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ABSTRACT This paper investigates the stability of a class of quaternion-valued neural networks (QVNNs)
with discrete and distributed delays. By decomposing the QVNN and forming an equivalent real-valued
vector-matrix differential equation (RVVDE), based on the Lyapunov theory and some matrix inequalities,
some sufficient conditions are derived to ensure the existence and uniqueness, the globally exponential
stability and the globally power stability of the equilibrium of RVVDE. These conditions also apply to the
QVNN. Two numerical examples are given to show the advantage and the effectiveness of the main results.

INDEX TERMS Globally exponential stability, globally power stability, quaternion-valued neural network.

I. INTRODUCTION
Neural network is a parallel distributed processor with a
large number of connections, and it has an adaptive ability
to acquire knowledge through learning [1]. Since the neu-
ral network model was proposed by Hopfield in 1982 [2],
more and more results on neural networks have been put
forward. For the various characteristics of neural networks,
many interesting directions of neural networks appear in large
numbers [3]–[6]. More cross-studies on neural networks have
emerged [7]–[11].

In the last few decades, the stability, the synchroniza-
tion, the limit cycles, the branches, the oscillation and the
chaotic attractors of neural networks have been widely stud-
ied [12]–[14]. Many interesting results on the stability of
the equilibrium point of the real-valued neural networks
(RVNNs), whose state variables, activation functions, link
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weights and external inputs are all real-valued [3], [5], [6],
[15], have been obtained. However, RVNNs can process
low-dimensional data well but perform poorly when pro-
cessing high-dimensional data. Complex-valued neural net-
works (CVNNs), whose state variables, activation functions,
link weights and external inputs are all complex-valued, can
deal with high-dimensional data efficiently. CVNNs can be
thought as an extension of RVNNs and as a class of impor-
tant nonlinear complex-valued systems [16], [17]. Moreover,
CVNNs have been applied in many fields, such as imaging
processing, photoelectron, remote sense and so on [18]. How-
ever, we hope there would be more applications for neural
networks, so that we extend the CVNNs once again. There
come quaternion value neural networks(QVNNs).

A quaternion is a supercomplex number, which is a math-
ematical concept and discovered in 1843. Because of the
diversity of its expression forms, the quaternion is wildly
used in various fields, such as machine and structure, robot
technology, and satellite attitude adjustment and so on [19].
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By a quaternionic approach, the optimum separation of polar-
ized signals was realized by Buchholz and Bihanthe [20].
Contacting neural network with quaternions, we can obtain
a class of more complex neural networks, QVNNs, whose
state variables, activation functions, link weights and external
inputs are all quaternion-valued. Research on the dynamics
characteristics and applications of QVNNs is becoming a hot
topic [20]–[26]. By using the Lyapunov theory and home-
omorphic mapping theory, the robust stability of delayed
QVNNs with parameter uncertainties was analyzed [22].
Based on homeomorphic mapping theory and complex
decomposition method, the globally asymptotical stability
of continuous-time QVNNs and discrete-time QVNNs was
considered in [24]. Based on homeomorphic mapping the-
orem and linear matrix inequality, several sufficient criteria
are proposed to verify that the QVNNs with both discrete
and distributed delays is globally asymptotically stable and
globally exponentially stable [27].

As is well known, the stability of various neural networks
is a key factor in many applications. So it is important to
use a suitable method to ascertain the stability of QVNNs.
Some results concern the dynamic characteristics of QVNNs
by taking QVNNs as an entirety without decomposition
[21], [22]. However, some results investigated the stability
of QVNNS by equivalently decomposing QVNNs into two
CVNNs or four RVNNs [23], [24], which is concise and
practical because there are many methods to investigate the
stability of RVNNs or CVNNs.

Meanwhile, time delays are probably inevitable in the
practical neural networks, because the transmission of infor-
mation may take some time. Currently, some results on
neural network with time delays always fix on the disad-
vantage to the stability of neural networks [27]–[35]. Per-
haps, on the contrary, by time delays, we could control
the dynamic behavior of neural networks better. The global
convergence of a class of RVNNs with time delays was
analyzed [29]. The globally asymptotic robust stability of
delayed RVNNs with norm-bounded uncertainties was stud-
ied [30]. By a decomposition method and an appropriate
Lyapunov–Krasovskii functional, the global µ-stability of a
class of QVNNs with unbounded time-varying delays was
investigated [35]. When considering globally asymptotical
stability and globally exponential stability of RVNNs, Chen
and Wang in [33] proposed a new concept – globally power
stability. To the best of our knowledge, there are few papers
concerning the stability of QVNNs with mixed delays, such
as, with both discrete and distributed delays.

Enlightened by the above analysis, this paper investigates
the stability problem of a class of QVNNs with discrete
and distributed delays, by decomposing the QVNN into four
real-valued neural networks and forming a RVVDE. This
paper’s main contributions are listed as follows. Firstly, to the
best of our knowledge, it is the first time to analyze the
stability of a class of QVNNs with mixed time delays by a
decomposition method. Compared with [23], our model is
a more general QVNN with discrete and distributed delays,

and compared with [27], to study the stability of the equi-
librium of QVNNs, our method is an equivalent decomposi-
tion method, not by taking QVNNs as an entirety. Secondly,
by constructing some new Lyapunov–Krasovskii functionals
and matrix inequalities, three sufficient conditions are pro-
posed to ensure the existence and uniqueness, the globally
exponential stability and the globally power stability of the
equilibrium of the RVVDE. Note that these criteria, without
too many restrictions compared with Theorem 1 in [23], are
suitable not only for QVNNs but also for RVNNs. Finally,
our criteria formulated by matrix inequalities can be easily
checked, and our decomposition methods are of faster con-
vergence speed than the results in [27].

The remaining sections are organized as follows.
In Section 2, we present the considered QVNNs model
descriptions and some preliminaries. In section 3, the stability
analysis of QVNNs with discrete and distributed delays is
given. In Section 4, the effectiveness of our results is verified
by numerical examples. In Section 5, some conclusions and
some future ideas are given.

Notations: Throughout this article, some notations will
be used. R denotes the set of real numbers. C denotes
the set of complex numbers. Rm×n, Qm×n denote the set
of all m × n real-valued and quaternion-valued matrices,
respectively. Q denotes the set of quaternions. Qn denotes
the n-dimensional quaternion space. The conjugate transpose
of q ∈ Q is q∗ = q(r) − q(i)i − q(j)j − q(k)k . ‖q‖ =
√
qq∗ =

√(
q(r)

)2
+
(
q(i)
)2
+
(
q(j)
)2
+
(
q(k)

)2. φ ∈ C([t0 −
τ, t0]; Qn) denotes a continuous mapping from [t0 − τ, t0]
to Qn, ‖φ‖ = supt0−τ≤s≤t0 |φ(s)|. [A]

S denotes the sym-
metric part of matrix A and [A]S = 1

2 (A
T
+ A), where AT

denotes transpose of A. If A is a symmetric matrix, A > 0
(A ≥ 0) means that A is positive definite (positive semidef-
inite). Similarly, A < 0 (A ≤ 0) means that A is negative
definite (negative semidefinite). The matrix norm of A is
written as ‖A‖ = (λmax(ATA))

1
2 , and λmax is the largest

eigenvalue of the matrix.

II. PRELIMINARIES
Firstly, some preliminaries are recapitulated. The symbol q
denotes a quaternion, if q = q(r)+ q(i)i+ q(j)j+ q(k)k , where
q(r), q(i), q(j), q(k) ∈ R. And i, j, k satisfy the following
rules:

i2 = j2 = k2 = −1, ij = −ji = k,

jk = −kj = i, ki = −ik = j.

Obviously, you have to pay attention to the noncommutativity
of quaternion multiplication.

Consider the following QVNN with discrete and dis-
tributed delays:

q̇(t) = −Dq(t)+ Af (q(t))+ Bf (q(t − τ (t)))

+C
∫ t

t−τ
f (q(s))ds+ U , (1)

where q(t) = (q1(t), q2(t), · · · , qn(t)) ∈ Qn is the
state vector at time t . D = diag{d1, d2, · · · , dn} ∈ Rn×n
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denotes the self-feedback connection weight matrix with
dl > 0, l = 1, 2, · · · , n. A, B, C ∈ Qn×n are link weights
matrices. f (q(t)) = (f1(q1(t)), f2(q2(t)), · · · , fn(qn(t)))T ∈
Qn, f (q(t − τ (t))) = (f1(q1(t − τ (t))), f2(q2(t −
τ (t))), · · · , fn(qn(t − τ (t))))T ∈ Qn and

∫ t
t−τ f (q(s))ds =(∫ t

t−τ f1(q1(s))ds,
∫ t
t−τ f2(q2(s))ds, · · · ,

∫ t
t−τ fn(qn(s))ds

)T
∈ Qn are vector activation functions without time delays,
with discrete delays and with distributed delays respectively.
τ (t) and τ denote the discrete time-varying delay and dis-
tributed delay respectively. τ (t) satisfies 0 < τ (t) ≤ τ ,
τ̇ (t) ≤ µ < 1. U = (u1(t), u2(t), · · · , un(t))T ∈ Qn denotes
external input vector. The initial condition is given by q(s) =
φ(s) ∈ Qn, s ∈ [t0 − τ, t0], where φ(s) = φ(r)(s)+ φ(i)(s)i+
φ(j)(s)j+φ(k)(s)k . Just as the definition presented in [27], if q∗

satisfies −Dq∗ +Cf (q∗)+ Af (q∗)+ τBf (q∗)+U = 0, then
q∗ is an equilibrium point of (1).

Let

q(t) = q(r)(t)+ iq(i)(t)+ jq(j)(t)+ kq(k)(t),
f (q(t)) = f (r)(q(r)(t))+ if (i)(q(i)(t))+ jf (j)(q(j)(t))

+ kf (k)(q(k)(t)),∫ t

t−τ
f (q(s))ds =

∫ t

t−τ
f (r)(q(r)(s))ds

+ i
∫ t

t−τ
f (i)(q(i)(s))ds

+ j
∫ t

t−τ
f (j)(q(j)(s))ds

+ k
∫ t

t−τ
f (k)(q(k)(s))ds,

A = A(r) + iA(i) + jA(j) + kA(k),
B = B(r) + iB(i) + jB(j) + kB(k),
C = C (r)

+ iC (i)
+ jC (j)

+ kC (k),

where q(l)(t), f (l)(q(l)(t)),
∫ t
t−τ f

(l)(q(l)(s))ds ∈ Rn, A(l), B(l),
C (l)
∈ Rn×n, l = r, i, j, k .

QVNN (1) can be separated into four RVNNs as follows:

q̇(r)(t) = −Dq(r)(t)+ A(r)f (r)(q(r)(t))− A(i)f (i)(q(i)(t))
−A(j)f (j)(q(j)(t))− A(k)f (k)(q(k)(t))
+B(r)f (r)(q(r)(t − τ (t)))
−B(i)f (i)(q(i)(t − τ (t)))
−B(j)f (j)(q(j)(t − τ (t)))
−B(k)f (k)(q(k)(t − τ (t)))

+C (r)
∫ t

t−τ
f (r)(q(r)(s))ds

−C (i)
∫ t

t−τ
f (i)(q(i)(s))ds

−C (j)
∫ t

t−τ
f (j)(q(r)(s))ds

−C (k)
∫ t

t−τ
f (k)(q(k)(s))ds+ U (r), (2)

q̇(i)(t) = −Dq(i)(t)+ A(r)f (i)(q(i)(t))+ A(i)f (r)(q(r)(t))
+A(j)f (k)(q(k)(t))− A(k)f (j)(q(j)(t))
+B(r)f (i)(q(i)(t − τ (t)))
+B(i)f (r)(q(r)(t − τ (t)))
+B(j)f (k)(q(k)(t − τ (t)))

−B(k)f (j)(q(j)(t − τ (t)))

+C (r)
∫ t

t−τ
f (i)(q(i)(s))ds

+C (i)
∫ t

t−τ
f (r)(q(r)(s))ds

+C (j)
∫ t

t−τ
f (k)(q(k)(s))ds

−C (k)
∫ t

t−τ
f (j)(q(j)(s))ds+ U (i), (3)

q̇(j)(t) = −Dq(j)(t)+ A(r)f (j)(q(j)(t))
+A(j)f (r)(q(r)(t))− A(i)f (k)(q(k)(t))
+A(k)f (i)(q(i)(t))
+B(r)f (j)(q(j)(t − τ (t)))
+B(j)f (r)(q(r)(t − τ (t)))
−B(i)f (k)(q(k)(t − τ (t)))
+B(k)f (i)(q(i)(t − τ (t)))

+C (r)
∫ t

t−τ
f (j)(q(j)(s))ds

+C (j)
∫ t

t−τ
f (r)(q(r)(s))ds

−C (i)
∫ t

t−τ
f (k)(q(k)(s))ds

+C (k)
∫ t

t−τ
f (i)(q(i)(s))ds+ U (j), (4)

q̇(k)(t) = −Dq(k)(t)+ A(r)f (k)(q(k)(t))
+A(k)f (r)(q(r)(t))+ A(i)f (j)(q(j)(t))
−A(j)f (i)(q(i)(t))
+B(r)f (k)(q(k)(t − τ (t)))
+B(k)f (r)(q(r)(t − τ (t)))
+B(i)f (j)(q(j)(t − τ (t)))
−B(j)f (i)(q(i)(t − τ (t)))

+C (r)
∫ t

t−τ
f (k)(q(k)(s))ds

+C (k)
∫ t

t−τ
f (r)(q(r)(s))ds

+C (i)
∫ t

t−τ
f (j)(q(j)(s))ds

−C (j)
∫ t

t−τ
f (i)(q(i)(s))ds+ U (k). (5)

According to (2), (3), (4), (5), one can obtain that

Q̇(t) = −D̂Q(t)+ Â̂f (Q(t))+ B̂̂f (Q(t − τ (t)))

+ Ĉ
∫ t

t−τ
f̂ (Q(s))ds+ Û , (6)

where

D̂

= diag {D ,D ,D ,D} ∈ R4n×4n,

Â

=


A(r) − A(i) − A(j) − A(k)

A(i) A(r) − A(k) A(j)

A(j) A(k) A(r) − A(i)

A(k) − A(j) A(i) A(r)

∈R4n×4n,
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B̂

=


B(r) − B(i) − B(j) − B(k)

B(i) B(r) − B(k) B(j)

B(j) B(k) B(r) − B(i)

B(k) − B(j) B(i) B(r)

∈R4n×4n,

Ĉ

=


C (r)

− C (i)
− C (j)

− C (k)

C (i) C (r)
− C (k) C (j)

C (j) C (k) C (r)
− C (i)

C (k)
− C (j) C (i) C (r)

∈R4n×4n,

Q(t)

=

(
q(r)(t)T , q(i)(t)T , q(j)(t)T , q(k)(t)T

)T
∈ R4n,

Û

=

(
(U (r))T , (U (i))T , (U j)T , (U k )T

)T
∈ R4n,

f̂ (Q(t))

=

(
(f (r)(q(r)(t))T , (f (i)(q(i)(t))T ,

(f (j)(q(j)(t))T , (f (k)(q(k)(t))T
)T
∈ R4n,

f̂ (Q(t − τ (t)))

=

(
(f (r)(q(r)(t − τ (t))))T ,

(f (i)(q(i)(t − τ (t))))T ,
(f (j)(q(j)(t − τ (t))))T ,

(f (k)(q(k)(t − τ (t))))T
)T
∈ R4n,∫ t

t−τ
f̂ (Q(s))ds

=

((∫ t

t−τ
f (r)(q(r)(s))ds

)T
,(∫ t

t−τ
f (i)(q(i)(s))ds

)T
,(∫ t

t−τ
f (j)(q(j)(s))ds

)T
,(∫ t

t−τ
f (k)(q(k)(s))ds

)T )T
∈ R4n.

Remark 1: System (6) is a RVNN with mixed delays.
Obviously, the equilibrium point and dynamic characteristics
of QVNN (1) are the same as those of system (6) by matching
q(t) = q(r)(t) + iq(i)(t) + jq(j)(t) + kq(k)(t) with Q(t) =((
q(r)(t)

)T
,
(
q(i)(t)

)T
,
(
q(j)(t)

)T
,
(
q(k)(t)

)T)T
. Therefore,

one can investigate the dynamics characteristics of the equi-
librium of the system (6) instead of system (1).
Definition 1 ([29]): A = (aij)n×n (aij ∈ R) is called

a Lyapunov Diagonally Stable (LDS) matrix, if there is a
matrix P, such that PT = P, P > 0 and [PA]S > 0.
Definition 2 ([29]): A map H : Rn

→ Rn is said to
be a homeomorphism of Rn onto itself, if it satisfies: H is
continuous, one-to-one and onto, and its inverse mapping
H−1 is continuous too.
Definition 3 ([27]): The unique equilibrium point Q∗ of

real valued system (6) is said to be globally exponentially

stable if there exists a constant α > 0 (α ∈ R) such that

‖Q(t)− Q∗‖ ≤ ‖φ(t)− Q∗‖e−αt , t ≥ t0.

Definition 4 ([33]): Suppose that there are constants
M > 0 and γ > 0 (M , γ ∈ R), such that

‖Q(t)− Q∗‖ ≤ Mt−γ ,

then, the system (6) is power-rate globally stable with power
convergence rate γ , or globally power stable.
Assumption 1 ([29]): A continuous function f : Rn

→

Rn of the form f = (f1, f2, ..., fn)T is said to be of class
G{G1,G2, · · · ,Gn}, and G = diag{G1,G2, · · · ,Gn} with
0 < Gi < +∞, i = 1, 2, ..., n, if the function f (x) satisfies
0 ≤ fi(x)−fi(y)

x−y ≤ Gi for each x, y ∈ R, x 6= y and for
i = 1, 2, · · · , n.
Assumption 2: Under Assumption 1, we have f̂ =

((f (r))T , (f (i))T , (f (j))T , (f (k))T )T = (̂f1, f̂2, · · · , f̂4n)T :
R4n

→ R4n, f̂ ∈ G{Ĝ1, Ĝ2, · · · , Ĝ4n} and Ĝ =

diag{G, G, G, G}.

Lemma 1 ([36]): The LMI H =
(
H11 H12
HT
12 H22

)
< 0 with

H11 = HT
11, H22 = HT

22 is equivalent to one of the following
conditions:

1) H22 < 0, H11 − H
−1
12 H

T
12 < 0;

2) H11 < 0, H22 − HT
12H
−1
11 H12 < 0.

Lemma 2 ([34]): Under Assumption 1 and DG−1 − A ∈
LDS, we have:

1) H (Q) = −DQ+Af (Q)+ I is a homeomorphism of Rn

onto itself;
2) the system dQ(t)

dt = −DQ(t)+Af (Q(t))+U has a unique
equilibrium point for each U ∈ Rn.

Lemma 3 ([37]): For any constant matrix W ∈ Rm×m,

W = W T > 0, scalar γ > 0, vector function ω : [0, γ ]→
Rm, such that(∫ γ

0
ω(s)ds

)T
W
(∫ γ

0
ω(s)ds

)
≤ γ

∫ γ

0
ωT (s)Wω(s)ds. (7)

Lemma 4 ([33]): Let P, D, S be real matrices of appro-
priate dimensions, and P is positive definite. Then for any
vectors x and y with appropriate dimensions, it holds that

2xTDSy ≤ xTDSP−1(DS)T x + yTPy. (8)

III. MAIN RESULTS
In this section we will propose three criteria for the existence
and uniqueness, globally exponential stability and globally
power stability of the equilibrium of the given system (6)
by using matrix inequalities and Lyapunov analysis respec-
tively. At last, two corollaries are given for QVNNs without
distributed delays.
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Theorem 1: Under Assumption 2, there exist positive
diagonal matrices P, Q and R such that:2PD̂Ĝ−1−(PÂ+ÂTP)−Q−R PB̂ P(τ Ĉ)

B̂TP Q 0
(τ Ĉ)TP 0 R

> 0, (9)

then, for each U ∈ Rn, system (6) has a unique equilibrium
point.

Proof: From Assumption 2, Eq.(9) and Lemma 1, one
can obtain

2PD̂Ĝ−1−(PÂ+ ÂTP) > PB̂Q−1 (̂B)TP+ Q

+P(τ Ĉ)R−1(τ Ĉ)TP+R. (10)

By the inequality [Q−
1
2 (PB̂)T −Q

1
2 ]T [Q−

1
2 (PB̂)T −Q

1
2 ] ≥ 0,

we have PB̂Q−1 (̂B)TP+Q ≥ PB̂+ B̂TP. Similarly, we have
P(τ Ĉ)R−1(τ Ĉ)TP+R ≥ P(τ Ĉ)+(τ Ĉ)TP . So (10) becomes

2PD̂Ĝ−1 > P(̂A+ B̂+ τ Ĉ)+ (̂A+ B̂+ τ Ĉ)TP , (11)

that is,

{P(D̂Ĝ−1 − Â− B̂− τ Ĉ)}s > 0 , (12)

which implies D̂Ĝ−1 − (̂A + B̂ + τ Ĉ) ∈ LDS by Defini-
tion 1. From Lemma 2, H (Q) = −D̂Q + Â̂f (Q) + B̂̂f (Q) +
τ Ĉ f̂ (Q)+Û is a homeomorphism ofRn onto itself, and hence
system (6) has a unique equilibrium point for each Û ∈ Rn.
This completes the proof. �
Remark 2: Theorem 1 aims to investigate the existence

and uniqueness of equilibrium of QVNN, from the proof
process of Theorem 1, it is concise compared with the proof
process of the Theorem 3.1 in [27]. For requiring fewer
variables and instead of considering τ (t), the criterion can be
more easily checked by the LMI toolbox in MATLAB than
that in [27], too.
By decomposing the QVVN (1) into RVNNs, one can

obtain system (6) which is a high-dimensional RVVDE and
whose model is more practical than that in [29], for one
more item–distributed delays than [29] and with time-varying
delays. However, inspired by themethod of [29], next, wewill
construct a new Lyapunov functional to investigate the glob-
ally exponential stability of the system (6).
Theorem 2: Under Assumption 2, there exist positive

diagonal matrices P, Q and R such that:2PD̂Ĝ−1−(PÂ+ ÂTP)−Q− R PB̂ P(τ Ĉ)
(̂B)TP (1−µ)Q 0
(τ Ĉ)TP 0 R


> 0, (13)

then, for each U ∈ Rn, system (6) has a unique equilibrium
point which is globally exponentially stable.

Proof: Suppose that Q∗ =
(
(q∗(r))T , (q∗(i))T , (q∗(j))T ,

(q∗(k))T
)T
=

(
Q∗1,Q

∗

2, · · · ,Q
∗

4n

)T
∈ R4n is an equi-

librium point of real-valued system (6) and q∗ =

q∗(r) + iq∗(i) + jq∗(j) + kq∗(k) is an equilibrium point of
system (1). By transformation Q̂(t) = Q(t) − Q∗ and

Q̂(t) = (Q̂1(t), Q̂2(t), · · · , Q̂4n(t))T ∈ R4n, one can obtain
the following vector form of real-valued system (14):

˙̂Q(t) = −D̂Q̂(t)+ ÂF(Q̂(t))+ B̂F(Q̂(t − τ (t)))

+ Ĉ
∫ t

t−τ
F(Q̂(s))ds , (14)

where F(Q̂(t)) = f̂ (Q̂(t)+ Q∗)− f̂ (Q∗) .
Clearly, Q∗ is globally exponentially stable for (6) if and

only if the trivial solution of (14) is globally exponentially
stable. To analyze the global stability of the trivial solution
of (14), we consider the following Lyapunov functional:

V (Q̂(t), t)= eεt Q̂T (t)Q̂(t)+ 2α
4n∑
i=1

Pieεt
∫ Q̂i(t)

0
Fi(ρ)dρ

+ (α + β)
∫ t

t−τ (t)
FT (Q̂(s))QF(Q̂(s))eε(s+τ )ds

+
α

τ

∫ 0

−τ

∫ t

t+s
eε(θ+τ )FT (Q̂(θ ))RF(Q̂(θ ))dθds,

(15)

where positive constants α and β are to be decided and ε > 0
is a small real number and P = diag{P1, P2, · · · ,P4n },
Q = diag{Q1, Q2, · · · , Q4n }, Pi > 0, Qi > 0, ρ can be
regarded as Q̂i(s), i = 1, 2, · · · , 4n. Differentiating V along
the solution of (14), we have

V̇ (Q̂(t), t) = εeεt Q̂T (t)Q̂(t)+ 2eεt Q̂T (t)
[
−D̂Q̂(t)

+ ÂF(Q̂(t))+ B̂F(Q̂(t − τ (t)))

+ Ĉ
∫ t

t−τ
F(Q̂(s))ds

]
+ 2αεeεt

4n∑
i=0

Pi

∫ Qi(t)

0
Fi(ρ)dρ

+ 2αeεtFT (Q̂(t))P
[
−D̂Q̂(t)+ ÂF(Q̂(t))

+ B̂F(Q̂(t − τ (t)))+ Ĉ
∫ t

t−τ
F(Q̂(s))ds

]
+ (α + β)eεt

[
FT (Q̂(t))eετQF(Q̂(t))

− (1− τ̇ (t))eε(t+τ−τ (t))FT (Q̂(t − τ (t)))

·QF(Q(t − τ (t)))
]

+αeε(t+τ )FT (Q̂(t))RF(Q̂(t))

−
α

τ

∫ t

t−τ
eε(s+τ )FT (Q̂(s))RF(Q̂(s))ds , (16)

where τ is a constant. For 0 < τ (t) < τ , τ̇ (t) < µ < 1,
thus,

V̇ (Q̂(t), t) ≤ eεt
{
εQ̂T (t)Q̂(t)+ 2Q̂T (t)

[
−D̂Q̂(t)

+ ÂF(Q̂(t))+ B̂F(Q̂(t − τ (t)))

+ Ĉ
∫ t

t−τ
F(Q̂(s))ds

]
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+ 2αεeεt
4n∑
i=0

Pi

∫ Q̂i(t)

0
Fi(ρ)dρ

+ 2αeεtFT (Q̂(t))P
[
−D̂Q̂(t)+ ÂF(Q̂(t))

+ B̂F(Q̂(t − τ (t)))+ Ĉ
∫ t

t−τ
F(Q̂(s))ds

]
+ (α + β)

[
FT (Q̂(t))eετQF(Q̂(t))

− (1− µ)FT (Q̂(t − τ (t)))QF(Q̂(t − τ (t)))
]

+αeετFT (Q̂(t))RF(Q̂(t))

−
α

τ

∫ t

t−τ
FT (Q̂(s))RF(Q̂(s))ds

}
. (17)

By Assumption 2, |Fi(ρ)| = |̂fi(ρ +Q∗i )− f̂i(Q
∗
i )| ≤ Ĝi|ρ|

for each ρ ∈ R, i = 1, 2, · · · , 4n, and one can obtain∫ Q̂i(t)

0
Fi(ρ)dρ ≤

1
2
ĜiQ̂2

i (t), (18)

FT (Q̂(t))(−PD̂)Q̂(t)
≤ FT (Q̂(t))(−PD̂Ĝ−1)F(Q̂(t)). (19)

By Lemma 3, Eq. (18) and (19),

V̇ (Q̂(t), t) ≤ eεt
{
Q̂T (t)

[
εI − 2D̂+ αεPĜ

]
Q̂(t)

+ 2Q̂T (t )̂AF(Q̂(t))
+ 2Q̂T (t )̂BF(Q̂(t − τ (t)))

+ 2Q̂T (t)Ĉ
∫ t

t−τ
F(Q̂(s))ds

+ 2αFT (Q̂(t))(−PD̂Ĝ−1)F(Q̂(t))
+ 2αFT (Q̂(t))PÂF(Q̂(t))
+ 2αFT (Q̂(t))PB̂F(Q̂(t − τ (t)))

+ 2αFT (Q̂(t))PĈ
∫ t

t−τ
F(Q̂(s)ds)

+ (α + β)FT (Q̂(t))eετQF(Q̂(t))
+αeετFT (Q̂(t))RF(Q̂(t))
− (α + β)(1− µ)FT (Q̂(t − τ (t)))Q
·F(Q̂(t − τ (t)))

−
α

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
R

·

(∫ t

t−τ
F(Q̂(s))ds

)}
, (20)

V̇ (Q̂(t), t) ≤ eεt
{
−3Q̂T (t)[

2
3
D−

1
3
εI −

1
3
αεPĜ]Q̂(t)

+ 2Q̂T (t )̂AF(Q̂(t))
+ 2Q̂T (t )̂BF(Q̂(t − τ (t)))

+ 2Q̂T (t)Ĉ
∫ t

t−τ
F(Q̂(s))ds

+ 2αFT (Q̂(t))(−PD̂Ĝ−1)F(Q̂(t))
+ 2αFT (Q̂(t))PÂF(Q̂(t))
+ 2αFT (Q̂(t))PB̂F(Q̂(t − τ (t)))

+ 2αFT (Q̂(t))PĈ
∫ t

t−τ
F(Q̂(s)ds

+ (α + β)FT (Q̂(t))eετQF(Q̂(t))
+αeετFT (Q̂(t))RF(Q̂(t))

− (α + β)(1− µ)FT (Q̂(t − τ (t)))
·QF(Q̂(t − τ (t)))

−
α

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
R

·

(∫ t

t−τ
F(Q̂(s))ds

)}
. (21)

Let us discuss an inequality:

−Q̂T (t)(
2
3
D−

1
3
εI −

1
3
αεPĜ)Q̂(t)

+ 2Q̂T (t )̂AF(Q̂(t))

= −
[
(
2
3
D−

1
3
εI −

1
3
αεPĜ)

1
2 Q̂(t)

− (
2
3
D−

1
3
εI −

1
3
αεPĜ)−

1
2 ÂF(Q̂(t))

]T
·
[
(
2
3
D̂−

1
3
εI −

1
3
αεPG)

1
2 Q̂(t)

− (
2
3
D̂−

1
3
εI −

1
3
αεPĜ)−

1
2 ÂF(Q̂(t))

]
+FT (Q̂(t))̂AT (

2
3
D̂−

1
3
εI −

1
3
αεPĜ)−1

· ÂF(Q̂(t))

≤ FT (Q̂(t))̂AT (
2
3
D̂−

1
3
εI −

1
3
αεPĜ)−1

· ÂF(Q̂(t)) . (22)

Similarly, we have

−Q̂T (t)(
2
3
D̂−

1
3
εI −

1
3
αεPĜ)Q̂(t)

+ 2Q̂T (t )̂BF(Q̂(t − τ (t)))

≤ FT (Q̂(t − τ (t)))̂BT (
2
3
D−

1
3
εI −

1
3
αεPĜ)−1

· B̂F(Q̂(t − τ (t))) , (23)

− Q̂T (t)(
2
3
D̂−

1
3
εI −

1
3
αεPĜ)Q̂(t)

+ 2Q̂T (t)Ĉ
∫ t

t−τ
F(Q̂(s))ds

≤

(∫ t

t−τ
F(Q̂(s))ds

)T
ĈT (

2
3
D̂−

1
3
εI −

1
3
αεPĜ)−1

· Ĉ
(∫ t

t−τ
F(Q̂(s))ds

)
, (24)

−α(1− µ)FT (Q̂(t − τ (t))QF(Q̂(t − τ (t)))
+ 2αFT (Q̂(t))PB̂F(Q̂(t − τ (t)))
≤ αFT (Q̂(t))PB̂

(
(1− µ)Q

)−1B̂TPF(Q̂(t)), (25)

−
αθ

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
R
(∫ t

t−τ
F(Q̂(s))ds

)
+ 2αFT (Q̂(t))PĈ

(∫ t

t−τ
F(Q̂(s))ds

)
≤
ατ 2

θ
FT (Q̂(t))PĈR−1ĈTPF(Q̂(t)). (26)

where 0 < θ < 1.
By θ , we have

−
α

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
R
(∫ t

t−τ
F(Q̂(s))ds

)
= −θ

α

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
R
(∫ t

t−τ
F(Q̂(s))ds

)
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− (1− θ )
α

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
·R
(∫ t

t−τ
F(Q̂(s))ds

)
. (27)

Thus,

V̇ (Q̂(t), t) ≤ eεt
{
FT (Q̂(t))̂AT (

2
3
D̂−

1
3
εI −

1
3
αεPĜ)−1

· ÂF(Q̂(t))+ FT (Q̂(t − τ (t)))̂BT

· (
2
3
D̂−

1
3
εI −

1
3
αεPĜ)−1B̂F(Q̂(t − τ (t)))

+

(∫ t

t−τ
F(Q̂(s))ds

)T
ĈT

· (
2
3
D̂−

1
3
εI −

1
3
αεPĜ)−1Ĉ

·

(∫ t

t−τ
F(Q̂(s))ds

)
+ 2αFT (Q̂(t))(−PDĜ−1)F(Q̂(t))
+ 2αFT (Q̂(t))PÂF(Q̂(t))
+ (α + β)FT (Q̂(t))eετQF(Q̂(t))
−β(1− µ)FT (Q̂(t − τ (t)))QF(Q̂(t − τ (t)))
+αFT (Q̂(t))PB̂ ((1− µ)Q)−1 B̂TPF(Q̂(t))

+
ατ 2

θ
FT (Q̂(t))PĈR−1ĈTPF(Q̂(t))

+αeετFT (Q̂(t))RF(Q̂(t))

− (1− θ )
α

τ 2

(∫ t

t−τ
F(Q̂(s))ds

)T
R

·

(∫ t

t−τ
F(Q̂(s))ds

)}
, (28)

V̇ (Q̂(t), t) ≤ eεt
{
FT (Q̂(t))

[
−α

[
2PD̂Ĝ−1 − (PÂ

+ ÂTP)−
α + β

α
eετQ− eετR

−PB̂
(
(1− µ)Q

)−1B̂TP
−

1
θ
P(τ Ĉ)R−1(τ Ĉ)TP

]
+ ÂT (

2
3
D̂−

1
3
εI

−
1
3
αεPĜ)−1Â

]
F(Q̂(t))

+FT (Q̂(t − τ (t)))
[
B̂T (

2
3
D−

1
3
εI

−
1
3
αεPĜ)−1B̂− β(1− µ)Q

]
F(Q̂(t − τ (t)))

+

(∫ t

t−τ
F(Q̂(s))ds

)T[
ĈT (

2
3
D̂−

1
3
εI

−
1
3
αεPĜ)−1Ĉ − (1− θ )

α

τ 2
R
]

·

(∫ t

t−τ
F(Q̂(s))ds

)}
, (29)

where FT (Q̂(t))2PÂF(Q̂(t)) = FT (Q̂(t))PÂF(Q̂(t)) +
FT (Q̂(t))̂ATPF(Q̂(t)).
Now, we choose appropriate ε, α, β, θ to make

V̇ (Q̂(t), t) ≤ 0. Firstly, let ε = εα, and one can obtain

V̇ (Q̂(t), t) ≤ e
ε
α
t
{
FT (Q̂(t))

[
− α

[
2PD̂Ĝ−1 − (PÂ

+ ÂTP)−
(α + β)
α

e
ε
α
τQ− e

ε
α
τR

−PB̂
(
(1− µ)Q

)−1B̂TP
−

1
θ
P(τ Ĉ)R−1(τ Ĉ)TP

]
+ ÂT (

2
3
D̂−

1
3
ε

α
I

−
1
3
εPĜ)−1Â

]
F(Q̂(t))+ FT (Q̂(t − τ (t)))

·

[
B̂T (

2
3
D̂−

1
3
ε

α
I −

1
3
εPĜ)−1B̂

−β(1− µ)Q
]
F(Q̂(t − τ (t)))

+

(∫ t

t−τ
F(Q̂(s))ds

)T[
ĈT (

2
3
D̂−

1
3
ε

α
I

−
1
3
εPĜ)−1Ĉ − (1− θ )

α

τ 2
R
]

·

(∫ t

t−τ
F(Q̂(s))ds

)}
, (30)

As described in [29], we choose a fixed positive β such that

β ≥
‖ B ‖2 ‖ ( 23 D̂)

−1
‖

(1− µ) min
i
Qi

. (31)

Secondly, we choose a sufficiently small ε > 0 and a
sufficiently large α > 0 such that

2
3
D̂−

ε

3α
I −

1
3
εPĜ > 0 , (32)

ε

2α

∥∥∥D̂−1∥∥∥+ ε
2

∥∥∥PD̂Ĝ−1∥∥∥ ≤ 1−
‖ B̂ ‖2 ‖ ( 23 D̂)

−1
‖

β(1− µ) min
i
Qi

.

(33)

By the inequality (13) and Lemma 1, we have

2PD̂Ĝ−1 − (PÂ+ ÂTP)− PB̂
(
(1− µ)Q

)−1 (̂B)TP
−P(τ Ĉ)R−1(τ Ĉ)TP−Q− R > 0. (34)

So a sufficiently small ε > 0, an appropriate θ and a suffi-
ciently large α can meet the following inequality:

−α

[
2PD̂Ĝ−1 − (PÂ+ ÂTP)−

(α + β)
α

e
ε
α
τQ

−e
ε
α
τR− PB̂

(
(1− µ)Q

)−1B̂TP
−
1
θ
P(τ Ĉ)R−1(τ Ĉ)

T
P
]

+ÂT (
2
3
D̂−

1
3
ε

α
I −

1
3
εPĜ)−1Â ≤ 0 . (35)

From Eq. (33) and
∥∥(I − F)−1∥∥ ≤ 1

1−‖F‖ ( [38]), we also
have

β ≥
‖B̂‖2

∥∥∥( 23 D̂)−1∥∥∥
(1− µ) min

i
Qi
(
1−

(
ε
2α

∥∥D̂−1∥∥+ ε
2

∥∥PĜD̂−1∥∥))
≥

‖B̂‖2
∥∥∥( 23 D̂)−1∥∥∥

(1− µ) min
i
Qi

∥∥∥∥(I − ε

2α
D̂−1 −

ε

2
PĜD̂−1

)−1∥∥∥∥
≥

‖B̂‖2
∥∥∥( 23 D̂− ε

3α I −
ε
3PĜ)

−1
∥∥∥

(1− µ) min
i
Qi

. (36)
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Thus, by Eq.(32), 23 D̂−
ε
3α I −

1
3εPĜ is a positive diagonal

matrix, and we have

FT (Q̂(t − τ (t)))
[
B̂T
(
2
3
D̂−

1
3
ε

α
I −

1
3
εPĜ

)−1
B̂

−β(1− µ)Q
]
F(Q̂(t − τ (t)))

≤ λmax

(
2
3
D̂−

ε

3α
I −

1
3
εPĜ

)−1
·
∥∥B̂F(Q̂(t − τ (t))∥∥2
− λmin[β(1− µ)Q]

∥∥F(Q̂(t − τ (t))∥∥2
≤

∥∥∥∥∥
(
2
3
D̂−

ε

3α
I −

1
3
εPĜ

)−1∥∥∥∥∥ ‖B̂‖2
·
∥∥F(Q̂(t − τ (t)))∥∥2
− λmin[β(1− µ)Q]

∥∥F(Q̂(t − τ (t))∥∥2
≤ 0 . (37)

Similarly, given appropriate θ satisfing 0 < θ < 1 −
‖Ĉ‖2

∥∥∥ 2
3 D̂−

ε
3α I−

1
3 εPĜ)

−1Ĉ
∥∥∥

α

τ2
min
i
Ri

, we can obtain

(∫ t

t−τ
F(Q̂(s))ds

)T [̂
CT
(
2
3
D̂−

1
3
ε

α
I−

1
3
εPĜ

)−1
Ĉ

− (1−θ )
α

τ 2
R
](∫ t

t−τ
F(Q̂(s))ds

)
≤0 . (38)

By Eqs. (35), (37) and (38), we can easily get

V̇ (Q̂(t), t) ≤ 0 . (39)

Therefore, V (Q̂(t), t) ≤ V (Q(0), 0), eεt Q̂T (t)Q̂(t) ≤
V (Q̂(t), t) ≤ V (Q̂(0), 0), and then Q̂T (t)Q̂(t) ≤

V (Q̂(0), 0)e−εt . Consequently, the trivial solution of (14) is
globally exponentially stable, which implies that the equilib-
rium point of system (6) is globally exponentially stable. This
completes the proof. �
Remark 3: In Eq. (35), by choosing a sufficiently large

α, a fixed β, and a sufficiently small ε, we can make some
coefficients of Eq. (35) smaller, that is, α+β

α
e
ε
α
τ
→ 1, e

ε
α
τ
→

1. However, for θ , except for satisfying (38), it can’t be too
small, therefore, an appropriate θ is needed.
Remark 4: In [29], βQ is a diagonal matrix and BT (D −

ε
2α I −

ε
PG )
−1B is a symmetrical matrix. So we don’t think it’s

proper to write the inequality, βQ ≥ BT (D− ε
2α I −

ε
PG )
−1B

(Eq.(22) in [29]). In proof of our Theorem 2, we use a
transformation method used in (37).
Remark 5: Theorem 1 can be regarded as a corollary of

Theorem 2, when µ = 0.
In [33], Chen and Wang investigated the globally power

stability of RVNNs with unbounded time-varying delays.
Next, inspired by their method, we will investigate the glob-
ally power stability of RVVDE (6) to obtain the criterion of
the globally power stability of QVNN (1). As far as we know,
few papers concern the globally power stability of QVNNs.
Theorem 3: Under Assumption 2 and suppose τ (t) ≤ ηt ,

0 < η < 1, system (6) has a unique equilibrium point Q∗

which is globally power stable if there exist positive diagonal

matrices Y, U and V and a positive definite matrix P1, such
that the following LMI:
P1D̂+ D̂P1 − Y − P1 − P1Â − P1B̂ − P1Ĉ

−ÂTP1 Y 0 0
−B̂TP1 0 U 0
−ĈTP1 0 0 V

 > 0,

P1 ≥ U ,P1 ≥ V (40)

holds.
Proof: By Eq. (40) we can find three sufficiently small

constants α1 > 0 and γ > 0 and$ > 0, such that
P1D̂+ D̂P1 − Y − ? −P1Â −P1B̂ P1Ĉ

−ÂTP1 Y 0 0
−B̂TP1 0 U 0
−ĈTP1 0 0 R

 > 0 , (41)

where ∗ = α1P1 + (1 − η)−γP1 + $P1. And we can find
a sufficiently large T, for all t ≥ T , such that γt < α1, 0 <
τ t

1−γ

[
1− (1− τ

t )
1−γ

]
< $ .

Define a function V1(Q̂(t)) = tγ Q̂(t)TP1Q̂(t), t ≥ T ,
where Q̂(t) = Q(t) − Q∗, F(Q̂(t)) = f̂ (Q̂(t) + Q∗) −
f̂ (Q∗). And denote M (t) = sup

0≤s≤t
V1(Q̂(s)), which is a

non-decreasing function and obviously, V1(Q̂(t)) ≤ M (t).
Now, we will prove that M (t) is bounded, that is, for all

t ≥ T , we have M (t) = M (T ).
Firstly, for any t ≥ T , if V1(Q̂(t)) < M (t), M (t) is a

non-increasing function, and then M (t) = M (T ).
Secondly, if V1(Q̂(t)) = M (t), one can obtain

dV1(Q̂(t))
dt

= γ tγ−1Q̂(t)TP1Q̂(t)+ 2tγ Q̂(t)TP1

[
− D̂Q̂(t)

+ ÂF(Q̂(t))+ B̂F(Q̂(t − τ (t)))

+ Ĉ
∫ t

t−τ
F(Q̂(s)ds

]
= tγ

{
Q̂(t)T (

γ

t
P1 − 2P1D̂)Q̂(t)

+ 2Q̂(t)TP1ÂF(Q̂(t))
+ 2Q̂(t)TP1B̂F(Q̂(t − τ (t)))

+2Q̂(t)TP1Ĉ
∫ t

t−τ
F(Q̂(s)ds

}
≤ tγ

{
Q̂(t)T (

γ

t
P1 − 2P1D̂)Q̂(t)

+ Q̂(t)TP1ÂY−1(P1Â)T Q̂(t)
+F(Q̂(t))TYF(Q̂(t))
+ Q̂(t)TP1B̂U−1(P1B̂)T Q̂(t)
+F(Q̂(t − τ (t)))TUF(Q̂(t − τ (t)))
+ Q̂(t)TP1ĈV−1(P1Ĉ)T Q̂(t)

+
( ∫ t

t−τ
F(Q̂(s))ds

)TV ( ∫ t

t−τ
F(Q̂(s)ds

)}
≤ tγ

{
Q̂(t)T

[γ
t
P1 − 2P1D̂+ P1ÂY−1(P1Â)T

+Y + P1B̂U−1(P1B̂)T

+P1ĈV−1(P1Ĉ)T
]
Q̂(t)
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+F(Q̂(t − τ (t)))TUF(Q̂(t − τ (t)))

+ τ

∫ t

t−τ
F(Q̂(s))TVF(Q̂(s))ds

}
, (42)

where we use Lemma 3, Lemma 4 and Assumption 2 with
Ĝ = I .
SinceM (t) = sup

0≤s≤t
V1(Q̂(s)), when s ∈ [t−τ, t] ⊂ [0, t],

V1(Q̂(s)) ≤ M (t) = V1(Q̂(t)). And for P1 ≥ U , P1 ≥ V and
Assumption 2, one can obtain

tγFT (Q̂(t − τ (t)))UF(Q̂(t − τ (t)))
≤ tγ Q̂(t − τ (t))TP1Q̂(t − τ (t))

=

(
t

t − τ (t)

)γ
V1
(
Q̂ (t − τ (t))

)
≤

(
t

t − τ (t)

)γ
V1
(
Q̂(t)

)
≤ (1− η)−γ tγ Q̂(t)TP1Q̂(t) , (43)

tγ τ
∫ t

t−τ
FT (Q̂(s))VF(Q̂(s))ds

≤ tγ τ
∫ t

t−τ
Q̂(s)TVQ̂(s)ds

≤ tγ τ
∫ t

t−τ
Q̂(s)TP1Q̂(s)ds

= tγ τ
∫ t

t−τ

1
sγ
V1(Q̂(s))ds

≤ tγ τ
∫ t

t−τ

1
sγ
V1(Q̂(t))ds

= tγV1(Q̂(t))τ
∫ t

t−τ

1
sγ
ds

=
τ t

1− γ

[
1− (1−

τ

t
)1−γ

]
V1(Q̂(t))

=
τ tγ+1

1− γ

[
1− (1−

τ

t
)1−γ

]
Q(t)TP1Q(t) . (44)

Thus, Eq. (42) can be written as follow:

dV1(Q̂(t))
dt

≤ tγ Q̂(t)T
[
γ

t
P1 − P1D̂− D̂P1 + P1ÂY−1(P1Â)T

+Y + P1B̂U−1(P1B̂)T + P1ĈV−1(P1Ĉ)T

+ (1− η)−γP1 +
τ t

1− γ

[
1− (1−

τ

t
)1−γ ]P1

]
Q̂(t)

≤ tγ Q̂(t)T
[
α1P1 − P1D̂− D̂P1 + P1ÂY−1(P1Â)T

+Y + P1B̂U−1(P1B̂)T + P1ĈV−1(P1Ĉ)T

+ (1− η)−γP1 +$P1

]
Q̂(t) . (45)

By Lemma 1, Eq. (41) is equivalent to the following
inequality:

P1D̂+ D̂P1 − α1P1 − Y − (1− η)−γP1 −$P1
−P1ÂY−1(P1Â)T − P1B̂U−1(P1B̂)T

−P1ĈV−1(P1Ĉ)T > 0 . (46)

Therefore, dV1(Q̂(t))
dt ≤ 0, when V1(Q̂(t)) = M (t), for all

t ≥ T . Thus, M (t) is also non-increasing at t , and then
M (t) = M (T ).

FIGURE 1. The state trajectories of qr (t), qi (t), qj (t), qk (t) of QVNN (52).

In short, M (t) = M (T ) for all t ≥ T . Therefore, for all
t ≥ T , V (Q̂(t)) ≤ M (T ), and then, tγ λmax(P1)

∥∥Q̂(t)∥∥2 ≤
M (T ), thus,

∥∥Q̂(t)∥∥ ≤ λ− 1
2

max(P1)M (T )
1
2 t
−γ
2 .
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FIGURE 2. The state trajectories of qr (t), qi (t), qj (t), qk (t) of QVNN (53).

Then, Q(t) converges to Q∗ with power convergence rate
−
γ
2 in the system (6). This completes the proof. �
Remark 6: Theorem 3 applies to both QVNNs and

RVNNs. And Theorem 3 can also be regarded as a general-
ization of [33].

FIGURE 3. The state trajectories of qr (t), qi (t), qj (t), qk (t) of
Example 4.1 in [27].

Remark 7: For 0 < τ t
1−γ

[
1− (1− τ

t )
1−γ

]
< $ , let

ϕ(t, γ ) = τ t
1−γ

[
1− (1− τ

t )
1−γ

]
, 0 < γ < 1, t ≥ T ,

t > τ , we can easily find that ϕ(t, γ ) is amonotone increasing
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function about t with a fixed γ , and τT
1−γ

[
1− (1− τ

T )
1−γ

]
<

ϕ(t, γ ) < τ 2. Furthermore, similarly, we can find ϕ(t, γ ) is
a monotone decreasing function about γ with a fixed t , and
lim
γ→1

τT
1−γ

[
1− (1− τ

T )
1−γ

]
= −ln(1− τ

T ). Therefore, we can

find a appropriate T and γ , for all t ≥ T , such that γt < α1,
0 < τ t

1−γ

[
1− (1− τ

t )
1−γ

]
< $ .

If the QVNN (1) is studied without distributed delays,
i.e. C = 0, then the following QVNN model can be
obtained

q̇(t) = −Dq(t)+ Af (q(t))+ Bf (q(t − τ (t)))+ U (47)

which is the QVNN model discussed in [23].
By decomposing system (47), one gets a matrix differential

equation as follow:

Q̇(t) = −D̂Q(t)+ Â̂f (Q(t))+ B̂̂f (Q(t − τ (t)))+ Û . (48)

where D̂, Â, B̂, Û , f̂ (Q(t)) are same as those in system (6).
By transformation Q̂(t) = Q(t) − Q∗, one can get the
following vector-matrix form of real-valued system (49):

˙̂Q(t) = −D̂Q̂(t)+ ÂF(Q̂(t))+ B̂F(Q̂(t − τ (t))) , (49)

where F(Q̂(t)) = f̂ (Q̂(t)+ Q∗)− f̂ (Q∗).
Moreover, the QVNN (47) shares the same equilibrium

point and identical dynamics behavior with system (49) when
q(t) = q(r)(t) + iq(i)(t) + jq(j)(t) + kq(k)(t) corresponds to
Q(t) = (q(r)(t)T , q(i)(t)T , q(j)(t)T , q(k)(t)T )T .

Similar to Theorem 2 and Theorem 3, one can get the
following corollaries.
Corollary 1: Under Assumption 2, there exist positive

diagonal matrices P and Q such that:

2PD̂Ĝ−1 − (PÂ+ ÂTP)− PB̂Q−1 (̂B)TP−Q > 0 , (50)

then, for each U ∈ Rn, system (49) has a unique equilibrium
point which is globally exponentially stable, independent of
the delays.
Corollary 2: Suppose τ (t) ≤ ηt , 0 < η < 1, Ĝ = I ,

system (49) has a unique equilibrium point Q∗ and Q∗ is
globally power stable if there exist positive diagonal matrices
Y, U and a positive definite matrix P1, such that the following
LMI:P1D+ DP1 − Y − P1 −P1A −P1B−ATP1 Y 0

−BTP1 0 U

 > 0,

P1 ≥ U (51)

holds.
Remark 8: Neural network is of great value to military,

image processing, artificial intelligence, and other applica-
tion fields. In these applications of neural networks, stability
is an important factor. For fewer results on the stability of
QVNNs with mixed delays, it is necessary to discuss the
dynamics behavior of these QVNNs. Based on the rule of
quaternion operation, the existence, uniqueness and globally
exponential stability of the equilibrium of QVNNs with both

discrete and distributed delays are investigated in [27]. How-
ever, compared with the method of [27], our decomposing
method is simpler and requires fewer conditionalities.

IV. ILLUSTRATIVE EXAMPLES
In this section, two numerical examples are provided to

illustrate the effectiveness and superiority of the proposed
results.
Example 1: Consider the QVNN model as follow:

q̇(t) = −Dq(t)+ Af (q(t))+ Bf (q(t − τ (t)))

+C
∫ t

t−τ
f (q(s))ds+ U , (52)

where

A

=

 1.3+ 5.2i− 0.5j− 1.3k 1.6+ 0.5i− 3.7j+ 1.3k
−1.8+ 1.1i+ 1.5j+ 1.6k 1.2+ 3.1i+ 3.5j+ 1.2k
1.8+ 1.1i+ 3.5j+ 0.6k −5.1− 5.1i+ 3.6i+ 1.6k

9.6− 2.5i− 1.9j+ 2.4k
−0.6+ 1.5i+ 1.9j+ 2.4k
1.7− 1.6i+ 1.9j+ 0.4k

 ,
B

=

1.3+ 0.3i+ 1.4j+ 1.3k 1.3− 2.5i− 1.3j+ 0.6k
−2.3+ 3.1i− 1.5j− 1.4k 1.2+ 3.3i+ 1.6j+ 1.3k
1.4+ 1.3i− 1.3j− 2.2k −1.5+ 2.2i+ 0.3j− 1.6k

1.4− 2.0− 3.3j+ 1.6k
1.2− 1.3i+ 2.6j+ 1.3k
−1.3− 0.2i− 1.1j− 1.0k

 ,
C

=

2.4+ 1.3i+ 0.1j+ 1.4k 1.6+ 1.1i+ 1.2j+ 1.1k
−1.8+ 0.1i+ 1.2j+ 1.6k 1.2+ 3.3i+ 1.4j+ 3.2k
1.8+ 1.5i+ 0.8j+ 1.7k −5.1+ 1.3i+ 2.4j+ 1.2k

9.6+ 1.1i+ 1.2j+ 1.1k
−0.6+ 2.1i+ 0.2j+ 0.1k
1.7+ 1.1i− 1.2j+ 2.1k

 ,
D

= diag{95, 95, 85},

U

= (2+1.2 i+2 j+3 k, 1−3.2 i+j+2 k, 3−2.1 i+j−3 k)T ,

f (q(t))

= 0.18 tanh(q(t)), τ (t) = 0.45 sin t + 0.35, τ = 0.6.

By using the LMI toolbox in MATLAB, QVNN (52) has the
following feasible solutions:

P=



0.0028 − 0.0000 0.0000 − 0.0000 − 0.0000 0.0000
−0.0000 0.0028 − 0.0000 0.0000 − 0.0000 −0.0000
0.0000 − 0.0000 0.0032 − 0.0000 0.0000 −0.0000
−0.0000 0.0000 − 0.0000 0.0028 − 0.0000 0.0000
−0.0000 − 0.0000 0.0000 − 0.0000 0.0028 −0.0000
0.0000 − 0.0000 − 0.0000 0.0000 − 0.0000 0.0032
0.0000 − 0.0000 − 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 − 0.0000 0.0000 − 0.0000 −0.0000
0.0000 0.0000 0.0000 − 0.0000 − 0.0000 −0.0000
−0.0000 − 0.0000 0.0000 − 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 − 0.0000 − 0.0000 0.0000
−0.0000 − 0.0000 0.0000 − 0.0000 − 0.0000 0.0000
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0.0000 0.0000 0.0000 − 0.0000 0.0000 − 0.0000
−0.0000 0.0000 0.0000 − 0.0000 0.0000 − 0.0000
−0.0000 − 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 − 0.0000 − 0.0000 − 0.0000 − 0.0000
0.0000 − 0.0000 − 0.0000 0.0000 − 0.0000 − 0.0000
0.0000 − 0.0000 − 0.0000 0.0000 0.0000 0.0000
0.0028 − 0.0000 0.0000 0.0000 − 0.0000 0.0000
−0.0000 0.0028 − 0.0000 − 0.0000 0.0000 − 0.0000
0.0000 − 0.0000 0.0032 − 0.0000 0.0000 0.0000
0.0000 − 0.0000 − 0.0000 0.0028 − 0.0000 0.0000
−0.0000 0.0000 0.0000 − 0.0000 0.0028 − 0.0000
0.0000 − 0.0000 0.0000 0.0000 − 0.0000 0.0032


,

Q= diag{1.0863, 1.0863, 1.0863, 1.0863,

1.0863, 1.0863, 1.0863, 1.0863},

R= diag{0.9390, 0.9390, 0.9390, 0.9390,

0.9390, 0.9390, 0.9390, 0.9390}.

P1=



3.8786 − 0.0298 − 0.0318 0.0000 − 0.0546 − 0.0466
−0.0298 3.7339 − 0.1123 0.0546 0.0000 0.0603
−0.0318 − 0.1123 3.9775 0.0466 − 0.0603 − 0.0000
0.0000 0.0546 0.0466 3.8786 − 0.0298 − 0.0318
−0.0546 0.0000 − 0.0603 − 0.0298 3.7339 − 0.1123
−0.0466 0.0603 − 0.0000 − 0.0318 − 0.1123 3.9775
−0.0000 0.1037 − 0.0224 − 0.0000 − 0.0294 − 0.0418
−0.1037 0.0000 0.0986 0.0294 0.0000 − 0.0318
0.0224 − 0.0986 − 0.0000 0.0418 0.0318 − 0.0000
−0.0000 − 0.0294 − 0.0418 0.0000 − 0.1037 0.0224
0.0294 − 0.0000 − 0.0318 0.1037 − 0.0000 − 0.0986
0.0418 0.0318 0.0000 − 0.0224 0.0986 0.0000

−0.0000 − 0.1037 0.0224 − 0.0000 0.0294 0.0418
0.1037 0.0000 − 0.0986 − 0.0294 − 0.0000 0.0318
−0.0224 0.0986 − 0.0000 − 0.0418 − 0.0318 0.0000
−0.0000 0.0294 0.0418 0.0000 0.1037 − 0.0224
−0.0294 0.0000 0.0318 − 0.1037 − 0.0000 0.0986
−0.0418 − 0.0318 − 0.0000 0.0224 − 0.0986 0.0000
3.8786 − 0.0298 − 0.0318 − 0.0000 − 0.0546 − 0.0466
−0.0298 3.7339 − 0.1123 0.0546 0.0000 0.0603
−0.0318 − 0.1123 3.9775 0.0466 − 0.0603 − 0.0000
−0.0000 0.0546 0.0466 3.8786 − 0.0298 − 0.0318
−0.0546 0.0000 − 0.0603 − 0.0298 3.7339 − 0.1123
−0.0466 0.0603 − 0.0000 − 0.0318 − 0.1123 3.9775


,

U = diag{2.8586, 2.8586, 2.8586, · · · , 2.8586},

V = diag{2.8101, 2.8101, 2.8101, · · · , 2.8101}.

Therefore, consider the above P,Q,R,P1,U ,V , the con-
ditions in Theorem 2 and Theorem 3 are satisfied. Note that
Theorem 1 can be regarded as a special case of Theorem 2,
when µ = 0. So no need to verify Theorem 1, that is,
QVNN (52) has a unique equilibrium point and it is globally
exponentially stable and globally power stable. And solution
trajectories of the QVNN (52) with distributed delay are
shown in Figure 1.
Example 2: Consider the QVNN model as follow:

q̇(t) = −Dq(t)+ Af (q(t))+ Bf (q(t − τ (t)))+ u, (53)

where

A

=

 1.2−0.5i−0.2j+0.5k 1.2−0.2i−1.4j+0.3k

0.3−0.3i+0.6j+0.7k 0.9−0.5i−1.0j+0.6k

 ,
B

=

(
0.2+0.5i+0.3j+1.0k −0.4+1.0i−0.4j+0.5k

1.0−0.9i+1.0j+0.5k 0.1+1.0i−1.1j+1.0k

)
,

D

= diag{17, 18}, u=(2− i+ j+ k, 3+0.1i− j− 3k)T ,

f (q(t))

= 0.18 tanh(q(t)), τ (t) = 0.45 sin t + 0.35, τ = 0.6.

By using the LMI toolbox in MATLAB, QVNN (53) has the
following feasible solutions:

P=



0.3880 − 0.0003 − 0.0000 0.0024 0.0000 0.0056
−0.0003 0.3605 − 0.0024 − 0.0000 − 0.0056 − 0.0000
−0.0000 − 0.0024 0.3880 − 0.0003 − 0.0000 0.0024
0.0024 − 0.0000 − 0.0003 0.3605 − 0.0024 0.0000
0.0000 − 0.0056 − 0.0000 − 0.0024 0.3880 − 0.0003
0.0056 − 0.0000 0.0024 0.0000 − 0.0003 0.3605
−0.0000 − 0.0024 0.0000 0.0056 0.0000 − 0.0024
0.0024 0.0000 − 0.0056 0.0000 0.0024 − 0.0000

−0.0000 0.0024
−0.0024 0.0000
0.0000 − 0.0056
0.0056 0.0000
0.0000 0.0024
−0.0024 − 0.0000
0.3880 − 0.0003
−0.0003 0.3605

 ,
Q = diag{35.3877, 35.3877, 35.3877, 35.3877,

35.3877, 35.3877, 35.3877, 35.3877},

P1=



7.1603 − 0.2056 − 0.0013 0.1046 − 0.0289 − 0.0059
−0.2056 6.9692 − 0.1090 − 0.0038 − 0.0498 − 0.0418
−0.0013 − 0.1090 7.1576 − 0.2109 − 0.0728 − 0.0778
0.1046 − 0.0038 − 0.2109 6.9547 − 0.0751 − 0.1555
−0.0289 − 0.0498 − 0.0728 − 0.0751 7.1676 − 0.2049
−0.0059 − 0.0418 − 0.0778 − 0.1555 − 0.2049 6.9467
−0.0024 − 0.0317 − 0.0062 0.0067 − 0.0198 − 0.0392
0.0317 0.0019 − 0.0079 0.0059 0.0701 0.0603

−0.0024 0.0317
−0.0317 0.0019
−0.0062 − 0.0079
0.0067 0.0059
−0.0198 0.0701
−0.0392 0.0603
7.1690 − 0.2009
−0.2009 6.9743

 ,
Y = diag{4.8490, 4.8490, 4.8490, 4.8490,

4.8490, 4.8490, 4.8490, 4.8490},

U = diag{4.7941, 4.7941, 4.7941, 4.7941,
4.7941, 4.7941, 4.7941, 4.7941}.

Therefore, consider the above P,Q,P1,Y ,U , the condi-
tions in Corollary 1 and Corollary 2 are satisfied, that is,
QVNN (53) has a unique equilibrium point and it is globally
exponentially stable and globally power stable. And solution
trajectories of the QVNN (53) with distributed delay are
shown in Figure 2. On the other hand, the parameters in
Example 2 do not meet the theorem 1 in [23]. So the method
of [23] is invalid for QVNN (53). Accordingly, our results are
more adaptable to all kinds of QVNN than that of [23].
Remark 9: Because we don’t have to consider the mul-

tiplication of quaternions, our decomposing method is of
higher converging speed than that in [27]. By our decompos-
ing method, the state trajectories of Example 4.1 of [27] are
shown in Figure 3.
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V. CONCLUSION
In this paper, the globally exponential stability and the glob-
ally power stable of QVNNs with discrete and distributed
delays are investigated respectively. Firstly, we decompose
the considered QVNN into four real-valued systems, and then
form a real-valued matrix differential equation, by which
we equivalently discuss the dynamics behavior of QVNN,
instead of considering the noncommutativity for the mul-
tiplication of quaternion. Some criteria are given by some
matrix inequalities to affirm the existence and uniqueness
of the equilibrium of QVNNs, which is globally exponen-
tially stable and power stable too. By using LMI toolbox in
MATLAB, the proposal criteria can be verified easily. Theo-
rems 1 and 2 can be regarded as a simplification of [27], and
Theorem 3 can be regarded as a generalization of [33]. In the
future, we consider that synchronization is also an impor-
tant dynamic characteristic of various network problems, and
we will focus on the synchronization of QVNNs, especially
finite-time synchronization or fixed-time synchronization of
QVNNs.
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