervision
during the training. Reference [22] consider the problem
of mitosis counting as a semantic segmentation task. Since
the training of a semantic segmentation network such as an
FCN requires pixel-level annotations, to deal with mitosis
centroid-pixel labels, they introduce a novel kind of anno-
tation, referred to as the concentric label. Associated with
this weak label, a weak loss function, referred to as the
concentric loss, is also defined. This method achieves state-
of-the-art performance on the 2014 ICPR MITOSIS dataset
and the AMIDA13 dataset with F-scores of 0.562 and 0.672
respectively.

With the availability of two different types of annotations
in mitosis benchmarks, centroid-pixel annotations and pixel-
level annotations, a key question can be raised: Is it pos-
sible to train a mitosis detection model using both strong
and weak labels? With this motivation, in the present paper
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we introduce a novel method based on partially supervised
semantic segmentation for mitosis detection from histopatho-
logical slide images.

We formulate the partially supervised semantic segmenta-
tion in the mitosis detection task as follows: there are given
two types of datasets, one dataset with the annotation of
all pixels of each mitosis, and the other dataset with the
annotation of only the mitosis centroid pixels. Our mitosis
detection algorithm should use this data to train a framework
with two parallel semantic segmentation networks: the first
using the data with weak labels (like the centroid labels),
and the second using the data with pixel-level labels. These
two networks are connected via a transfer weight function
that enables the transfer of semantic information from the
segmentation network trained with weak labels to the seg-
mentation network trained with strong labels, and thus tackle
the problem of training the strong segmentation network on
a dataset without pixel-level annotations. The idea of using
a weight transfer function as a kind of transfer learning
technique was first introduced in [23] to train the instance
segmentation network Mask R-CNN on a large set of classes
that all have box annotations but only a small subset of which
have instance masks.

The intuition behind this weight transfer function in our
partially supervised mitosis detection framework is that once
the model is trained, the parameters of the weak segmentation
head encode an embedding of the image semantic segmen-
tation but in a coarse way, since this part of the model is
trained with weak labels. This embedding allows the transfer
of coarse semantic information to the partially supervised
pixel-wise segmentation head, which can segment the image
in a finer way. This weight function is trained with the
two segmentation networks in an end-to-end way. Since the
training set comprises a large set of samples that all have
weak annotations (centroid labels) but only a small subset
of which have pixel-level labels (strong annotations), this
task is considered as partially supervised. The final detection
results are the weighted sum of the weak segmentation branch
predictions and the strong segmentation branch predictions.

The major advantage of designing a partially supervised
mitosis detection model is to exploit both types of available
datasets, namely the datasets with pixel-level annotations,
such as the 2012 ICPR MITOSIS dataset, for which we can
also generate centroid annotations, and the datasets with only
mitosis centroid-pixel annotations, such as the 2014 ICPR
MITOSIS dataset and the AMIDA13 dataset.

To sum up, the present paper make three contributions:
(1) We design a novel mitosis detection system that can be
trained in a partially supervised way with a large weakly
annotated mitosis dataset and a small fully labeled mitosis
dataset and can achieve a highly accurate detection perfor-
mance. As far as we know, this is the first paper that employs
partially supervised learning to train a deep learning frame-
work based on semantic segmentation for the more accurate
detection of mitotic cells from weakly annotated datasets by
taking advantage of the few available fully annotated mitosis
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image samples. (2) We integrate a simple, easy to train weight
transfer function into our system that allows the transfer of
semantic knowledge from the semantic segmentation branch
trained with weak labels to the semantic segmentation branch
trained with strong labels. (3) We evaluate our method on sev-
eral mitosis datasets that are provided by various pathology
laboratories and conclude that our approach yields state-of-
the-art detection performance on all of these benchmarks.

The rest of this paper is structured around 4 sections:
Section. II presents the related literature. The proposed
approach, as well as the description of the datasets used, are
presented in Section. III. The experiments and results are
presented in Section. IV. Some conclusions and perspectives
for future research are presented in Section. V.

Il. RELATED WORK

Following the adoption of scanners for WSI on microscope
stained sections, much research on the automatic detection
of mitoses from histopathological slides has been carried
out. In terms of image features, mitosis detection approaches
can be divided into two types: methods that employ hand-
crafted features and methods that use Convolutional Network
(ConvNet) features.

Hand-crafted based approaches were the first methods
employed to tackle this medical problem [5]-[12]. These
methods usually classify the mitosis candidates using dif-
ferent manually extracted features, such as morphological,
textural, and statistical features. However, since the mitoses
have varied shapes and textures, it is hard to manually define
features that can effectively represent the mitotic cells.

The world of computer vision has been reborn since the
introduction of convolutional neural networks by [24]. Meth-
ods based on CNNs have achieved state-of-the-art perfor-
mance in many tasks, such as image classification [25]-[30],
object detection [31]-[35], and semantic segmentation
[36], [37]. In recent years, the field of medical image analysis
has attracted the attention of many researchers [38]-[42].
Hence, several approaches based on deep CNNs have been
proposed to tackle different medical tasks, for instance [41]
develop a ConvNet based system for the classification
of malignant and benign cells in breast cytology images,
while [42] propose a two-stream attention based framework
for organ segmentation. CNN based approaches are the other
type of methods used to address the problem of detecting
mitoses from histology images [13]-[22]. Reference [13]
employ both hand-crafted and convolutional features to make
the mitosis detection system more effective. Reference [14]
propose a cascaded system that generates mitosis candidate
patches and then classifies them using two separate classi-
fiers, one based on hand-crafted features and the other one on
CNN features. For those candidate patches that are difficult
to classify, another classifier that combines both hand-crafted
features and convolutional features is applied. IDSIA [15]
train a deep neural network to classify image patches into
mitosis and non-mitosis. However, at inference time, since
the trained classifier is a pixel-classifier, it is applied using
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a sliding window, which makes the system computationally
intensive. DRN [16] train a deep regression network built on
FCN for mitosis detection. In the detection stage, the location
of the centroid of the mitosis is inferred to be the local
maximum. Though this method yields excellent performance
in the fully annotated 2012 ICPR MITOSIS dataset, it can
not be applied to a dataset without pixel-level annotations.
CasNN [17] adopt a cascaded detection system that contains
two CNNs. The first network is an FCN used to coarsely
locate and retrieve the mitosis candidates. The second net-
work is a classification network used to classify the candidate
patches and screen out the mitosis’ mimics. The drawback
of this method is that its two networks are trained separately,
which may be an impediment to the integration of the system.
MFF-CNN [18] design a multi-scale fused CNN for mitosis
detection. The model comprises two multi-scale branches that
fuse features across different layers. The final detection is
obtaining by combining the predictions of the two branches.
In the training stage, the training samples, comprising mitotic
and non-mitotic patches, are selected from the blue ratio
images. In the detection stage, the trained model is converted
to an FCN to detect the mitotic cells directly from the HPF
image. MSSN [19] employ a two-stage deep learning frame-
work for mitosis detection. In the first stage, a False Nega-
tive Reduction Model (FNRM) comprising 4 sub-networks
is used to retrieve all possible mitosis candidates. Each sub-
network exploits different contextual information to produce
its output. Then the predictions of the 4 sub-models are com-
bined. In the second stage, a False Positive Reduction Model
(FPRM) which is a similarity prediction model is employed to
get the final mitosis detections by filtering out the maximum
number of false mitoses. This approach achieves promis-
ing results on the 2012 ICPR MITOSIS dataset and the
2014 ICPR MITOSIS dataset. DeepMitosis [20] propose
a framework based on a general object detection network
to detect the mitotic cells from H&E stained slides. Since
an object detection network can only be applied to pixel-
level annotated datasets, an FCN is used to segment the
mitotic cells annotated only with the centroid-pixel. This
method leads to an F—score of 0.832 on the fully annotated
ICPR 2012 MITOSIS dataset, which outperforms all previous
work. However, on the 2014 MITOSIS dataset, due to the
weak supervision, this method is less efficient. Reference [21]
propose an improved RCNN model for mitosis detection.
As in the DeepMitosis approach, this method adopts an object
detection network to address this medical task. A CNN is
used to extract deep and shallow features from different
level layers. These features are combined and fed into the
Regional Proposal Network (RPN) to generate mitosis can-
didates. These candidates are then classified by the improved
RCNN to produce the final detections. In addition to the
object bounding box regressor, the improved RCNN employs
two classification sub-networks that use different features
selection methods to predict the object class. This method
achieves a state-of-the art performance on the 2012 ICPR
MITOSIS dataset, with an F-score of 0.851. However, like
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the other object detection based methods, it can not be directly
applied to a dataset with weak labels. SegMitos [22] use
an FCN as a semantic segmentation model to segment and
classify the mitotic cells. A concentric label and a concentric
loss function are defined to train the FCN with the mitosis
centroid-pixel annotated datasets. A concentric label com-
prises two circles: the area surrounded by the small circle
is part of the mitotic cell, while the area outside the large
circle is a non-mitotic region. The area of the annular region
between the two circles contains both mitotic and non-mitotic
parts. During the computation of the training loss, known
as the concentric loss, the annular region is ignored since it
is considered as a neutral area. This method achieves state-
of-the-art performance on three different weakly annotated
mitosis datasets.

Different convolutional neural networks have been used to
address the problem of detecting mitoses from histopatho-
logical images, such as patch classification networks, detec-
tion networks, semantic segmentation networks, and deep
regressors. Most of these networks are trained either in a
fully supervised way or in a weakly supervised way. We note
that no partially supervised deep learning framework has
been employed to tackle this medical task. Therefore, in this
paper, we introduce PartMitosis, a mitosis detection frame-
work with: (1) Two semantic segmentation streams. The
first stream is a segmentation network trained with weak
labels and the second stream is another segmentation network
trained with strong labels. (2) A weight transfer function
that connects the two networks and transfers the semantic
knowledge from the first branch to the second branch, and
thus allows the prediction of the precise segmentation map
(the map produced by the strong segmentation branch) for
all images including those from the dataset without strong
annotations in the training stage. PartMitosis is a partially
supervised method that transfers semantic information from
the model’s weak predictors to its strong predictors through a
weight transfer function and then fuses the scores of the two
predictors for a more accurate mitosis detection from weakly
labeled H&E stained slides.

lll. APPROACH

A. DESCRIPTION OF THE DATASETS

1) ICPR 2012 MITOSIS DATASET

The ICPR 2012 dataset [2] contains 5 breast cancer
biopsy slides from which 50 H&E stained images of size
2084 x 2084 pixels have been selected by pathologists. Each
image represents a 512 x 512 um? HPF generated by an
Aperio XT scanner with a resolution of 0.2456 um per
pixel. According to the rules of the 2012 MITOSIS con-
test, 35 HPFs with 226 mitotic cells are used for training
and 15 HPFs with 101 mitoses are used for evaluation.
Since pathologists have provided an annotation of all mito-
sis pixels, this dataset is considered a strongly supervised
dataset.
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2) ICPR 2014 MITOSIS DATASET

The ICPR 2014 dataset [3] comprises 1200 HPFs used for
training and 496 HPFs used for testing. Each HPF image has
1539 x 1376 pixels. There are 749 mitotic cells in the training
data. Since the ground truth labels of the testing set were not
released by the organizers, the number of mitoses is unknown.
For this dataset, pathologists have provided the annotations
only of the mitosis centroid pixels, hence, it is considered a
weakly supervised dataset.

3) AMIDA13 DATASET

The Assessment of Mitosis Detection Algorithms 2013
(AMIDA13) challenge dataset [4] comprises 606
2000 x 2000 pixel HPF images. The training set comprises
311 HPFs obtained from 12 subjects. The testing set com-
prises 295 HPFs obtained from 11 subjects. The total number
of mitotic cells in this dataset is 1083, of which 550 belong
to the training set and 533 to the testing set. This dataset is
also weakly supervised since the pathologists have annotated
only the centroid pixels of the mitoses.

B. PARTMITOSIS MODEL

Fig. 1 illustrates the architecture of PartMitosis, the partially
supervised mitosis detection framework. It uses two deep
semantic segmentation networks; each of them is an FCN.
An FCN [43]is a dense prediction ConvNet used for semantic
segmentation in natural images. It extends a deep classifica-
tion network to input images of arbitrary sizes, and outputs a
segmentation map of the corresponding size by transforming
the Fully Connected (FC) layers into convolution layers fol-
lowed by an up-sampling layer. The FCN is pre-trained using
image classification and then fully convolutionally fine-tuned
for a fast dense learning and accurate dense prediction.

An FCN is the most suitable semantic segmentation net-
work for our PartMitosis system for many reasons: (1) Due
to the simple structure of an FCN, we can easily fit two
streams of FCNs into our GPU without occupying too much
memory. (2) The integration of the weight transfer function
into our system that uses two streams of FCNs is very simple
and straightforward. (3) The FCN is a semantic segmenta-
tion network that can achieve an excellent trade-off between
accuracy and speed. (4) The FCN is a simple yet effective
deep learning network originally designed for semantic seg-
mentation in natural images. Much previous research has
shown the advantages of knowledge transfer from the domain
of natural images to the domain of medical images [44].
Hence, we propose using an FCN model pretrained on natural
images as our initial model and fine-tuning it on the mitosis
detection datasets to achieve highly accurate segmentation
performance.

Let C be the set of training data that we use to train
our PartMitosis model. The existing methods presume that
all training samples in C are annotated either with a mito-
sis centroid pixel label (Fig. 2.(a)) or with a pixel-level
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FIGURE 1. Detailed overview of the PartMitosis system. The weights of the prediction layer of the strong segmentation branch
Wstrong are predicted from the weights of the prediction layer of the concentric segmentation branch Wopcent by means of a
weight transfer function I' and are not learned as model parameters. In the training stage, the strong segmentation branch and the
weight transfer function T receive the gradient from the pixel-wise loss computed on set A only, while in the testing stage,

the precise segmentation map can be predicted for all images in set AU B.

label (Fig. 2.(b)). We presume that C = AUB, where samples
from the set A have pixel-level labels and thus also have
centroid-pixel labels (since we can easily extract a centroid
label from pixel-level labels), while samples from the set B
have only centroid pixel labels.

The 2012 MITOSIS dataset is strongly supervised while
the 2014 ICPR MITOSIS dataset and the AMIDA13 dataset
are weakly supervised. Since the training of PartMitosis
requires both types of mitosis annotations (pixel-level and
centroid-pixel), for each weakly annotated dataset we train
a PartMitosis model using the weak labels of this dataset as
well as the strong and weak labels of the 2012 MITOSIS
dataset. For instance, to train a PartMitosis model for mitosis
detection in the 2014 ICPR MITOSIS dataset, we use the
samples of this dataset as set B and use the samples of the
2012 MITOSIS dataset as set A.

The first semantic segmentation network is the weak seg-
mentation network that we called the concentric segmentation
network. It is trained using the samples from the centroid-
pixel annotated dataset B and the samples from the pixel-level
annotated dataset A after converting the pixel-level labels into
centroid-pixel labels. Since a centroid label is inappropriate
for training a deep segmentation network because it does not
provide any information about the morphological appearance
of the mitosis, we propose transforming the centroid-pixel
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(a) centroid label (b) pixel-level label

(c) concentric label

FIGURE 2. Examples of labels. (a) Centroid-pixel label of a mitosis.

(b) Pixel-level label of a mitosis. (c) Concentric label of a mitosis. The area
surrounded by the yellow circle contains mitosis pixels only, while the
annular area between the black and yellow circles contains both mitotic
and non-mitotic pixels.

label of a mitosis into a concentric label [22], i.e., around
each mitosis centroid, we define two circles, as illustrated
in Fig. 2.(c). We make the small circle (the circle in yellow
in Fig. 2.(c)) so that all pixels inside of it belong to the mitotic
cell, hence all these pixels will have a mitotic (positive) label.
We make the large circle (the circle in black in Fig. 2.(c)) so
that all pixels outside of it belong to the background, thus all
these pixels will have a non-mitotic (negative) label. Since a
mitotic cell has an average area of 590 pixels [22], the radius
of the small circle r is randomly selected from a uniform
distribution within the interval [10, 17], and the radius of the
large circle R is randomly equal to 1.5 times to 2.5 times
the radius of the small circle. The small circle is surrounded
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FIGURE 3. lllustration of the weight transfer function I.

by an annular region known as the ‘middle ground’. The
middle ground is regarded as a neutral region since some of
its pixels belong to the mitotic cell but some others are not
mitotic pixels. The concentric semantic segmentation branch
is trained with the concentric loss function [22], a pixel-wise
Softmax loss function for which the pixels contained in the
annular region do not participate in its computation.

The second semantic segmentation network, referred to as
the strong segmentation network, is trained with the pixel-
wise Softmax loss function using the pixel-level labels of the
fully annotated dataset A.

Since the last convolutional layer of the concentric seg-
mentation network and the last convolutional layer of the
strong segmentation network both contain semantic param-
eters, we propose predicting the semantic parameters of the
strong segmentation branch from the semantic parameters
of the concentric segmentation branch rather than training
them separately. This kind of transfer learning is performed
through a semantic weight transfer function. The whole sys-
tem, which comprises the two segmentation networks and the
weight transfer function, is trained jointly in an end-to-end
manner.

Let Weoncen: be the weights of the last convolutional layer
(the layer before the up-sampling) of the fully convolutional
network trained with the concentric labels, and let Wy, be
the weights of the last convolutional layer of the FCN trained
with the strong labels. A weight prediction function I'(.) is
used to parametrize Wy, rather than considering Wong
as the model’s parameters (see Eq. (1)).

Witrong = T’ Weoncents 0) (1

Here, 6 are semantic learned parameters. We expect that
the weight transfer function I'(.) is able to transfer coarse
semantic information about the appearance of the mitosis to
the strong segmentation branch in order to predict a finer
mitosis segmentation. We implement I'(.) using a small fully
connected network comprising two FC layers, as illustrated
in Fig. 3. The FC hidden layer is followed by an activation
function of type LeakyReLU. The input of the weight transfer
network is Weopcens While its output is Wyyong. This weight
function is used to tackle the problem of the prediction of the
strong segmentation map for images from the dataset without
strong annotations in the training stage. It helps transfer the
semantic information from the weak predictors to the strong
predictors.
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C. MODEL TRAINING

We train the concentric segmentation branch using the two-
class concentric loss function L¢gucen; introduced in [22] on
the set C = A U B, and we train the strong segmentation
branch and the weight transfer function I'(.) using a two-class
pixel-wise Softmax loss function Lg,,,g On the set A only.
Thus, the overall loss function of our network is defined as
L = Leoncent + Lstrong-

1) STAGE-WISE TRAINING

Since we use two different segmentation networks, a feasible
training strategy is to train the two networks independently.
As shown in Fig. 4, we first train the concentric segmentation
network using the concentric labels of the set C = A U B,
and then we train the strong segmentation network as well
as the weight transfer function using the strong labels of the
set A while keeping the convolution features of the concen-
tric segmentation branch unchanged. Thereby, the concentric
segmentation weights Weoncens can be regarded as a fixed
embedding vector which does not require any update during
the training of the partially supervised segmentation branch.

2) END-TO-END TRAINING

Much of the previous literature on different vision tasks has
shown that the multi-task training can yield more accurate
results than training on each task independently, such as Mask
RCNN [45]. Thus, we propose to jointly train the concentric
segmentation branch and the strong segmentation branch of
our PartMitosis model in an end-to-end way using the strong
and concentric labels of the set A and the concentric labels
of the set B, as illustrated in Fig. 5. During the training of
the network, Weoncens Will receive gradients from the pixel-
wise segmentation 10ss Lyong via the weight transfer function
I'(.) only when training with samples from the set A. Hence,
directly training the network with back-propagation using the
concentric losses on the set A U B and the pixel-wise losses
on the set A may cause an inconsistency in the concentric seg-
mentation weights Weoneens. Thus, in order to not impede the
homogeneity of W gcens between the sets A and B, we follow
this strategy: when Ly is back-propagated in the network,
the gradient of the weights prediction function I'(Weopncens; 6)
is computed with respect to 6 which is the transfer function
parameter and stopped with respect to Wepncens, SO that the
gradient will not be back-propagated to W, cens- Therefore,
Weoncen: Will be updated on every training iteration using
only the gradient coming from Lpcens N0 matter whether the
training sample used for this iteration is from the set A or
the set B.

D. MODEL INFERENCE

After the training of the PartMitosis model, we apply it to pre-
dict two segmentation maps on the breast histological images,
as illustrated in Fig. 6. The first segmentation map is denoted
by Sconcents and is the segmentation map produced by the
concentric semantic segmentation branch, while the second
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FIGURE 5. End-to-end training of PartMitosis model.

segmentation map, denoted by Sgong is the segmentation map
generated by the strong semantic segmentation branch. The
segmentation map output by each branch contains the prob-
ability score of each pixel to be a mitosis. We fuse the
concentric score map Sconcenr and the strong score map Sgrong
using Eq. (2)

@

We optimize the fusion weight w on the validation set using
parameter sweep, i.e., we produce the segmentation maps
Sconcent and Sgong for each sample in the validation set, then,
for each value of w within the range [0, 1] with a step of
0.1, we produce the fused segmentation maps for all samples
in the validation set and then compute the F-score of the
model. The weight w that yields the best F'-score is used as
the model’s fusion parameter.

Since the concentric segmentation branch is a coarse
segmentation network, it can retrieve the maximum num-
ber of existing mitoses. However, because this segmenta-
tion network is coarse, it may also retrieve other cells that
have appearances almost similar to the mitotic cells. Hence,
to remove these false detections, we fuse the coarse pre-
dictions with the predictions of the strong segmentation
branch. Since the strong branch is a finer segmentation net-
work, because it is trained with strong labels, it can accurately

S =w X Sconcent + (1 — W) X Sstrong
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describe the appearance of a mitosis and thus discriminate
mitoses from mimics. Fig. 7 shows the advantage of fusing
the concentric probability scores with the strong probability
scores. In the first example (the first row of Fig. 7), we can see
that because the concentric segmentation network is a coarse
segmentation network, it can detect more mitotic figures than
the strong segmentation branch, so by fusing the score maps
of the two networks we can retrieve most of the true mitoses
and thus reduce the number of false negatives. In the second
example (the second row of Fig. 7), we can see that because
the strong segmentation network is a finer segmentation net-
work, it can filter out most of the non-mitotic cells. Hence,
by fusing the predicted scores of the two networks, we can
eliminate the majority of false mitoses and thus diminish the
number of false positives. Therefore, we can conclude that
the fusion strategy can exploit the two predicted score maps
adequately and achieve more accurate mitosis detection.
The fused prediction map may still contain some noise and
tiny ambiguous cells. In order to eliminate them, we pro-
pose using the same strategy as in [22], which consists
of smoothing the segmentation map by applying a Gaus-
sian filter and then binarizing the filtered map using Otsu’s
method [46] to obtain segmented blobs. The segmented blobs
include mitotic cells as well as some mimic cells. Hence,
to filter out false positives, we follow the filtering method
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(a) Histopathological image samples. (b) Segmentation maps produced by the concentric segmentation branch.

(c) Segmentation maps predicted by the strong segmentation branch. (d) Fused segmentation maps. (e) Final mitosis
detections after the area and the confidence score filtering. The correct detections are represented by the green circles.

introduced in [22], which eliminates the segmented blobs
with a mean score S less than a threshold s1 or with an area
A smaller than a threshold al; otherwise the blob will be
kept and considered as a true mitotic cell. As for the weight
w, the score threshold s1 and the area threshold al are also
optimized on the validation set.

IV. EXPERIMENTS
In this section, we evaluate the performance of our PartMito-
sis system using three different mitosis datasets, namely: the
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ICPR 2014 MITOSIS dataset, the AMIDA 13 dataset, and the
ICPR 2012 MITOSIS dataset.

A. IMPLEMENTATION

The whole PartMitosis system is implemented using the
Pytorch framework [47]. We initialized the two segmentation
networks of our system with FCN-32s model pre-trained on
the Pascal VOC segmentation dataset [48]. We conducted
our experiments on a machine with one Nvidia Quadro
P5000 GPU.
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1) MODEL TRAINING

The training of our PartMitosis system follows the default
training strategy of an FCN. Since the two segmentation
networks of our framework are based on FCN-32s, i.e., a fully
convolutional network with a stride of 32 pixels, we used a
learning rate of 1e-10 and set the momentum and the weight
decay to 0.99 and 0.0005 respectively. The network was
optimized using the stochastic gradient descent method and a
batch size of 1. We trained the network for 200k iterations.

2) PERFORMANCE EVALUATION

The evaluation of the performance of a mitosis detection
system is based on the number of mitotic cells that are cor-
rectly detected. Following the criteria of the mitosis detection
contests, if the centroid of a detection is within a certain
distance from a ground truth centroid, it is counted as a true
mitosis. The distance threshold in the 2012 MITOSIS ICPR
dataset is 5 um (20 pixels), while for the other datasets it is
equivalent to 8 um (32 pixels). The accuracy of the mitosis
detection is measured using the F-score, which is given by:

F — score = 2 X recall x precision/(recall + precision)

3

B. EVALUATION ON THE 2014 MITOSIS DATASET

One of the most challenging mitosis detection datasets is the
ICPR 2014 MITOSIS dataset, due to its huge diversity in
the appearance and texture of the tissues. As we previously
mentioned, to train a PartMitosis model for the detection of
mitoses on the 2014 ICPR MITOSIS dataset, we use the train-
ing samples of the 2012 MITOSIS dataset as the set A and the
training samples from the 2014 MITOSIS dataset as the set B.
For the sake of memory, we cropped patches of size 521 x 521
pixels from the HPF images of the 2012 MITOSIS ICPR
training set. We artificially generated more positive patches
(patches that contain mitotic cells) using image mirroring,
translation in 9 directions, and rotation by 16 angles. For
negative patches, we applied image mirroring and rotations
in steps of 90 degrees.

We divided the training data of the 2014 ICPR MITOSIS
dataset between training and validation in the same way as
in [22]: we used the first folder AO3 for validation and kept
the remaining folders, namely A04, A05, A07, A10, All,
A12 and Al4, for training. Hence, the training set contains
534 mitotic cells and the validation set 135. We split each HPF
image into patches of 385 x 344 pixels and then augmented
the data artificially by applying translation in 9 directions,
rotations in steps of 45 degrees, and flipping on positive
patches. Since the number of negative patches is already
suitable for training our model, we did not apply any aug-
mentation on them.

1) ABLATION EXPERIMENTS
We carried out different ablation experiments with the
PartMitosis framework to study the impact of some of
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its components. We ran these experiments on the 2014 ICPR
MITOSIS validation set.

a: IMPACT OF THE END-TO-END TRAINING

We compare the performance results of the PartMitosis model
trained in an end-to-end way and the PartMitosis model
trained stage-wise to examine the effect of the end-to-end
training. We also analyse the impact of disabling the back-
propagation of the gradient from Lyong t0 Weoncens through T,
As shown in Table 1, the end-to-end training of the PartMito-
sis model achieves better results than the stage-wise training
if only we stop the back-propagation of the gradient of Long
on Weoncent-

TABLE 1. Impact of the training strategy on the 2014 ICPR validation set.

Kind of training | Disabling the gra- | Precision | Recall | F'-score
dient on Weoncent

Stage-wise 0.569 | 0.666 | 0.614
End-to-end 0.529 | 0.725 | 0.612
End-to-end X 0.562 | 0.696 | 0.622

TABLE 2. Impact of the structure of I on the 2014 ICPR validation set.

Structure of I Precision | Recall | F'-score
1-layer 0.517 [ 0.770 | 0.619
2-layer, ReLU 0.514 | 0.785 | 0.621
2-layer, LeakyReLU | 0.562 | 0.696 | 0.622
3-layer, ReLU 0.517 ] 0.755| 0.614
3-layer, LeakyReLU | 0.520 | 0.740 | 0.611

b: IMPACT OF THE STRUCTURE OF THE WEIGHT

TRANSFER FUNCTION T

We investigate the effect of the structure of the weight transfer
function I" on the model’s performance by testing differ-
ent implementations of I': a simple affine transformation,
a 2-layer Multi-Layer Perceptron (MLP), and a 3-layer MLP.
We also tried two types of activation function for the hidden
layers: ReLU and LeakyReL U [49]. Table 2 shows the perfor-
mance results of our PartMitosis model using these different
structures of I'. The best F-score is obtained with the 2-layer
neural network and the activation function LeakyReLU.

¢: IMPACT OF THE FUSION OF THE CONCENTRIC

AND THE STRONG SEGMENTATION MAPS

We also analyse the impact of fusing the probability scores of
the concentric segmentation branch and the strong segmen-
tation branch. Fig. 8 shows the change in the performance
of the PartMitosis model with respect to the fusion weight w
on the validation set. We can see that the PartMitosis model
achieves excellent performance when the value of the fusion
weight w is 0.6.

2) QUANTITATIVE EVALUATION
Since we split the training data of the 2014 MITOSIS dataset
between training and validation in the same way as in the
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FIGURE 8. The change in the performance of the PartMitosis model with
respect to the fusion weight w on the 2014 ICPR validation set.

TABLE 3. Comparison of the performance of the SegMitos models [22]
and the PartMitosis models on the 2014 ICPR MITOSIS validation set.

Method Precision | Recall | F-score
SegMitos-r12R24 [22] | 0.516 | 0.681 | 0.587
SegMitos-r15R30 [22] | 0.495 | 0.785 | 0.607
SegMitos-random [22] | 0.541 0.681 | 0.603
PartMitosis-r12R24 0.543 | 0.696 | 0.610
PartMitosis-r15R30 0.562 | 0.696 | 0.622
PartMitosis-random 0.532 | 0.674 | 0.594

SegMitos method, we can compare the performance of Part-
Mitosis to that of SegMitos on the validation set. SegMitos
uses three configurations of the concentric label. SegMitos-
r12R24 and SegMitos-r15R30 employ a concentric label with
two different fixed radii for the small circle r and the large
circle R, while SegMitos-random is trained using concen-
tric label with a small radius r randomly selected from the
interval [10, 17] and the radius R of the large circle being
1.5 to 2.5 times bigger than r, also randomly chosen. To train
the PartMitosis models, we generated random concentric
labels for the images of the 2012 MITOSIS training data,
while for the 2014 ICPR MITOSIS dataset, we tried the same
three concentric label configurations as used for the SegMitos
training. Table 3 shows a comparison between the perfor-
mance of SegMitos and PartMitosis on the 2014 MITOSIS
validation set. The PartMitosis models trained with concen-
tric labels of fixed radii achieve better results on the validation
set than the SegMitos models trained with the three different
concentric label configurations, which demonstrates that with
the aid of the proposed weight transfer function, which allows
the training of a mitosis detection model in a partially super-
vised way, we can achieve more accurate detection results for
the weakly annotated 2014 ICPR MITOSIS dataset.

We now train the PartMitosis model on all training data
(including the validation set) of the 2014 MITOSIS dataset.
For the 2014 MITOSIS training samples, we used a concen-
tric label with a small circle r of radius 15 pixels and a large
circle R of radius 30 pixels, while for the 2012 MITOSIS
training examples we used concentric labels with random
radii. We applied the trained model to the 2014 MITOSIS
testing set and submitted the mitosis detection results to
the challenge organizers. Table 4 and Fig. 9 show the
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TABLE 4. Comparison of the performance of PartMitosis with other
approaches on the 2014 ICPR MITOSIS testing set. ‘—’ denotes an
unreported result.

Method Precision | Recall | F'-score
STRASBOURG [3] - - 0.024
YILDIZ [3] - - 0.167
MINES-CURIE-INSERM [3] - - 0.235
CUHK [3] 0.448 | 0.300 | 0.356
MFF-CNN [18] 0.405 | 0453 | 0.428
DeepMitosis [20] 0.431 0.443 | 0.437
MSSN [19] 0.379 | 0.617 | 0.470
CasNN(single) [17] 0.411 0.478 | 0.442
CasNN(average) [17] 0.460 | 0.507 | 0.482
SegMitos-r12R24 [22] 0.622 0.463 | 0.531
SegMitos-r15R30 [22] 0.594 | 0.512 | 0.550
SegMitos-random [22] 0.637 0.502 | 0.562
PartMitosis 0.664 | 0.507 | 0.575
0.6 #STRASBOURG

®YILDIZ
- @MINES-CURIE-INSERM
CUHK
- @MFF-CNN
®DeepMitosis
_ mMSSN
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FIGURE 9. Performance comparison of PartMitosis model and other
state-of-the-art approaches on the 2014 ICPR MITOSIS testing set.

experimental results of our method and some other previ-
ously proposed methods on the 2014 MITOSIS testing set.
With an F-score of 0.575, our method outperforms all other
approaches, including: STRASBOURG [3], YILDIZ [3],
MINES-CURIE-INSERM [3], CUHK [3], which were the
4 winners of the 2014 ICPR MITOS-ATYPIA challenge,
MFF-CNN [18], DeepMitosis [20], MSSN [19], CasNN [17]
with its two proposed versions, namely the ‘single’ ver-
sion that employs only one classification network and the
‘average’ version that employs three different classification
networks and fuses their results, as well as the different
configurations of the SegMitos model [22].

3) QUALITATIVE EVALUATION

Fig. 10 shows some samples of the mitosis detections pro-
duced by our PartMitosis model on the 2014 ICPR MITOSIS
validation set. We can see that almost all of the true mitotic
cells are identified by our system, and the mitoses which
are not detected are in general extremely small, so it is not
evident how to retrieve them. In addition, we can see that the
false detections have the same appearance as the true mitoses,
hence it is not evident how to screen them out.

C. EVALUATION ON THE AMIDA13 DATASET

To train a PartMitosis model on the AMIDA13 dataset,
we converted each HPF image into patches of
500 x 500 pixels. We augmented the training set by applying
translations in 9 directions, rotations in steps of 45 degrees,
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FIGURE 10. Detection results using PartMitosis model on samples from the 2014 ICPR MITOSIS validation set. True positives in green,

false negatives in blue, and false positives in yellow.

TABLE 5. Detection performance of PartMitosis model and other
approaches on the AMIDA13 testing set.

Method Precision | Recall | F'-score
PANASONIC [4]| 0.336 | 0.310 | 0.322
ISIK [4] 0.306 | 0.351 | 0.327
SURREY [4] 0.357 | 0.332 | 0.344
DTU [4] 0.427 | 0.555 | 0.483
IDSIA [4] 0.610 | 0.612 | 0.611
CUHK [3] 0.690 | 0.310 | 0.427
AggNet [50] 0441 | 0.424 | 0.433
SegMitos [22] 0.668 | 0.677 | 0.672
PartMitosis 0.743 | 0.658 | 0.698

and flipping on positive patches. For negative examples,
we only rotated them by 4 angles. For the strongly labeled
samples, we used the same augmented 2012 MITOSIS train-
ing set that we employed for training the PartMitosis model
on the 2014 MITOSIS dataset. The concentric labels were
randomly generated for both datasets. The F-scores of our
model on the AMIDAI13 testing set, as well those of some
other approaches, are shown in Table 5 and Fig. 11. The
first 5 methods, PANASONIC [4], ISIK [4], SURREY [4],
DTU [4] and IDSIA [4], were the top 5 methods that took
part in the AMIDA13 challenge. The other three methods,
namely CUHK [3], AggNet [50] and SegMitos [22], were
methods developed after the challenge. PartMitosis achieves
the highest F-score, 0.698, and outperforms all previous
methods, including the state-of-the-art SegMitos method.
Fig. 12 illustrates some mitosis detections predicted by the
PartMitosis model on the AMIDA13 testing set.
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FIGURE 11. Performance comparison of PartMitosis model with other
state-of-the-art approaches on the AMIDA13 testing set.

D. EVALUATION ON THE 2012 ICPR MITOSIS DATASET

We applied the two PartMitosis models that we trained to
detect mitoses in the two weakly annotated mitosis datasets
(2014 ICPR MITOSIS dataset and AMIDA13 dataset) to
the testing set of the fully annotated 2012 ICPR MITO-
SIS dataset. The performance results of each PartMitosis
model and some other previously proposed methods are
shown in Table 6. The best participating methods of the
2012 ICPR MITOSIS contest were the first 4 methods:
NEC [13], SUTECH [12], IPAL [6] and IDSIA [15]. As for
HC + CNN [14], MSSN [19], CasNN [17], DRN [16],
RRF [11], DeepMitosis [20], Improved-mitosis-RCNN [21],
and SegMitos-random [22], they were introduced after the
challenge. As shown in Table 6, the PartMitosis model that
achieves the best F-score on the 2012 MITOSIS testing set
is the one trained with the samples from the 2014 MITOSIS
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FIGURE 12. Mitosis detections of the PartMitosis method on some image samples from the AMIDA13 testing set. True positives in
green, false negatives in blue, and false positives in yellow.

TABLE 6. F-scores of PartMitosis models and other methods on the
2012 ICPR MITOSIS testing set.

Method Precision | Recall | F'-score
NEC [13] 0.750 | 0.590 | 0.659
SUTECH [12] 0.700 | 0.720 | 0.709
IPAL [6] 0.698 | 0.740 | 0.718
IDSIA [15] 0.886 | 0.700 | 0.782
HC+CNN [14] 0.840 | 0.650 | 0.734
MSSN [19] 0.776 | 0.787 | 0.781
CasNN [17] 0.804 | 0.772 | 0.788
DRN [16] 0.779 | 0.802 | 0.790
RRF [11] 0.835 | 0.811 | 0.823
DeepMitosis [20] 0.854 | 0.812 | 0.832
Improved-mitosis-RCNN [21] |  0.920 | 0.792 | 0.851
SegMitos-random [22] 0.813 0.732 | 0.770
PartMitosis-AMIDA13 0.785 ] 0.762 | 0.773
PartMitosis-MITOSIS2014 0.766 | 0.811 | 0.788

dataset and the images from the 2012 MITOSIS dataset: it
increases the F-score by 1.8% compared to the SegMitos
trained with random concentric labels on the 2012 ICPR
MITOSIS dataset. We can also see that the two PartMito-
sis models obtain more accurate detection results than the
SegMitos model. This improvement in performance shows
that fusing the scores predicted by the semantic segmen-
tation branch trained with weak labels and the scores pro-
duced by the partially supervised segmentation branch trained
with strong labels yields better results than considering the
probability scores generated by the semantic segmentation
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model trained with weak labels only, as in the SegMitos
method. Some detection results produced by PartMitosis-
MITOSIS2014 on images from the 2012 ICPR MITOSIS
dataset are shown in Fig. 13.

E. DISCUSSION

It is intriguing that on the two weakly annotated datasets
(2014 ICPR MITOSIS dataset and AMIDA13 dataset), our
approach leads to better detection results than the previous
best method SegMitos [22] and all state-of-the-art meth-
ods. Indeed, by achieving F-scores of 0.575 and 0.698 on
the 2014 ICPR MITOSIS dataset and AMIDA13 dataset,
respectively, our PartMitosis framework improves the mitosis
detection performance by 1.3% and 2.6% (in term of F'-score)
on the 2014 ICPR MITOSIS dataset and AMIDA13 dataset,
respectively, compared to the SegMitos method, and sur-
passes all of the other state-of-the-art approaches by a large
margin (more than 9% for the 2014 ICPR MITOSIS dataset
and more than 8% for the AMIDA13 dataset). In addition,
our method obtains an excellent performance on the fully
annotated 2012 ICPR MITOSIS dataset with an F-score
of 0.788 and outperforms the SegMitos model trained with
the 2012 MITOSIS concentric labels. This improvement in
performance is due to the partially supervised learning of
our PartMitosis system, which makes mitosis detection more
accurate for weakly labeled benchmarks through: (1) Taking
advantage of the few available mitosis fully-annotated
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FIGURE 13. Mitoses detected using the PartMitosis-MITOSIS2014 model on some images from the 2012 ICPR MITOSIS testing set.
True positives in green, false negatives in blue, and false positives in yellow.

samples and using them on the model’s training. (2) Incor-
porating a weight transfer function that allows the trans-
fer of coarse semantic information from the model’s weak
predictors to its strong predictors. (3) Fusing the probabil-
ity score map produced by the weak segmentation branch
and the probability score map generated by the strong
segmentation branch, which helps to retrieve the largest
number of true mitoses and exclude most of the false
detections. The state-of-the-art results achieved on the most
challenging mitosis detection datasets demonstrate the effec-
tiveness of our PartMitosis system at solving the problem
of mitosis detection from histopathological slides with a
large weakly annotated dataset and only a small fully labeled
dataset.
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F. TIME ANALYSIS

Even though our Nvidia Quadro P5000 GPU has 16 GB mem-
ory, we cannot process the full HPF image of 2084 x 2084
pixels from the 2012 ICPR MITOSIS dataset at once since it
is still too large to input it into our PartMitosis model. Thus,
we cropped patches of 1042 x 1042 pixels from the full HPF
image and fed them into the network. Therefore, it takes about
2.15 s to cut the full image, apply our model to the 4 patches
of the HPF image, and put them together to get the full
segmentation map. Then, it takes about 0.14 s to obtain the
final mitosis detections from the segmentation map. In total,
the detection with the PartMitosis system takes about 2.29 s
for an image from the 2012 ICPR MITOSIS dataset. The
speed of our system is much faster than IDSIA [15], which
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takes 31 s to process a 4M-pixel image by a single network
and 8 min to fuse multiple detections generated by different
models to obtain better results. Our approach is also faster
than the state-of-the-art SegMitos [22], which requires 3 s to
make detections on the full 2012 MITOSIS image.

For the 2014 ICPR MITOSIS dataset, PartMitosis takes
about 1.03 s per 1539 x 1376 HPF, which is slightly greater
than the processing time of a 2014 MITOSIS HPF image by
the SegMitos [22] model, which requires 0.92 s. The reason
behind this is that the SegMitos model is deployed on the full
image while our PartMitosis model, for the sake of the GPU
memory, is applied to two patches cropped from the full HPF.

V. CONCLUSION

A partially supervised deep learning framework for accurate
and reliable mitosis detection from H&E stained histopatho-
logical images has been introduced in this paper. We employ
a semantic segmentation framework with two-stream fully
convolutional networks to segment the breast cancer stained
slides. The first branch of the model is trained with weak
labels while the second branch is trained with strong labels.
We fuse the predicted score maps of the two FCNs to obtain a
more accurate mitosis detection. Moreover, we have designed
a weight transfer function that can transfer the semantic infor-
mation from the weak segmentation branch to the strong seg-
mentation branch. This helps tackle the problem of training
the strong segmentation branch on a dataset without pixel-
level annotations. Our PartMitosis system yields excellent
results on the 2012 ICPR MITOSIS dataset, with an F-score
of 0.788. In addition, it outperforms all previous methods
by achieving F'-scores of 0.575 on the 2014 ICPR MITOSIS
dataset and 0.698 on AMIDA 13 dataset. The excellent results
obtained on the most challenging mitosis counting datasets
demonstrate the high capacity of our PartMitosis system in
mitosis detection and discrimination. In the future, we aim
to apply this partially supervised deep learning framework to
some other medical applications. Another future investigation
is to develop a more sophisticated weight transfer function
for a better transfer of learning from one network to another,
to improve the mitosis detection performance.
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