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ABSTRACT Continuous-time dynamic models are often required for controller design, process monitoring,
and operation optimization. This paper proposes an approach to estimate unknown parameters of multiple
first-order continuous-time dynamic models from special segments in historical data. The approach is
composed by two main steps. First, special segments are defined as the ones with two ends in steady states
and the middle part having significant amplitude variations in transient states; the special segments are found
automatically by exploiting a piece-wise linear representation technique from a large amount of historical
data samples. Second, static gains are estimated by solving a set of linear equations based on steady-state
values of inputs and outputs; sums of time constants and delays are obtained by solving another set of linear
equations based on integrals of model output errors from data samples in transient states; the sums are used
as an optimization constraint for maximizing the fitness value between measured and simulated outputs,
from which separated estimates of time constants and delays are yielded. Numerical examples are provided
to illustrate the proposed approach and compare with existing ones.

INDEX TERMS Continuous-time model identification, steady states, transient states, model validation.

I. INTRODUCTION
Continuous-time dynamic models are often required for con-
troller design, process monitoring, and operation optimiza-
tion in a systematic manner [1], [2]. As a frequently-used
technique, system identification builds mathematical models
for dynamic systems based on observed input and output
data [3]. Continuous-time models can be either identified
directly from observed data and indirectly from discrete-time
counterparts; the direct way has certain advantages in practi-
cal applications [4].

Identification of continuous-time dynamic models has
received many attentions in recent years; see, e.g., sur-
vey papers [5]–[8] and books [9]–[11]. There are quite
a few existing identification approaches in the literature.
One group of identification approaches has been devel-
oped for general types of inputs, e.g., the prediction err
approach [12], the subspace approach [13], the maxi-
mum likelihood (ML) approach [14], and the instrumental
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variable (IV) approach [15]. Among them, the ML approach
and the IV approach have been well developed and widely
accepted [16]–[20]; Matlab System Identification Tool-
box [21] and CONTSID Toolbox [22] are the representa-
tive algorithms to implement the ML and IV approaches,
respectively. Another group of identification approaches
is based on designed experiments using particular inputs,
such as step tests [23], relay feedback tests [24] and
impulse excitations [25]. Relevant identification approaches
include the integral equation approach [26], the frequency
domain approach [27], the variational Bayesian infer-
ence [28], the robust identification approach [29], the recur-
sive instrumental variable approach [30], and the multimodel
approach [31]. However, specially-designed identification
experiments may perturb normal operations of industrial
plants.

This paper is inspired by a common practice that is often
adopted by industrial engineers to estimate parameters of
continuous-time dynamic models based on some special data
segments. The main idea is to read static gains of dynamic
models from steady-state values of inputs and outputs, as well
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as time constants and delays from transient-state values.
As a major advantage, these model parameters are known to
be correct by looking at steady- and transient-state values.
However, there are two major disadvantages: (i) the common
practice is usually limited to single-input and single-output
systems, (ii) it is time-consuming to manually find these spe-
cial data segments. Our motivation is to improve the common
practice in terms of removing its major disadvantages by
extending to multiple-input and single-output systems and
finding special data segments automatically.

This paper proposes an approach to estimate parameters of
continuous-time dynamic systems based on special data seg-
ments extracted from historical data samples. The approach
is composed by two main steps:

i Special data segments are defined as the ones with
two ends in steady states and the middle part hav-
ing significant amplitude variations in transient states.
These segments are found automatically by exploiting a
piece-wise linear representation technique from a large
amount of historical data samples.

ii Static gains are estimated by solving a set of linear
equations based on steady-state values of inputs and out-
puts. Sums of time constants and delays are obtained by
solving another set of linear equations based on integrals
of model output errors from data samples in transient
states. The sums are used as an optimization constraint
for maximizing the fitness value between measured and
simulated outputs, from which separated estimates of
time constants and delays are yielded.

The innovation of the proposed method is mainly from
the separated estimations of different model parameters by
exploiting special data segments. Doing so is able to yield
accurate estimates of static gains from steady-state data sam-
ples, as well as time constants and delays from transient-state
data samples; in addition, estimated model parameters can
be validated in a convincing manner by looking at the
measured and simulated outputs in the special data seg-
ments. By contrast, many continuous-time model identifi-
cation approaches do not exploit data samples in steady
and transient states separately; as a result, it is not easy to
validate estimated model parameters in such a convincing
manner.

The rest of this paper is organized as follows. Section II
describes the problem to be solved. Section III presents the
detailed steps of the proposed approach. Section IV pro-
vides numerical examples for illustration. Some concluding
remarks are given in Section V.

II. PROBLEM DESCRIPTION
Consider a linear time-invariant, multiple-input single-output
(MISO), continuous-time dynamic system,

y (n) =
I∑
i=1

Giui (n)+ C,

where ui is the i-th input, y is the output, Gi is the i-th
subsystem between ui and y, and C is a constant from a fact
that ui and y are often not equal to zeros at the same time. The
symbol n ∈ Z+ is the sampling time index associated with a
real-valued sampling period h (Z+ is the set of non-negative
integers).

The first-order plus dead time model is a good approxima-
tion to many industrial processes [33],

Gi(s) =
Kie−θis

(Tis+ 1)
,

where Ki, Ti and θi respectively are the static gain, time
constant and time delay of Gi. Given historical data samples
{y (n) , u1 (n) , · · · , uI (n)}Nn=1, the following conditions are
assumed:
Steady-state
A1 segments in {y(n), u1(n), · · · , uI (n)}Nn=1 take more than

I + 1 different steady-state values.
A2 Changes of multiple inputs in {y(n), u1(n), · · · ,

uI (n)}Nn=1 have certain time differences rather than
always occurring simultaneously.

The objective is to find special data segments satis-
fying the above conditions from historical data sam-
ples {y (n) , u1 (n) , · · · , uI (n)}Nn=1, and estimate the model
parameters Ki’s, Ti’s, θi’s of the MISO system based on these
special data segments.

The main idea of the proposed approach is to estimate
static gains Ki’s from data samples in steady states, as well
as time constants Ti’s and delays θi’s from data samples in
transient states. Without loss of generality, a system with two
inputs and one output is illustrated, four data segments in
steady states are found in Figure 1. Static gains K1 and K2
are estimated by solving a set of linear equations based on
a relationship between steady-state values (u1,ss, u2,ss, yss)
of u1(n), u2(n) and y(n). Sums of time constants and delays,
T1 + θ1 and T2 + θ2, are calculated by solving another set
of linear equations based on integrals of model output errors
in transient states. The model output error is the shaded part
in Figure 1-(a), which is the difference between y(n) and
K1u1(n)+K2u2(n). Given the estimated static gains, as well as
the sums of time constants and delays, the separated estimates
of time constants and time delays can be accurately obtained
afterwards.

The maximum likelihood (ML) approach and the instru-
mental variable (IV) approach are the standard ones in the lit-
erature to be applied in this context. Numerical comparisons
between the two approaches and the proposed one will be
provided later in Section IV. It will be observed that the ML
and IV approaches are very effective in fitting measured data
samples by identifying models. However, the two approaches
do not perform well in estimating model parameters, espe-
cially for the time constants and delays. This is due to a fact
that the two approaches estimate static gains, time constants
and delays simultaneously in one optimization involving all
data samples, and do not treat steady- and transient-state
data samples separately. As a result, accuracies of some
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FIGURE 1. A schematic illustration of the proposed approach: (a) y (n), (b) u1(n), (c) u2(n).

TABLE 1. Estimated model parameters from three approaches in one
typical simulation with σ2

e = 0.01 in Section IV.

model parameters are sacrificed in an optimization balance.
By contrast, the proposed approach estimates static gains
from steady-state data samples, and time constants and delays
from transient-state data samples, in a separated manner.
Hence, the proposed approach yields more accurate estimates
of model parameters than the ML and IV approaches (to be
shown later in Table 1 and Figures 4-6).

III. THE PROPOSED APPROACH
This section presents the detailed steps of the proposed
approach.

A. ESTIMATION OF MODEL PARAMETERS
This subsection estimates model parameters based on data
samples in steady and transient states, in three steps.

The first step is to estimate steady-state gains
K1,K2, · · · ,KI based on the set VF of steady-state data sam-
ples. The set VF = {v1, · · · , vF } is found from historical data
samples, where F is the number of steady states segments.
The detailed steps to obtain VF will be introduced later in
Section III-B. Steady state values of u1, · · · , uI , y are denoted
as
{
u1,ss [f ] , · · · , uI ,ss [f ] , yss [f ]

}F
f=1, being obtained later

in (16). The MISO system in steady states becomes

yss[f ] =
I∑
i=1

Kiui,ss[f ]+ C .

Static gains are estimated simultaneously by solving a set of
linear equations,

yss[1]
yss[2]
...

yss[F]


︸ ︷︷ ︸

Y

=


u1,ss[1] · · · uI ,ss[1] 1
u1,ss[2] · · · uI ,ss[2] 1
...

. . .
...

...

u1,ss[F] · · · uI ,ss[F] 1


︸ ︷︷ ︸

U


K1
...

KI
C


︸ ︷︷ ︸

K

via the least-squares method as

K̂ =
(
UTU

)−1
UTY . (1)

The second step is to estimate sums of time constants
and delays T1 + θ1,T2 + θ2 · · · ,TI + θI based on the
set 8D of transient-state data segments. The set 8D =

{φ1, φ2, · · · , φD} is found from the historical data samples,
where φd = {y (n) , u1 (n) , · · · , uI (n)}

nf+1,e
n=nf ,s with d ∈

[1,D], D is the number of the transient-state data segments,
nf ,s and nf+1,e are respectively the starting and the ending
points of φd . The steps to find 8D will be introduced in
Section III-B. Let the variable γi represent the sum Ti + θi
of Gi. The sums γ1, γ2, · · · , γI will be determined from a
so-called model output error,

eu(n) =
I∑
i=1

Kiui(n)− y(n).

There is a relationship between the integral of eu and γi.
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Propostion 1: The integral of eu and γi are connected as,

lim
t→+∞

∫ t

0
eu (t) dt =

I∑
i=1

AuiKiγi, (2)

where Aui is the amplitude change of ui in steady-state seg-
ments at the two ends of φd .

Proof: The i-th input ui of φd can be approximated by a
series of ramp signals [34],

ui (n) = ui,1 (n)+ ui,2 (n)+ · · · + ui,Z (n) ,

where

ui,z (n) =


0, 0 ≤ n < nz−1
αz (n− nz−1) , nz−1 ≤ n < nz
αz (nz − nz−1) , nz ≤ n <∞

.

Here αz is the slope of ui,z for z ∈ [1,Z ]. Applying the final
value theorem to the integral of eui yields,

lim
t→+∞

∫ t

0
eui (t) dt = Ki

∑Z

z=1
|αi (nz − nz−1)|γi

= KiAuiγi. (3)

Here eui = Kiui(n) − y(n); Aui =
∑Z

z=1 |αi (nz − nz−1)|
= |a (nz)− a (n1)|; a (n1) and a (nZ ) are the initial and final
steady-state values of ui(n), respectively.
Due to the Taylor expansion formula, the time delay term

can be approximated as e−θis = 1− θis. From the superposi-
tion principle and the final value theorem, it is ready to obtain
the integral of eu as

lim
t→+∞

∫ t

0
eu(t)dt =

I∑
i=1

lim
t→+∞

∫ t

0
eui (t) dt

= Aui

I∑
i=1

lim
s→0

Ki(Tis+ 1)−e−θis

(Tis+ 1)s

= AuiKi
I∑
i=1

lim
s→0

Ti + θi
Tis+ 1

=

I∑
i=1

AuiKiγi.

Remark 1: A preliminary form of (2) was developed
in [35] for single-input and single-output systems subject to
step signals. Here (2) is extended for MISO systems subject
to general types of signals.

Let ϕd denote the numerical integration of eu(n) in φd ,
i.e., ϕd = h

∑Nd
n=1 eu (n), where Nd is the number of data

samples in φd , and h is the sampling period. Given the set8D
and K̂ in (1), γi can be estimated simultaneously by solving
a set of linear equations,

ϕ1
ϕ2
...

ϕD


︸ ︷︷ ︸
2

=


A1,u1K̂1 · · · A1,uI K̂I 1
A2,u1K̂1 · · · A2,uI K̂I 1

...
...

...
...

AD,u1K̂1 · · · AD,uI K̂I 1


︸ ︷︷ ︸

9


γ1
γ2
...

γI
Cγ


︸ ︷︷ ︸

0

via the least-squares method as

0̂ =
(
9T9

)−1
9T2. (4)

The third step is to estimate the time delay θi ofGi based on
the time difference between change points of ui (n) and y (n).
Time sequences of φd are separated into piece-wise linear
representations (PLR) to obtain the sequences Pui (n) and
Py (n) as the trends ui(n) and y(n), respectively. The detailed
steps will be introduced later in Section III-B. A variableHy,l
takes the value ‘1’ for increasing or decreasing trends of the
l-th segment of y(n) in φd , and the value ‘0’ for no-changing
trends, i.e.,

Hy,l =

{
0, {Py(n)}

nl+Nl+1
nl = 1

1, {Py(n)}
nl+Nl+1
nl = 0

,

where nl and Nl for l ∈ [1,L] are respectively the sampling
index and the number of data samples in the l-th segment, L is
the number of segments in φd , and Py(n) is given later in (13).
The trend combination is Hy,d = {Hy,1,Hy,2, · · · ,Hy,L}Ll=1.
Analogously, the trend combination Hui,d of ui(n) in φd is
obtained.

A changing point ty,d of y(n) in φd is defined as the time
index when Hy,d makes a trend change from 0 to 1 for the
first time, i.e.,

ty,d = nl, for Hy,l = 1 and
l−1∑
a=1

Hy,a = 0. (5)

Note that Hy,1 is not equal to 1 because both ends of φd are
in steady states. Analogously to (5), the changing point tui,d
in [nl−1, nl+1] of ui in φd is found.
A new variable Ri,d is introduced to take the value ‘1’ for

the change of y (n) caused by a single input ui (n), i.e.,

Ri,d=

{
1, tui,d < tuj,d+Ttp, i 6= j and j=1, 2,· · ·,I
0, otherwise,

(6)

where Ttp is the largest threshold value of all the time delays.
The estimate θ̂i,d is determined from the time difference
between y(n) and ui(n) corresponding to Ri,d = 1, i.e.,

θ̂i,d = ty,d − tui,d , where Ri,d = 1. (7)

By repeating the steps in (6) and (7), all variables Ri,s’s with
s ∈ [1,Li] are found, and the estimated initial value of delay
θ̂i,0 can be determined as the average of all time differences
θ̂i,s’s related to Ri,s’s equal to 1, i.e.,

θ̂i,0 =
1
Li

∑Li

s=1
θ̂i,s, where Ri,s = 1. (8)

Given the estimates γ̂i in (4) and θ̂i,0 in (8), it is ready to
calculate the initial value of time constant Ti,0 as

T̂i,0 = γ̂i − θ̂i,0. (9)

By using θ̂i,0 in (8) and T̂i,0 in (9) as initial values, as well
as K̂i in (1) and γ̂i in (4), Ti’s can be estimated by solving an
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optimization problem:

T̂i = argmax
T̃i

R
(
K̂i, T̃i, γ̂i − T̃i

)
, (10)

where R
(
K̂i, T̃i, γ̂i − T̃i

)
is the fitness between the measured

output y(n) and the simulated output ŷ(n),

R
(
K̂i, T̃i, γ̂i − Ti,g

)
=

(
1−

∑N
n=1

(
y (n)− ŷ (n)

)2∑N
n=1 (y (n)− ȳ)

2

)
.

Here ȳ = 1
N

∑N
n=1 y (n), and ŷ (n) is obtained by passing

ui’s through Ĝi
(
s; K̂i, T̃i, γ̂i − T̃i

)
’s with model parameters

K̂i, T̃i, γ̂i − T̃i by using the Matlab function ‘lsim’ as

ŷ (n) = lsim
(
Ĝi
(
s; K̂i, T̃i, γ̂i − T̃i

)
, ui(n)

)
.

Given the estimates γ̂i in (4) and T̂i in (10), it is ready to
recalculate the delay θ̂i as

θ̂i = γ̂i − T̂i. (11)

In summary, the parametersKi, Ti, and θi in the MISO system
have been determined.

B. ACQUISITION OF SPECIAL DATA SEGMENTS
This subsection exploits a piece-wise linear representa-
tion (PLR) technique in [36] to find special data segments
for estimating dynamic model parameters.

The PLR separates a long time sequence {y (n)}Nn=1 intoM
short ones {y (n)}n2+N2−1

n=n1 , · · · , {y (n)}nm+Nm−1n=nm , where n1 = 1,
nm+Nm−1 = N , nm and Nm form ∈ [1,M ] are respectively
the sampling index and the number of data samples in them-th
segment. The m-th data segment {y (n)}nm+Nm−1n=nm is described
by a simple linear regression model, i.e.,

y(n) = am + bmn+ e(n),

where e (n) is white noise with zero mean and variance σ 2
e .

The unknown parameters am and bm are estimated from

âm = ȳ− b̂mn,

b̂m =

∑nm+1−1
n=nm (y (n)− ȳ) (n− n̄)∑nm+1−1

n=nm (n− n̄)2
, (12)

where ȳ =
∑nm+1−1

n=nm y(n)
nm+1−nm

and n̄ =
∑nm+1−1

nm n
nm+1−nm

. Thus, the m-th
data segment is represented by a straight line,

ŷ(n) = âm + b̂mn.

The loss function L (M) between y (n) and ŷ (n) is

L (M) =
M∑
m=1

nm+1−1∑
n=nm

(
y (n)− ŷ (n)

)2
.

The number M of data segments can be determined as the
smallest choice ofM ’s that L (M − 1), L (M) and L (M + 1)
are close to each other [37].

Two state sequences
{
Py(n)

}nm+Nm−1
n=nm

and
{
Qy(n)

}nm+Nm−1
n=nm

are introduced to characterize steady and transient states.{
Py (n)

}nm+Nm−1
n=nm

takes the value ‘1’ for {y (n)}nm+Nm−1n=nm in
steady states and otherwise the value ‘0’, i.e.,

{
Py (n)

}nm+Nm−1
n=nm

=

{
1, Ây,m ≤ Ay,p, Nm ≥ Ny
0, otherwise.

(13)

Here, Ây,m is the amplitude change in the m-th data segment
{y (n)}nm+Nm−1n=nm , i.e.,

Ây,m =
∣∣ŷ (nm + Nm − 1)− ŷ (nm)

∣∣ . (14)

Symbol Ny is the minimum time threshold, and Ay,p is the
maximum amplitude change threshold for y(n) in steady
states. Similarly,

{
Qy (n)

}nm+Nm−1
n=nm

takes the value ‘1’ in tran-
sient states and otherwise the value ‘0’, i.e.,

{
Qy (n)

}nm+Nm−1
n=nm

=

{
1, Ây,m≥Ay,q, Nm≥Ny
0, otherwise,

(15)

where Ay,q is the minimum amplitude change threshold
for y(n) to be in transient states. The threshold parameters
Ny, Ay,p and Ay,q will be decided later at the end of this
subsection.
Analogously to (13), (14) and (15), amplitude changes of

ui(n)’s and state sequences Pui (n) and Qui (n) are obtained.
The overall state sequences Po (n) and Qo (n) in steady and
transient states are

Po (n) =
∏

i=1,··· ,I

Pui (n) · Py (n) ,

Qo (n) =
∏

i=1,··· ,I

Qui (n) · Qy (n) .

The starting and ending positions ofPo (n) taking consecutive
values of ‘1’ are located as nf ,s and nf ,e,

Po
(
nf ,s − 1

)
= 0

Po
(
nf ,e + 1

)
= 0∑nf ,e

n=nf ,sPo (n)=nf ,e−nf ,s+1, for nf ,s < nf ,e.

Data segments of y(n) and ui(n) between nf ,s and nf ,e are in
steady states, to be embedded into a data set vf , i.e.,

vf = {y (n) , u1 (n) , · · · , uI (n)}
nf ,e
n=nf ,s .

Steady state values yss [f ] and ui,ss [f ] are respectively calcu-
lated as the sample means of vf , i.e.,

yss[f ]=

∑nf ,e
n=nf ,s y(n)

nf ,e − nf ,s + 1
, ui,ss[f ]=

∑nf ,e
n=nf ,s ui (n)

nf ,e − nf ,s + 1
. (16)

A set VF is obtained to enclose steady-state segments, i.e.,

VF = {v1, · · · , vF } , (17)

where F is the number of all steady-states segments. The
starting and ending positions of Qo (n) taking consecutive
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values of ‘1’ are located as nb,s and nb,e,
Qo
(
nb,s − 1

)
= 0

Qo
(
nb,e + 1

)
= 0∑nb,e

n=nb,sQo (n)=nb,e−nb,s + 1, for nb,s < nb,e.

Data segments of y(n) and ui(n) between nb,s and nb,e are in
transient states, to be embedded into a data set wb, i.e.,

wb = {y (n) , u1 (n) , · · · , uI (n)}
nb,e
n=nb,s .

A setWB is obtained to enclose transient-state segments, i.e.,

WB = {w1, · · · ,wB} , (18)

where B is the number of all transient states segments. For
the data segment wb with interval

[
nb,s, nb,e

]
, the nearest vf

and vf+1 in front and behind of wb are found, so that a special
data segment is obtained as

φd = {y (n) , u1 (n) , · · · , uI (n)}
nf+1,e
n=nf ,s ,

where nf ,s and nf+1,e are respectively the starting index of vf
and the ending index of vf+1. A set 8D is the one enclosing
all the special data segments, i.e.,

8D = {φ1, φ2, · · · , φD}, (19)

where D is the number of all special data segments.
The threshold parameters Ny, Ay,q and Ay,p are determined

here. The introduction of Ny is based on a common sense
that a data segment in the steady state should last for a while
before telling its operating condition. The rationale of Ny
is similar to the alarm delay timer [32], whose role is to
raise (clear) an alarmwhen several consecutive data points are
larger (smaller) than an alarm limit. A default value Ny = 60
is used to represent 60 sec if the sampling period is h = 1 sec
[32]. The parameter Ay,q has been investigated in our early
work [39],

Ay,q = 6.9282σ̂e,

where σ̂e is an unbiased estimate of σe [38],

σ̂e =

√√√√∑nm+Ny−1
n=nm (y(n)− ŷ(n))2

Ny − 1
.

The threshold parameter Ay,p is decided based on hypothe-
sis tests as follows. Consider the segment {y(n)}

nm+Ny−1
n=nm as

independent realizations of a random variable ywith meanµy
and variance σ 2

e . The estimated slope parameter b̂m in (12) is
known to be with the Gaussian distribution with mean bm and
variance σ 2

e /
∑nm+Ny−1

n=nm (n− n̄)2 [38]. A hypothesis test can
be formulated with the null hypothesis H0 : bm = 0 and the
alternative hypothesis H1 : bm 6= 0, based on the Students’s
t-statistic [38],

t =
b̂m − 0

σ̂e/

√∑nm+Ny−1
n=nm (n− n̄)2

=
b̂m
Sb̂m

.

FIGURE 2. A schematic diagram of the feedback control system in
Section IV.

The interval estimate of bm with the confidence level
100(1 − α)% is [b̂m − t(Ny−1,α/2) · Sb̂m , b̂m + t(Ny−1,α/2) ·
Sb̂m ], where t(Ny−1,α/2) is the critical value of Student’s
t-distribution with Ny − 1 degrees of freedom. The test is
carried out by comparing b̂m in (12) with the appropriate
critical value t(Ny−1,α/2) [38], that is, H0 is accepted at the
significance level α if

|t| < t(Ny−1,α/2).

Let us choose t(Ny−1,α/2)Sb̂m as the true value of bm for a worst
case scenario, being associated with α = 0.01, Ny = 60, and
t(Ny−1,α/2) = 2.39, i.e.,

bm = t(Ny−1,α/2)Sb̂m = 0.0178σ̂e.

Thus, Ay,p can be determined from bm as

Ay,p = (Ny − 1)bm = 1.0502σ̂e.

C. STEPS OF THE PROPOSED APPROACH
In the previous two subsections, four steps are presented
to estimate model parameters from historical data samples.
They are summarized as follows:

Step 1: Extract the set VF in (17) of steady-state data
segments, the setWB in (18) of transient-state data segments,
and the set8D in (19) of special data segments from historical
data samples.

Step 2: Calculate the static gains K̂i’s from (1) of multiple
dynamic systems.

Step 3: Obtain γ̂i’s from (4) as the sum of time constants
and delays of multiple dynamic systems.

Step 4: Determine the time constant T̂i in (10), and the time
delay θ̂i in (11).

IV. EXAMPLES
This section provides numerical examples to illus-
trate the proposed approach and compare with existing
ones.

A typical feedback control system is depicted in Figure 2,
where process variables r , y, u1, u2 are respectively the
reference, output, controller output and disturbance; e is the
Gaussian white noise with zero mean and variance σ 2

e . Sym-
bols C , G1 and G2 are respectively the proportional-integral
controller C(s) = 0.13

(
1+ 1

40s

)
, the dynamic system

between u1 and y, and the disturbance dynamics between
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FIGURE 3. Time sequences in a typical simulation: (a) y (n) (blue dash) and its PLR ŷ (n) (red solid),
special data segments (black dash line frame), (b) the counterparts for u1 (n), (c) the counterparts
for u2 (n).

u2 and y,

G1 (s) =
3

50s+ 1
e−30s, G2 (s) =

1.5
120s+ 1

e−70s.

The proposed approach is applied to data samples of
r , y, u1 and u2, where the sampling period is h =

0.5 sec. Figure 3 presents the time sequences and the
PLRs results of r , y, u1 and u2 in a typical simula-
tion with σ 2

e = 0.01. Eight special data segments are
found, marked by black dash line frames in Figure 3;
their starting and ending sampling indices are [1, 2515],
[2605, 4825], [4927, 7942], [8220, 11476], [11792, 14463],
[14820, 17855], [18142, 21252] and [21327, 24265].
As expected, two ends of these data segments are in steady
states, and the middle parts are with significant amplitude
changes of u1, u2 and y.
Based on steady-state values of u1, u2 and y, the estimated

static gains K̂1 = 3.000 and K̂2 = 1.498 are obtained
from (1), and are very close to the true values K1 = 3 and
K2 = 1.5. Based on transient data samples, the estimated
sums of the time constants and delays γ̂1 = T̂1 + θ̂1 = 79.6
and γ̂2 = T̂2 + θ̂2 = 189.3 are obtained from (4), and
are very close to the true values γ1 = T1 + θ1 = 80 and
γ2 = T2 + θ2 = 190. Eq. (10) leads to the estimated
time constants T̂1 = 48.45 and T̂2 = 119.55, so that (11)
gives the estimated time delays θ̂1 = γ̂1 − T̂1 = 79.6 −
48.45 = 31.15 and θ̂2 = 189.3 − 119.55 = 69.75. The
estimated time constants and delays are quite close to the true
values.

As a comparison, the ML and IV approaches are deployed
here. The time delays are determined by the function
delayest [21] as the initial estimates, and the structure of
the identification model is given in advance. The function
tfest in Matlab System Identification Toolbox [21] and the

FIGURE 4. Boxplots of the estimated parameters in 100 Monte Carlo
simulations with σ2

e = 0.1, where black dash lines are the true values of
model parameters.

function srivc in CONTSID Toolbox [22] are used to obtain
the identification parameter results of the ML and IV
approaches, respectively.

Table 1 lists the results from the three approaches in one
typical simulation. Themodel quality is measured by a fitness
R between the measured output y (n) and the simulated output
ŷ (n), i.e.,

R =

(
1−

∑N
n=1

(
y (n)− ŷ (n)

)2∑N
n=1 (y (n)− ȳ)

2

)
, (20)
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FIGURE 5. Boxplots of the estimated parameters in 100 Monte Carlo
simulations with σ2

e = 0.5, where black dash lines are the true values of
model parameters.

where ȳ = 1
N

∑N
n=1 y (n), and ŷ (n) is obtained by passing

ui’s through the identified models Ĝi(s)’s by using the Matlab
function ‘lsim’ as

ŷ (n) = lsim
(
Ĝi(s), ui(n)

)
.

All fitness values in (20) of three approaches are above 98%,
saying that the three approaches have achieved satisfactory
output fitting results. However, estimated model parameters
from the proposed approach are more accurate than the
counterparts from the ML and IV approaches. In particu-
lar, the estimated time constants and delays from the ML
and IV approaches have large errors away from the true
values.

Figures 4, 5 and 6 present the distributions of estimated
model parameters from the three approaches in Monte Carlo
simulations with different noise levels. Similar to the results
in Table 1, the proposed approach yields more accurate esti-
mates of model parameters than the ML and IV approaches.
The estimated static gains, time constants and delays from
the proposed approach are very accurate at different noise
levels. By contrast, estimated model parameters from the
ML and IV approaches are often deviated away from the
true values. This is under expectation, because the ML and
IV approaches do not treat steady- and transient-state data
samples separately, and estimate static gains, time constants
and delays simultaneously in one optimization. As a result,
there is an optimization balance among three estimatedmodel
parameters; in other words, different combinations of static
gains, time constants and delays can lead to similar optimiza-
tion results. This can be revealed from the estimates of Ti+θi
in the second top subplots of Figures 4, 5 and 6: the true values

FIGURE 6. Boxplots of the estimated parameters in 100 Monte Carlo
simulations with σ2

e = 1, where black dash lines are the true values of
model parameters.

of Ti + θi are often covered by the distributions of estimates,
but the true values of Ti (or θi) are not.
Besides the accuracies of estimated model parameters,

there is another major difference in term of model validation
between the proposed approach and two existing ones. For the
proposed approach, the accuracies of estimated static gains
(time constants and delays) can be clearly revealed by com-
paring the estimated and measured outputs in steady (tran-
sient) states. However, for theML and IV approaches, there is
not such a transparent way for validating the estimated model
parameters.

V. CONCLUSION
The paper proposed an approach to estimate model parame-
ters of multiple continuous-time dynamic systems based on
special data segments extracted from historical data samples.
First, special data segments in steady- and transient-states
were found automatically by exploiting piece-wise linear
representations from historical data samples. Second, static
gains, time constants and delays were respectively esti-
mated by solving two sets of multiple linear equations
based on steady- and transient-state values of inputs and
outputs. Numerical examples were provided to show that
the proposed approach yielded more accurate estimates of
model parameters than two existing continuous-time model
identification approaches; moreover, estimated static gains
(time constants and delays) could be validated by comparing
the measured and simulated outputs in steady (transient)
states.

The proposed approach can be extended to nonlinear
or linear time-varying dynamic systems, by classifying
steady-state and transient-state data samples being associated
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with different static gains, time constants and delays into
corresponding groups. Estimated model parameters can be
validated by looking at the measured and simulated outputs
in steady- and transient-states. Such an extension will be
a feasible and practical way to resolve these challenging
identification problems.
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