Globally Exponential Stability and Globally Power Stability of Quaternion-Valued Neural Networks With Discrete and Distributed Delays

HUILING DUAN ${ }^{1}$, TAO PENG ${ }^{1,2}$, ZHENGWEN TU1, JIANLONG QIU ${ }^{\text {®3,4, }}$ AND JIANQUAN LU ${ }^{\text {®2 }}$, (Senior Member, IEEE)
${ }^{1}$ School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404020, China
${ }^{2}$ School of Mathematics, Southeast University, Nanjing 210096, China
${ }^{3}$ School of Automation and Electrical Engineering, Linyi University, Linyi 276005, China
${ }^{4}$ Key Laboratory of Complex Systems and Intelligent Computing in Universities of Shandong, Linyi University, Linyi 276005, China
Corresponding author: Jianlong Qiu (qiujianlong@lyu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61973078, in part by the Natural Science Foundation of Jiangsu Province of China under Grant BK20170019, in part by the 333 Engineering Foundation of Jiangsu Province of China under Grant BRA2019260, in part by the National Natural Science Foundation of China under Grant 61877033, in part by the Natural Science Foundation of Shandong Province under Grant ZR2019MF021, and in part by the Natural Science Foundation Project of Chongqing, China, under Grant cstc2018jcyjAX0588.

Abstract

This paper investigates the stability of a class of quaternion-valued neural networks (QVNNs) with discrete and distributed delays. By decomposing the QVNN and forming an equivalent real-valued vector-matrix differential equation (RVVDE), based on the Lyapunov theory and some matrix inequalities, some sufficient conditions are derived to ensure the existence and uniqueness, the globally exponential stability and the globally power stability of the equilibrium of RVVDE. These conditions also apply to the QVNN. Two numerical examples are given to show the advantage and the effectiveness of the main results.

INDEX TERMS Globally exponential stability, globally power stability, quaternion-valued neural network.

I. INTRODUCTION

Neural network is a parallel distributed processor with a large number of connections, and it has an adaptive ability to acquire knowledge through learning [1]. Since the neural network model was proposed by Hopfield in 1982 [2], more and more results on neural networks have been put forward. For the various characteristics of neural networks, many interesting directions of neural networks appear in large numbers [3]-[6]. More cross-studies on neural networks have emerged [7]-[11].

In the last few decades, the stability, the synchronization, the limit cycles, the branches, the oscillation and the chaotic attractors of neural networks have been widely studied [12]-[14]. Many interesting results on the stability of the equilibrium point of the real-valued neural networks (RVNNs), whose state variables, activation functions, link

[^0]weights and external inputs are all real-valued [3], [5], [6], [15], have been obtained. However, RVNNs can process low-dimensional data well but perform poorly when processing high-dimensional data. Complex-valued neural networks (CVNNs), whose state variables, activation functions, link weights and external inputs are all complex-valued, can deal with high-dimensional data efficiently. CVNNs can be thought as an extension of RVNNs and as a class of important nonlinear complex-valued systems [16], [17]. Moreover, CVNNs have been applied in many fields, such as imaging processing, photoelectron, remote sense and so on [18]. However, we hope there would be more applications for neural networks, so that we extend the CVNNs once again. There come quaternion value neural networks(QVNNs).

A quaternion is a supercomplex number, which is a mathematical concept and discovered in 1843. Because of the diversity of its expression forms, the quaternion is wildly used in various fields, such as machine and structure, robot technology, and satellite attitude adjustment and so on [19].

By a quaternionic approach, the optimum separation of polarized signals was realized by Buchholz and Bihanthe [20]. Contacting neural network with quaternions, we can obtain a class of more complex neural networks, QVNNs, whose state variables, activation functions, link weights and external inputs are all quaternion-valued. Research on the dynamics characteristics and applications of QVNNs is becoming a hot topic [20]-[26]. By using the Lyapunov theory and homeomorphic mapping theory, the robust stability of delayed QVNNs with parameter uncertainties was analyzed [22]. Based on homeomorphic mapping theory and complex decomposition method, the globally asymptotical stability of continuous-time QVNNs and discrete-time QVNNs was considered in [24]. Based on homeomorphic mapping theorem and linear matrix inequality, several sufficient criteria are proposed to verify that the QVNNs with both discrete and distributed delays is globally asymptotically stable and globally exponentially stable [27].

As is well known, the stability of various neural networks is a key factor in many applications. So it is important to use a suitable method to ascertain the stability of QVNNs. Some results concern the dynamic characteristics of QVNNs by taking QVNNs as an entirety without decomposition [21], [22]. However, some results investigated the stability of QVNNS by equivalently decomposing QVNNs into two CVNNs or four RVNNs [23], [24], which is concise and practical because there are many methods to investigate the stability of RVNNs or CVNNs.

Meanwhile, time delays are probably inevitable in the practical neural networks, because the transmission of information may take some time. Currently, some results on neural network with time delays always fix on the disadvantage to the stability of neural networks [27]-[35]. Perhaps, on the contrary, by time delays, we could control the dynamic behavior of neural networks better. The global convergence of a class of RVNNs with time delays was analyzed [29]. The globally asymptotic robust stability of delayed RVNNs with norm-bounded uncertainties was studied [30]. By a decomposition method and an appropriate Lyapunov-Krasovskii functional, the global μ-stability of a class of QVNNs with unbounded time-varying delays was investigated [35]. When considering globally asymptotical stability and globally exponential stability of RVNNs, Chen and Wang in [33] proposed a new concept - globally power stability. To the best of our knowledge, there are few papers concerning the stability of QVNNs with mixed delays, such as, with both discrete and distributed delays.

Enlightened by the above analysis, this paper investigates the stability problem of a class of QVNNs with discrete and distributed delays, by decomposing the QVNN into four real-valued neural networks and forming a RVVDE. This paper's main contributions are listed as follows. Firstly, to the best of our knowledge, it is the first time to analyze the stability of a class of QVNNs with mixed time delays by a decomposition method. Compared with [23], our model is a more general QVNN with discrete and distributed delays,
and compared with [27], to study the stability of the equilibrium of QVNNs, our method is an equivalent decomposition method, not by taking QVNNs as an entirety. Secondly, by constructing some new Lyapunov-Krasovskii functionals and matrix inequalities, three sufficient conditions are proposed to ensure the existence and uniqueness, the globally exponential stability and the globally power stability of the equilibrium of the RVVDE. Note that these criteria, without too many restrictions compared with Theorem 1 in [23], are suitable not only for QVNNs but also for RVNNs. Finally, our criteria formulated by matrix inequalities can be easily checked, and our decomposition methods are of faster convergence speed than the results in [27].

The remaining sections are organized as follows. In Section 2, we present the considered QVNNs model descriptions and some preliminaries. In section 3, the stability analysis of QVNNs with discrete and distributed delays is given. In Section 4, the effectiveness of our results is verified by numerical examples. In Section 5, some conclusions and some future ideas are given.

Notations: Throughout this article, some notations will be used. \mathbb{R} denotes the set of real numbers. \mathbb{C} denotes the set of complex numbers. $\mathbb{R}^{m \times n}, \mathbb{Q}^{m \times n}$ denote the set of all $m \times n$ real-valued and quaternion-valued matrices, respectively. \mathbb{Q} denotes the set of quaternions. \mathbb{Q}^{n} denotes the n -dimensional quaternion space. The conjugate transpose of $q \in \mathbb{Q}$ is $q^{*}=q^{(r)}-q^{(i)} i-q^{(j)} j-q^{(k)} k .\|q\|=$ $\sqrt{q q^{*}}=\sqrt{\left(q^{(r)}\right)^{2}+\left(q^{(i)}\right)^{2}+\left(q^{(j)}\right)^{2}+\left(q^{(k)}\right)^{2}} \cdot \phi \in C\left(\left[t_{0}-\right.\right.$ $\left.\left.\tau, t_{0}\right] ; \mathbb{Q}^{n}\right)$ denotes a continuous mapping from $\left[t_{0}-\tau, t_{0}\right]$ to $\mathbb{Q}^{n},\|\phi\|=\sup _{t_{0}-\tau \leq s \leq t_{0}}|\phi(s)| .[A]^{S}$ denotes the symmetric part of matrix A and $[A]^{S}=\frac{1}{2}\left(A^{T}+A\right)$, where A^{T} denotes transpose of A. If A is a symmetric matrix, $A>0$ $(A \geq 0)$ means that A is positive definite (positive semidefinite). Similarly, $A<0(A \leq 0)$ means that A is negative definite (negative semidefinite). The matrix norm of A is written as $\|A\|=\left(\lambda_{\max }\left(A^{T} A\right)\right)^{\frac{1}{2}}$, and $\lambda_{\max }$ is the largest eigenvalue of the matrix.

II. PRELIMINARIES

Firstly, some preliminaries are recapitulated. The symbol q denotes a quaternion, if $q=q^{(r)}+q^{(i)} i+q^{(j)} j+q^{(k)} k$, where $q^{(r)}, q^{(i)}, q^{(j)}, q^{(k)} \in \mathbb{R}$. And i, j, k satisfy the following rules:

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k \\
& j k=-k j=i, \quad k i=-i k=j
\end{aligned}
$$

Obviously, you have to pay attention to the noncommutativity of quaternion multiplication.

Consider the following QVNN with discrete and distributed delays:

$$
\begin{align*}
\dot{q}(t)=-D q(t)+A f(q(t))+ & B f(q(t-\tau(t))) \\
& +C \int_{t-\tau}^{t} f(q(s)) d s+U \tag{1}
\end{align*}
$$

where $q(t)=\left(q_{1}(t), q_{2}(t), \cdots, q_{n}(t)\right) \in \mathbb{Q}^{n}$ is the state vector at time $t . D=\operatorname{diag}\left\{d_{1}, d_{2}, \cdots, d_{n}\right\} \in \mathbb{R}^{n \times n}$
denotes the self-feedback connection weight matrix with $d_{l}>0, l=1,2, \cdots, n . A, B, C \in \mathbb{Q}^{n \times n}$ are link weights matrices. $f(q(t))=\left(f_{1}\left(q_{1}(t)\right), f_{2}\left(q_{2}(t)\right), \cdots, f_{n}\left(q_{n}(t)\right)\right)^{T} \in$ $\mathbb{Q}^{n}, f(q(t-\tau(t)))=\left(f_{1}\left(q_{1}(t-\tau(t))\right), f_{2}\left(q_{2}(t-\right.\right.$ $\left.\tau(t))), \cdots, f_{n}\left(q_{n}(t-\tau(t))\right)\right)^{T} \in \mathbb{Q}^{n}$ and $\int_{t-\tau}^{t} f(q(s)) d s=$ $\left(\int_{t-\tau}^{t} f_{1}\left(q_{1}(s)\right) d s, \int_{t-\tau}^{t} f_{2}\left(q_{2}(s)\right) d s, \cdots, \int_{t-\tau}^{t} f_{n}\left(q_{n}(s)\right) d s\right)^{T}$ $\in \mathbb{Q}^{n}$ are vector activation functions without time delays, with discrete delays and with distributed delays respectively. $\tau(t)$ and τ denote the discrete time-varying delay and distributed delay respectively. $\tau(t)$ satisfies $0<\tau(t) \leq \tau$, $\dot{\tau}(t) \leq \mu<1 . U=\left(u_{1}(t), u_{2}(t), \cdots, u_{n}(t)\right)^{T} \in \mathbb{Q}^{n}$ denotes external input vector. The initial condition is given by $q(s)=$ $\phi(s) \in \mathbb{Q}^{n}, s \in\left[t_{0}-\tau, t_{0}\right]$, where $\phi(s)=\phi^{(r)}(s)+\phi^{(i)}(s) i+$ $\phi^{(j)}(s) j+\phi^{(k)}(s) k$. Just as the definition presented in [27], if q^{*} satisfies $-D q^{*}+C f\left(q^{*}\right)+A f\left(q^{*}\right)+\tau B f\left(q^{*}\right)+U=0$, then q^{*} is an equilibrium point of (1).

Let

$$
\begin{aligned}
& q(t)= q^{(r)}(t)+i q^{(i)}(t)+j q^{(j)}(t)+k q^{(k)}(t), \\
& f(q(t))= f^{(r)}\left(q^{(r)}(t)\right)+i f^{(i)}\left(q^{(i)}(t)\right)+j f^{(j)}\left(q^{(j)}(t)\right) \\
&+k f^{(k)}\left(q^{(k)}(t)\right), \\
& \int_{t-\tau}^{t} f(q(s)) d s=\int_{t-\tau}^{t} f^{(r)}\left(q^{(r)}(s)\right) d s \\
&+i \int_{t-\tau}^{t} f^{(i)}\left(q^{(i)}(s)\right) d s \\
&+j \int_{t-\tau}^{t} f^{(j)}\left(q^{(j)}(s)\right) d s \\
&+k \int_{t-\tau}^{t} f^{(k)}\left(q^{(k)}(s)\right) d s, \\
& A= A^{(r)}+i A^{(i)}+j A^{(j)}+k A^{(k)}, \\
& B= B^{(r)}+i B^{(i)}+j B^{(j)}+k B^{(k)} \\
& C= C^{(r)}+i C^{(i)}+j C^{(j)}+k C^{(k)},
\end{aligned}
$$

where $q^{(l)}(t), f^{(l)}\left(q^{(l)}(t)\right), \int_{t-\tau}^{t} f^{(l)}\left(q^{(l)}(s)\right) d s \in \mathbb{R}^{n}, A^{(l)}, B^{(l)}$, $C^{(l)} \in \mathbb{R}^{n \times n}, l=r, i, j, k$.

QVNN (1) can be separated into four RVNNs as follows:

$$
\begin{aligned}
\dot{q}^{(r)}(t)= & -D q^{(r)}(t)+A^{(r)} f^{(r)}\left(q^{(r)}(t)\right)-A^{(i)} f^{(i)}\left(q^{(i)}(t)\right) \\
& -A^{(j)} f^{(j)}\left(q^{(j)}(t)\right)-A^{(k)} f^{(k)}\left(q^{(k)}(t)\right) \\
& +B^{(r)} f^{(r)}\left(q^{(r)}(t-\tau(t))\right) \\
& -B^{(i)} f^{(i)}\left(q^{(i)}(t-\tau(t))\right) \\
& -B^{(j)} f^{(j)}\left(q^{(j)}(t-\tau(t))\right) \\
& -B^{(k)} f^{(k)}\left(q^{(k)}(t-\tau(t))\right) \\
& +C^{(r)} \int_{t-\tau}^{t} f^{(r)}\left(q^{(r)}(s)\right) d s \\
& -C^{(i)} \int_{t-\tau}^{t} f^{(i)}\left(q^{(i)}(s)\right) d s \\
& -C^{(j)} \int_{t-\tau}^{t} f^{(j)}\left(q^{(r)}(s)\right) d s \\
& -C^{(k)} \int_{t-\tau}^{t} f^{(k)}\left(q^{(k)}(s)\right) d s+U^{(r)}, \\
& \\
\dot{q}^{(i)}(t)= & -D q^{(i)}(t)+A^{(r)} f^{(i)}\left(q^{(i)}(t)\right)+A^{(i)} f^{(r)}\left(q^{(r)}(t)\right) \\
& +A^{(j)} f^{(k)}\left(q^{(k)}(t)\right)-A^{(k)} f^{(j)}\left(q^{(j)}(t)\right) \\
& +B^{(r)} f^{(i)}\left(q^{(i)}(t-\tau(t))\right) \\
& +B^{(i)} f^{(r)}\left(q^{(r)}(t-\tau(t))\right) \\
& +B^{(j)} f^{(k)}\left(q^{(k)}(t-\tau(t))\right)
\end{aligned}
$$

$$
\begin{align*}
& -B^{(k)} f^{(j)}\left(q^{(j)}(t-\tau(t))\right) \\
& +C^{(r)} \int_{t-\tau}^{t} f^{(i)}\left(q^{(i)}(s)\right) d s \\
& +C^{(i)} \int_{t-\tau}^{t-\tau} f^{(r)}\left(q^{(r)}(s)\right) d s \\
& +C^{(j)} \int_{t-\tau}^{t-\tau} f^{(k)}\left(q^{(k)}(s)\right) d s \\
& -C^{(k)} \int_{t-\tau}^{t-\tau} f^{(j)}\left(q^{(j)}(s)\right) d s+U^{(i)}, \tag{3}\\
& \dot{q}^{(j)}(t)=-D q^{(j)}(t)+A^{(r)} f^{(j)}\left(q^{(j)}(t)\right) \\
& +A^{(j)} f^{(r)}\left(q^{(r)}(t)\right)-A^{(i)} f^{(k)}\left(q^{(k)}(t)\right) \\
& +A^{(k)} f^{(i)}\left(q^{(i)}(t)\right) \\
& +B^{(r)} f^{(j)}\left(q^{(j)}(t-\tau(t))\right) \\
& +B^{(j)} f^{(r)}\left(q^{(r)}(t-\tau(t))\right) \\
& -B^{(i)} f^{(k)}\left(q^{(k)}(t-\tau(t))\right) \\
& +B^{(k)} f^{(i)}\left(q^{(i)}(t-\tau(t))\right) \\
& +C^{(r)} \int_{t-\tau}^{t} f^{(j)}\left(q^{(j)}(s)\right) d s \\
& +C^{(j)} \int_{t-\tau}^{t} f^{(r)}\left(q^{(r)}(s)\right) d s \\
& -C^{(i)} \int_{t-\tau}^{t-\tau} f^{(k)}\left(q^{(k)}(s)\right) d s \\
& +C^{(k)} \int_{t-\tau}^{t} f^{(i)}\left(q^{(i)}(s)\right) d s+U^{(j)}, \tag{4}\\
& \dot{q}^{(k)}(t)=-D q^{(k)}(t)+A^{(r)} f^{(k)}\left(q^{(k)}(t)\right) \\
& +A^{(k)} f^{(r)}\left(q^{(r)}(t)\right)+A^{(i)} f^{(j)}\left(q^{(j)}(t)\right) \\
& -A^{(j)} f^{(i)}\left(q^{(i)}(t)\right) \\
& +B^{(r)} f^{(k)}\left(q^{(k)}(t-\tau(t))\right) \\
& +B^{(k)} f^{(r)}\left(q^{(r)}(t-\tau(t))\right) \\
& +B^{(i)} f^{(j)}\left(q^{(j)}(t-\tau(t))\right) \\
& -B^{(j)} f^{(i)}\left(q^{(i)}(t-\tau(t))\right) \\
& +C^{(r)} \int_{t-\tau}^{t} f^{(k)}\left(q^{(k)}(s)\right) d s \\
& +C^{(k)} \int_{t-\tau}^{t} f^{(r)}\left(q^{(r)}(s)\right) d s \\
& +C^{(i)} \int_{t-\tau}^{t} f^{(j)}\left(q^{(j)}(s)\right) d s \\
& -C^{(j)} \int_{t-\tau}^{t-\tau} f^{(i)}\left(q^{(i)}(s)\right) d s+U^{(k)} . \tag{5}
\end{align*}
$$

According to (2), (3), (4), (5), one can obtain that

$$
\begin{align*}
\dot{Q}(t)=-\widehat{D} Q(t)+\widehat{A} \widehat{f}(Q(t)) & +\widehat{B} \widehat{f}(Q(t-\tau(t))) \\
& +\widehat{C} \int_{t-\tau}^{t} \widehat{f}(Q(s)) d s+\widehat{U}, \tag{6}
\end{align*}
$$

where
\widehat{D}

$$
\begin{aligned}
& =\operatorname{diag}\{D, D, D, D\} \in \mathbb{R}^{4 n \times 4 n} \\
& =\left(\begin{array}{cccc}
A^{(r)} & -A^{(i)} & -A^{(j)} & -A^{(k)} \\
A^{(i)} & A^{(r)} & -A^{(k)} & A^{(j)} \\
A^{(j)} & A^{(k)} & A^{(r)} & -A^{(i)} \\
A^{(k)} & -A^{(j)} & A^{(i)} & A^{(r)}
\end{array}\right) \in \mathbb{R}^{4 n \times 4 n}
\end{aligned}
$$

\widehat{B}

$$
=\left(\begin{array}{cccc}
B^{(r)} & -B^{(i)} & -B^{(j)} & -B^{(k)} \\
B^{(i)} & B^{(r)} & -B^{(k)} & B^{(j)} \\
B^{(j)} & B^{(k)} & B^{(r)} & -B^{(i)} \\
B^{(k)} & -B^{(j)} & B^{(i)} & B^{(r)}
\end{array}\right) \in \mathbb{R}^{4 n \times 4 n}
$$

\widehat{C}

$$
=\left(\begin{array}{cccc}
C^{(r)} & -C^{(i)} & -C^{(j)} & -C^{(k)} \\
C^{(i)} & C^{(r)} & -C^{(k)} & C^{(j)} \\
C^{(j)} & C^{(k)} & C^{(r)} & -C^{(i)} \\
C^{(k)} & -C^{(j)} & C^{(i)} & C^{(r)}
\end{array}\right) \in \mathbb{R}^{4 n \times 4 n}
$$

$Q(t)$

$$
=\left(q^{(r)}(t)^{T}, q^{(i)}(t)^{T}, q^{(j)}(t)^{T}, q^{(k)}(t)^{T}\right)^{T} \in \mathbb{R}^{4 n}
$$

\widehat{U}

$$
=\left(\left(U^{(r)}\right)^{T},\left(U^{(i)}\right)^{T},\left(U^{j}\right)^{T},\left(U^{k}\right)^{T}\right)^{T} \in \mathbb{R}^{4 n}
$$

$\widehat{f}(Q(t))$

$$
\begin{aligned}
= & \left(\left(f^{(r)}\left(q^{(r)}(t)\right)^{T},\left(f^{(i)}\left(q^{(i)}(t)\right)^{T}\right.\right.\right. \\
& \left(f^{(j)}\left(q^{(j)}(t)\right)^{T},\left(f^{(k)}\left(q^{(k)}(t)\right)^{T}\right)^{T} \in \mathbb{R}^{4 n}\right.
\end{aligned}
$$

$\widehat{f}(Q(t-\tau(t)))$
$=\left(\left(f^{(r)}\left(q^{(r)}(t-\tau(t))\right)\right)^{T}\right.$,
$\left(f^{(i)}\left(q^{(i)}(t-\tau(t))\right)\right)^{T}$,
$\left(f^{(j)}\left(q^{(j)}(t-\tau(t))\right)\right)^{T}$,
$\left.\left(f^{(k)}\left(q^{(k)}(t-\tau(t))\right)\right)^{T}\right)^{T} \in \mathbb{R}^{4 n}$,
$\int_{t-\tau}^{t} \widehat{f}(Q(s)) d s$
$=\left(\left(\int_{t-\tau}^{t} f^{(r)}\left(q^{(r)}(s)\right) d s\right)^{T}\right.$,
$\left(\int_{t-\tau}^{t} f^{(i)}\left(q^{(i)}(s)\right) d s\right)_{T}^{T}$,
$\left(\int_{t-\tau}^{t} f^{(j)}\left(q^{(j)}(s)\right) d s\right)^{T}$,
$\left.\left(\int_{t-\tau}^{t} f^{(k)}\left(q^{(k)}(s)\right) d s\right)^{T}\right)^{T} \in \mathbb{R}^{4 n}$.
Remark 1: System (6) is a RVNN with mixed delays. Obviously, the equilibrium point and dynamic characteristics of QVNN (1) are the same as those of system (6) by matching $q(t)=q^{(r)}(t)+i q^{(i)}(t)+j q^{(j)}(t)+k q^{(k)}(t)$ with $Q(t)=$ $\left(\left(q^{(r)}(t)\right)^{\mathrm{T}},\left(q^{(i)}(t)\right)^{\mathrm{T}},\left(q^{(j)}(t)\right)^{\mathrm{T}},\left(q^{(k)}(t)\right)^{\mathrm{T}}\right)^{\mathrm{T}}$. Therefore, one can investigate the dynamics characteristics of the equilibrium of the system (6) instead of system (1).

Definition 1 ([29]): $A=\left(a_{i j}\right)_{n \times n}\left(a_{i j} \in \mathbb{R}\right)$ is called a Lyapunov Diagonally Stable (LDS) matrix, if there is a matrix P , such that $P^{T}=P, P>0$ and $[P A]^{S}>0$.

Definition 2 ([29]): A map $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be a homeomorphism of R^{n} onto itself, if it satisfies: H is continuous, one-to-one and onto, and its inverse mapping H^{-1} is continuous too.

Definition 3 ([27]): The unique equilibrium point Q^{*} of real valued system (6) is said to be globally exponentially
stable if there exists a constant $\alpha>0(\alpha \in \mathbb{R})$ such that

$$
\left\|Q(t)-Q^{*}\right\| \leq\left\|\phi(t)-Q^{*}\right\| e^{-\alpha t}, t \geq t_{0}
$$

Definition 4 ([33]): Suppose that there are constants $M>0$ and $\gamma>0(M, \gamma \in \mathbb{R})$, such that

$$
\left\|Q(t)-Q^{*}\right\| \leq M t^{-\gamma}
$$

then, the system (6) is power-rate globally stable with power convergence rate γ, or globally power stable.

Assumption 1 ([29]): A continuous function $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} of the form $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{T}$ is said to be of class $G\left\{G_{1}, G_{2}, \cdots, G_{n}\right\}$, and $G=\operatorname{diag}\left\{G_{1}, G_{2}, \cdots, G_{n}\right\}$ with $0<G_{i}<+\infty, i=1,2, \ldots, n$, if the function $f(x)$ satisfies $0 \leq \frac{f_{i}(x)-f_{i}(y)}{x-y} \leq G_{i}$ for each $x, y \in \mathbb{R}, x \neq y$ and for $i=1,2, \cdots, n$.

Assumption 2: Under Assumption 1, we have $\widehat{f}=$ $\left(\left(f^{(r)}\right)^{T},\left(f^{(i)}\right)^{T},\left(f^{(j)}\right)^{T},\left(f^{(k)}\right)^{T}\right)^{T}=\left(\widehat{f}_{1}, \widehat{f}_{2}, \cdots, \widehat{f_{4 n}}\right)^{T}:$ $\mathbb{R}^{4 n} \rightarrow \mathbb{R}^{4 n}, \widehat{f} \in G\left\{\widehat{G}_{1}, \widehat{G}_{2}, \cdots, \widehat{G}_{4 n}\right\}$ and $\widehat{G}=$ $\operatorname{diag}\{G, G, G, G\}$.

Lemma 1 ([36]): The LMI $H=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{12}^{T} & H_{22}\end{array}\right)<0$ with $H_{11}=H_{11}^{T}, H_{22}=H_{22}^{T}$ is equivalent to one of the following conditions:

1) $H_{22}<0, H_{11}-H_{12}^{-1} H_{12}^{T}<0$;
2) $H_{11}<0, H_{22}-H_{12}^{T} H_{11}^{-1} H_{12}<0$.

Lemma 2 ([34]): Under Assumption 1 and $D G^{-1}-A \in$ $L D S$, we have:

1) $H(Q)=-D Q+A f(Q)+I$ is a homeomorphism of \mathbb{R}^{n} onto itself;
2) the system $\frac{d Q(t)}{d t}=-D Q(t)+A f(Q(t))+U$ has a unique equilibrium point for each $U \in \mathbb{R}^{n}$.
Lemma 3 ([37]): For any constant matrix $W \in \mathbb{R}^{m \times m}$, $W=W^{T}>0$, scalar $\gamma>0$, vector function $\omega:[0, \gamma] \rightarrow$ \mathbb{R}^{m}, such that

$$
\left.\begin{array}{rl}
\left(\int_{0}^{\gamma} \omega(s) d s\right)^{T} W\left(\int_{0}^{\gamma} \omega(s) d s\right.
\end{array}\right) \quad \begin{aligned}
& \\
& \quad \leq \gamma \int_{0}^{\gamma} \omega^{T}(s) W \omega(s) d s \tag{7}
\end{aligned}
$$

Lemma 4 ([33]): Let P, D, S be real matrices of appropriate dimensions, and P is positive definite. Then for any vectors x and y with appropriate dimensions, it holds that

$$
\begin{equation*}
2 x^{T} D S y \leq x^{T} D S P^{-1}(D S)^{T} x+y^{T} P y \tag{8}
\end{equation*}
$$

III. MAIN RESULTS

In this section we will propose three criteria for the existence and uniqueness, globally exponential stability and globally power stability of the equilibrium of the given system (6) by using matrix inequalities and Lyapunov analysis respectively. At last, two corollaries are given for QVNNs without distributed delays.

Theorem 1: Under Assumption 2, there exist positive diagonal matrices P, Q and R such that:

$$
\left(\begin{array}{ccc}
2 P \widehat{D} \widehat{G}^{-1}-\left(P \widehat{A}+\widehat{A}^{T} P\right)-Q-R & P \widehat{B} & P(\tau \widehat{C}) \tag{9}\\
\widehat{B}^{T} P & Q & 0 \\
(\tau \widehat{C})^{T} P & 0 & R
\end{array}\right)>0
$$

then, for each $U \in R^{n}$, system (6) has a unique equilibrium point.

Proof: From Assumption 2, Eq.(9) and Lemma 1, one can obtain

$$
\begin{align*}
2 P \widehat{D} \widehat{G}^{-1}-\left(\widehat{A}+\widehat{A}^{T} P\right)> & \widehat{P \widehat{B} Q^{-1}(\widehat{B})^{T} P+Q} \\
& +P(\tau \widehat{C}) R^{-1}(\tau \widehat{C})^{T} P+R . \tag{10}
\end{align*}
$$

By the inequality $\left[Q^{-\frac{1}{2}}(P \widehat{B})^{T}-Q^{\frac{1}{2}}\right]^{T}\left[Q^{-\frac{1}{2}}(P \widehat{B})^{T}-Q^{\frac{1}{2}}\right] \geq 0$, we have $P \widehat{B} Q^{-1}(\widehat{B})^{T} P+Q \geq P \widehat{B}+\widehat{B}^{T} P$. Similarly, we have $P(\tau \widehat{C}) R^{-1}(\tau \widehat{C})^{T} P+R \geq P(\tau \widehat{C})+(\tau \widehat{C})^{T} P$. So (10) becomes

$$
\begin{equation*}
2 P \widehat{D} \widehat{G}^{-1}>P(\widehat{A}+\widehat{B}+\tau \widehat{C})+(\widehat{A}+\widehat{B}+\tau \widehat{C})^{T} P \tag{11}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left\{P\left(\widehat{D} \widehat{G}^{-1}-\widehat{A}-\widehat{B}-\tau \widehat{C}\right)\right\}^{s}>0 \tag{12}
\end{equation*}
$$

which implies $\widehat{D} \widehat{G}^{-1}-(\widehat{A}+\widehat{B}+\tau \widehat{C}) \in L D S$ by Definition 1. From Lemma 2, $H(Q)=-\widehat{D} Q+\widehat{A} \widehat{f}(Q)+\widehat{B} \widehat{f}(Q)+$ $\tau \widehat{C} \widehat{f}(Q)+\widehat{U}$ is a homeomorphism of \mathbb{R}^{n} onto itself, and hence system (6) has a unique equilibrium point for each $\widehat{U} \in \mathbb{R}^{n}$. This completes the proof.

Remark 2: Theorem 1 aims to investigate the existence and uniqueness of equilibrium of QVNN, from the proof process of Theorem 1, it is concise compared with the proof process of the Theorem 3.1 in [27]. For requiring fewer variables and instead of considering $\tau(t)$, the criterion can be more easily checked by the LMI toolbox in MATLAB than that in [27], too.

By decomposing the QVVN (1) into RVNNs, one can obtain system (6) which is a high-dimensional RVVDE and whose model is more practical than that in [29], for one more item-distributed delays than [29] and with time-varying delays. However, inspired by the method of [29], next, we will construct a new Lyapunov functional to investigate the globally exponential stability of the system (6).

Theorem 2: Under Assumption 2, there exist positive diagonal matrices P, Q and R such that:

$$
\left(\begin{array}{ccc}
2 P \widehat{D} \widehat{G}^{-1}-\left(P \widehat{A}+\widehat{A}^{T} P\right)-Q-R & P \widehat{B} & P(\tau \widehat{C}) \tag{13}\\
(\widehat{B})^{T} P & (1-\mu) Q & 0 \\
(\tau \widehat{C})^{T} P & 0 & R
\end{array}\right)
$$

then, for each $U \in \mathbb{R}^{n}$, system (6) has a unique equilibrium point which is globally exponentially stable.

Proof: Suppose that $Q^{*}=\left(\left(q^{*(r)}\right)^{T},\left(q^{*(i)}\right)^{T},\left(q^{*(j)}\right)^{T}\right.$, $\left.\left(q^{*(k)}\right)^{T}\right)^{T}=\left(Q_{1}^{*}, Q_{2}^{*}, \cdots, Q_{4 n}^{*}\right)^{T} \in \mathbb{R}^{4 n}$ is an equilibrium point of real-valued system (6) and $q^{*}=$ $q^{*(r)}+i q^{*(i)}+j q^{*(j)}+k q^{*(k)}$ is an equilibrium point of system (1). By transformation $\widehat{Q}(t)=Q(t)-Q^{*}$ and
$\widehat{Q}(t)=\left(\widehat{Q}_{1}(t), \widehat{Q}_{2}(t), \cdots, \widehat{Q}_{4 n}(t)\right)^{T} \in \mathbb{R}^{4 n}$, one can obtain the following vector form of real-valued system (14):

$$
\begin{align*}
& \dot{Q}(t)=-\widehat{D} \widehat{Q}(t)+\widehat{A} F(\widehat{Q}(t))+\widehat{B} F(\widehat{Q}(t-\tau(t))) \\
&+\widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s)) d s \tag{14}
\end{align*}
$$

where $F(\widehat{Q}(t))=\widehat{f}\left(\widehat{Q}(t)+Q^{*}\right)-\widehat{f}\left(Q^{*}\right)$.
Clearly, Q^{*} is globally exponentially stable for (6) if and only if the trivial solution of (14) is globally exponentially stable. To analyze the global stability of the trivial solution of (14), we consider the following Lyapunov functional:

$$
\begin{align*}
V(\widehat{Q}(t), t)= & e^{\epsilon t} \widehat{Q}^{T}(t) \widehat{Q}(t)+2 \alpha \sum_{i=1}^{4 n} P_{i} e^{\epsilon t} \int_{0}^{\widehat{Q}_{i}(t)} F_{i}(\rho) d \rho \\
& +(\alpha+\beta) \int_{t-\tau(t)}^{t} F^{T}(\widehat{Q}(s)) Q F(\widehat{Q}(s)) e^{\epsilon(s+\tau)} d s \\
& +\frac{\alpha}{\tau} \int_{-\tau}^{0} \int_{t+s}^{t} e^{\epsilon(\theta+\tau)} F^{T}(\widehat{Q}(\theta)) R F(\widehat{Q}(\theta)) d \theta d s \tag{15}
\end{align*}
$$

where positive constants α and β are to be decided and $\epsilon>0$ is a small real number and $P=\operatorname{diag}\left\{P_{1}, P_{2}, \cdots, P_{4 n}\right\}$, $Q=\operatorname{diag}\left\{Q_{1}, Q_{2}, \cdots, Q_{4 n}\right\}, P_{i}>0, Q_{i}>0, \rho$ can be regarded as $\widehat{Q}_{i}(s), i=1,2, \cdots, 4 n$. Differentiating V along the solution of (14), we have

$$
\begin{align*}
\dot{V}(\widehat{Q}(t), t)= & \epsilon e^{\epsilon t} \widehat{Q}^{T}(t) \widehat{Q}(t)+2 e^{\epsilon t} \widehat{Q}^{T}(t)[-\widehat{D} \widehat{Q}(t) \\
& +\widehat{A} F(\widehat{Q}(t))+\widehat{B} F(\widehat{Q}(t-\tau(t))) \\
& \left.+\widehat{C} \int_{t-\tau}^{\tau} F(\widehat{Q}(s)) d s\right] \\
& +2 \alpha \epsilon e^{\epsilon t} \sum_{i=0}^{4 n} P_{i} \int_{0}^{Q_{i}(t)} F_{i}(\rho) d \rho \\
& +2 \alpha e^{\epsilon t} F^{T}(\widehat{Q}(t)) P[-\widehat{D} \widehat{Q}(t)+\widehat{A} F(\widehat{Q}(t)) \\
& \left.+\widehat{B} F(\widehat{Q}(t-\tau(t)))+\widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right] \\
& +(\alpha+\beta) e^{\epsilon t}\left[F^{T}(\widehat{Q}(t)) e^{\epsilon \tau} Q F(\widehat{Q}(t))\right. \\
& -(1-\dot{\tau}(t)) e^{\epsilon(t+\tau-\tau(t))} F^{T}(\widehat{Q}(t-\tau(t))) \\
& \cdot Q F(Q(t-\tau(t)))] \\
& +\alpha e^{\epsilon(t+\tau)} F^{T}(\widehat{Q}(t)) R F(\widehat{Q}(t)) \\
& -\frac{\alpha}{\tau} \int_{t-\tau}^{t} e^{\epsilon(s+\tau)} F^{T}(\widehat{Q}(s)) R F(\widehat{Q}(s)) d s, \quad(\tag{16}
\end{align*}
$$

where τ is a constant. For $0<\tau(t)<\tau, \dot{\tau}(t)<\mu<1$, thus,

$$
\begin{aligned}
\dot{V}(\widehat{Q}(t), t) \leq & e^{\epsilon t}\left\{\epsilon \widehat{Q}^{T}(t) \widehat{Q}(t)+2 \widehat{Q}^{T}(t)[-\widehat{D} \widehat{Q}(t)\right. \\
& +\widehat{A} F(\widehat{Q}(t))+\widehat{B} F(\widehat{Q}(t-\tau(t))) \\
& \left.+\widehat{C} \int_{t-\tau}^{\tau} F(\widehat{Q}(s)) d s\right]
\end{aligned}
$$

$$
\begin{align*}
& +2 \alpha \epsilon e^{\epsilon t} \sum_{i=0}^{4 n} P_{i} \int_{0}^{\widehat{Q}_{i}(t)} F_{i}(\rho) d \rho \\
& +2 \alpha e^{\epsilon t} F^{T}(\widehat{Q}(t)) P[-\widehat{D} \widehat{Q}(t)+\widehat{A} F(\widehat{Q}(t)) \\
& \left.+\widehat{B} F(\widehat{Q}(t-\tau(t)))+\widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right] \\
& +(\alpha+\beta)\left[F^{T}(\widehat{Q}(t)) e^{\epsilon \tau} Q F(\widehat{Q}(t))\right. \\
& \left.-(1-\mu) F^{T}(\widehat{Q}(t-\tau(t))) Q F(\widehat{Q}(t-\tau(t)))\right] \\
& +\alpha e^{\epsilon \tau} F^{T}(\widehat{Q}(t)) R F(\widehat{Q}(t)) \\
& \left.-\frac{\alpha}{\tau} \int_{t-\tau}^{t} F^{T}(\widehat{Q}(s)) R F(\widehat{Q}(s)) d s\right\} . \tag{17}
\end{align*}
$$

By Assumption $2,\left|F_{i}(\rho)\right|=\left|\widehat{f}_{i}\left(\rho+Q_{i}^{*}\right)-\widehat{f}_{i}\left(Q_{i}^{*}\right)\right| \leq \widehat{G}_{i}|\rho|$ for each $\rho \in \mathbb{R}, i=1,2, \cdots, 4 n$, and one can obtain

$$
\begin{align*}
& \int_{0}^{\widehat{Q}_{i}(t)} F_{i}(\rho) d \rho \leq \frac{1}{2} \widehat{G}_{i} \widehat{Q}_{i}^{2}(t), \tag{18}\\
& F^{T}(\widehat{Q}(t))(-P \widehat{D}) \widehat{Q}(t) \\
& \quad \leq F^{T}(\widehat{Q}(t))\left(-P \widehat{D} \widehat{G}^{-1}\right) F(\widehat{Q}(t)) . \tag{19}
\end{align*}
$$

By Lemma 3, Eq. (18) and (19),

$$
\begin{align*}
\dot{V}(\widehat{Q}(t), t) \leq & e^{\epsilon t}\left\{\widehat{Q}^{T}(t)[\epsilon I-2 \widehat{D}+\alpha \epsilon \widehat{P}] \widehat{Q}(t)\right. \\
& +2 \widehat{Q}^{T}(t) \widehat{A} F(\widehat{Q}(t)) \\
& \left.+2 \widehat{Q}^{T}(t) \widehat{B} F \widehat{Q}(t-\tau(t))\right) \\
& +2 \widehat{Q}^{T}(t) \widehat{C} \int_{t-\tau}^{\tau} F(\widehat{Q}(s)) d s \\
& +2 \alpha F^{T}(\widehat{Q}(t))\left(-P \widehat{D} \widehat{G}^{-1}\right) F(\widehat{Q}(t)) \\
& +2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{A} F(\widehat{Q}(t)) \\
& +2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{B} F(\widehat{Q}(t-\tau(t))) \\
& +2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s) d s) \\
& +(\alpha+\beta))^{T}(\widehat{Q}(t)) e^{\epsilon \tau} Q F(\widehat{Q}(t)) \\
& +\alpha e^{\epsilon \tau} F^{T}(\widehat{Q}(t)) R F(\widehat{Q}(t)) \\
& -(\alpha+\beta)(1-\mu) F^{T}(\widehat{Q}(t-\tau(t))) Q \\
& \cdot F(\widehat{\widehat{Q}}(t-\tau(t))) \\
& -\frac{\alpha}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} R \\
& \left.\cdot\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)\right\}, \tag{20}
\end{align*}
$$

$\dot{V}(\widehat{Q}(t), t) \leq e^{\epsilon t}\left\{-3 \widehat{Q}^{T}(t)\left[\frac{2}{3} D-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right] \widehat{Q}(t)\right.$

$$
+2 \widehat{Q}_{T}^{T}(t) \widehat{\widehat{A}} F(\widehat{\widehat{Q}}(t))
$$

$$
+2 \widehat{\widehat{Q}}^{T}(t) \widehat{B} F(\hat{Q}(t-\tau(t)))
$$

$$
+2 \widehat{Q}^{T}(t) \widehat{C} \int_{t-\tau}^{\tau} F(\widehat{Q}(s)) d s
$$

$$
+2 \alpha F^{T}\left(\widehat{Q}^{J}(t)\right)\left(-P \widehat{D} \widehat{G}^{-1}\right) F(\widehat{Q}(t))
$$

$$
+2 \alpha F^{T}(\hat{Q}(t)) P \widehat{\widehat{A} F}(\widehat{Q}(t))
$$

$$
+2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{B} F(\hat{Q}(t-\tau(t)))
$$

$$
+2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{C} \int_{t-\tau}^{T} F(\widehat{Q}(s) d s
$$

$$
+(\alpha+\beta) F_{\widehat{T}(\widehat{Q}(t)) e^{J \tau \tau}}^{\substack{\epsilon \tau}} Q(\widehat{Q}(t))
$$

$$
+\alpha e^{\tau \tau} F^{T}(\widehat{Q}(t)) R F(\widehat{Q}(t))
$$

$$
\begin{align*}
& -(\alpha+\beta)(1-\mu) F^{T}(\widehat{Q}(t-\tau(t))) \\
& \cdot Q F(\widehat{Q}(t-\tau(t))) \\
& -\frac{\alpha}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} R \\
& \left.\cdot\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)\right\} . \tag{21}
\end{align*}
$$

Let us discuss an inequality:

$$
\begin{align*}
&-\widehat{Q}^{T}(t)\left(\frac{2}{3} D-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right) \widehat{Q}(t) \\
&+2 \widehat{Q}^{T}(t) \widehat{A} F(\widehat{Q}(t)) \\
&=-\left[\left(\frac{2}{3} D-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{\frac{1}{2}} \widehat{Q}(t)\right. \\
&\left.-\left(\frac{2}{3} D-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-\frac{1}{2}} \widehat{A} F(\widehat{Q}(t))\right]^{T} \\
& \cdot\left[\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P G\right)^{\frac{1}{2}} \widehat{Q}(t)\right. \\
&\left.-\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-\frac{1}{2}} \widehat{A} F(\widehat{Q}(t))\right] \\
&+F^{T}\left(\widehat{Q}(t) \widehat{A}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1}\right. \\
& \cdot \widehat{A} F(\widehat{Q}(t)) \tag{22}\\
& \leq F^{T}(\widehat{Q}(t)) \widehat{A}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1} \\
& . \widehat{A} F(\widehat{Q}(t)) .
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
&-\widehat{Q}^{T}(t)\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right) \widehat{Q}(t) \\
&+2 \widehat{Q}^{T}(t) \widehat{B} F(\widehat{Q}(t-\tau(t))) \\
& \leq F^{T}\left(\widehat{Q}(t-\tau(t)) \widehat{B^{T}}\left(\frac{2}{3} D-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1}\right. \\
& \cdot \widehat{B} F(\widehat{Q}(t-\tau(t))), \tag{23}\\
&-\widehat{Q}^{T}(t)\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right) \widehat{Q}(t) \\
&+2 \widehat{Q}^{T}(t) \widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s)) d s \\
& \leq\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} \widehat{C}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \in P \widehat{G}\right)^{-1} \\
& \cdot \widehat{C}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right), \tag{24}\\
&-\alpha(1-\mu) F^{T}(\widehat{Q}(t-\tau(t)) Q F(\widehat{Q}(t-\tau(t))) \\
&+2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{B} F(\widehat{Q}(t-\tau(t))) \\
& \leq\left.\alpha F^{T} \widehat{Q}(t)\right) P \widehat{B}((1-\mu) Q)^{-1} \widehat{B}^{T} P F(\widehat{Q}(t)), \tag{25}\\
&-\frac{\alpha \theta}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} R\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right) \\
&+2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{C}\left(\int_{t-\tau}^{t} F\left(\widehat{Q}^{t}(s)\right) d s\right) \\
& \leq \frac{\alpha \tau^{2}}{\theta} F^{T}(\widehat{Q}(t)) P \widehat{C} R^{-1} \widehat{C}^{T} P F(\widehat{Q}(t)) . \tag{26}
\end{align*}
$$

where $0<\theta<1$.
By θ, we have

$$
\begin{aligned}
& -\frac{\alpha}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} R\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right) \\
& \quad=-\theta \frac{\alpha}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} R\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)
\end{aligned}
$$

$$
\begin{align*}
& -(1-\theta) \frac{\alpha}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} \\
& \cdot R\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right) \tag{27}
\end{align*}
$$

Thus,

$$
\begin{aligned}
\dot{V}(\widehat{Q}(t), t) \leq & e^{\epsilon t}\left\{F^{T}(\widehat{Q}(t)) \widehat{A}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1}\right. \\
& \cdot \widehat{A} F(\widehat{Q}(t))+F^{T}(\widehat{Q}(t-\tau(t))) \widehat{B}^{T} \\
& \cdot\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1} \widehat{B} F(\widehat{Q}(t-\tau(t))) \\
& +\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} \widehat{C}^{T} \\
& \cdot\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1} \widehat{C} \\
& \cdot\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right) \\
& +2 \alpha F^{T}(\widehat{Q}(t))\left(-P D \widehat{G}^{-1}\right) F(\widehat{Q}(t)) \\
& +2 \alpha F^{T}(\widehat{Q}(t)) P \widehat{A} F(\widehat{Q}(t)) \\
& +(\alpha+\beta) F^{T}(\widehat{Q}(t)) e^{\epsilon \tau} Q F(\widehat{Q}(t)) \\
& -\beta(1-\mu) F^{T}(\widehat{Q}(t-\tau(t))) Q F(\widehat{Q}(t-\tau(t))) \\
& +\alpha F^{T}(\widehat{Q}(t)) P \widehat{B}((1-\mu) Q)^{-1} \widehat{B}^{T} P F(\widehat{Q}(t)) \\
& +\frac{\alpha \tau^{2}}{\theta} F^{T}(\widehat{Q}(t)) P \widehat{C} R^{-1} \widehat{C}^{T} P F(\widehat{Q}(t)) \\
& +\alpha e^{\epsilon \tau} F^{T}(\widehat{Q}(t)) R F(\widehat{Q}(t)) \\
& -(1-\theta) \frac{\alpha}{\tau^{2}}\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} R \\
& \left.\cdot\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)\right\},
\end{aligned}
$$

$$
\dot{V}(\widehat{Q}(t), t) \leq e^{\epsilon t}\left\{F ^ { T } (\widehat { Q } (t)) \left[-\alpha\left[2 P \widehat{D} \widehat{G}^{-1}-(P \widehat{A}\right.\right.\right.
$$

$$
\left.+\widehat{A}^{T} P\right)-\frac{\alpha+\beta}{\alpha} e^{\epsilon \tau} Q-e^{\epsilon \tau} R
$$

$$
-P \widehat{B}((1-\mu) Q)^{-1} \widehat{B}^{T} P
$$

$$
\left.-\frac{1}{\theta} P(\tau \widehat{C}) R^{-1}(\tau \widehat{C})^{T} P\right]+\widehat{A}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I\right.
$$

$$
\left.\left.-\frac{1}{3} \alpha \in P \widehat{G}\right)^{-1} \widehat{A}\right] F(\widehat{Q}(t))
$$

$$
+F^{T}(\widehat{Q}(t-\tau(t)))\left[\widehat { B } ^ { T } \left(\frac{2}{3} D-\frac{1}{3} \epsilon I\right.\right.
$$

$$
\left.\left.-\frac{1}{3} \alpha \epsilon P \widehat{G}\right)^{-1} \widehat{B}-\beta(1-\mu) Q\right] F(\widehat{Q}(t-\tau(t)))
$$

$$
+\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T}\left[\widehat { C } ^ { T } \left(\frac{2}{3} \widehat{D}-\frac{1}{3} \epsilon I\right.\right.
$$

$$
\left.\left.-\frac{1}{3} \alpha \in P \widehat{G}\right)^{-1} \widehat{C}-(1-\theta) \frac{\alpha}{\tau^{2}} R\right]
$$

$$
\begin{equation*}
\left.\cdot\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)\right\} \tag{29}
\end{equation*}
$$

where $F^{T}(\widehat{Q}(t)) 2 P \widehat{A} F(\widehat{Q}(t)) \quad=\quad F^{T}(\widehat{Q}(t)) P \widehat{A} F(\widehat{Q}(t))+$ $F^{T}(\widehat{Q}(t)) \widehat{A}^{T} P F(\widehat{Q}(t))$.

Now, we choose appropriate $\epsilon, \alpha, \beta, \theta$ to make $\dot{V}(\widehat{Q}(t), t) \leq 0$. Firstly, let $\varepsilon=\epsilon \alpha$, and one can obtain

$$
\begin{aligned}
\dot{V}(\widehat{Q}(t), t) \leq & e^{\frac{\varepsilon}{\alpha} t}\left\{F ^ { T } (\widehat { Q } (t)) \left[-\alpha\left[2 P \widehat{D} \widehat{G}^{-1}-(P \widehat{A}\right.\right.\right. \\
& \left.+\widehat{A}^{T} P\right)-\frac{(\alpha+\beta)}{\alpha} e^{\frac{\varepsilon}{\alpha} \tau} Q-e^{\frac{\varepsilon}{\alpha} \tau} R
\end{aligned}
$$

$$
\begin{align*}
& -P \widehat{B}((1-\mu) Q)^{-1} \widehat{B}^{T} P \\
& \left.-\frac{1}{\theta} P(\tau \widehat{C}) R^{-1}(\tau \widehat{C})^{T} P\right]+\widehat{A}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \frac{\varepsilon}{\alpha} I\right. \\
& \left.\left.-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{A}\right] F(\widehat{Q}(t))+F^{T}(\widehat{Q}(t-\tau(t))) \\
& \cdot\left[\widehat{B}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \frac{\varepsilon}{\alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{B}\right. \\
& -\beta(1-\mu) Q] F(\widehat{Q}(t-\tau(t))) \\
& +\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T}\left[\widehat { C } ^ { T } \left(\frac{2}{3} \widehat{D}-\frac{1}{3} \frac{\varepsilon}{\alpha} I\right.\right. \\
& \left.\left.-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{C}-(1-\theta) \frac{\alpha}{\tau^{2}} R\right] \\
& \left.\cdot\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)\right\} \tag{30}
\end{align*}
$$

As described in [29], we choose a fixed positive β such that

$$
\begin{equation*}
\beta \geq \frac{\|B\|^{2}\left\|\left(\frac{2}{3} \widehat{D}\right)^{-1}\right\|}{(1-\mu) \min _{i} Q_{i}} \tag{31}
\end{equation*}
$$

Secondly, we choose a sufficiently small $\varepsilon>0$ and a sufficiently large $\alpha>0$ such that

$$
\begin{gather*}
\frac{2}{3} \widehat{D}-\frac{\varepsilon}{3 \alpha} I-\frac{1}{3} \varepsilon P \widehat{G}>0 \tag{32}\\
\frac{\varepsilon}{2 \alpha}\left\|\widehat{D}^{-1}\right\|+\frac{\varepsilon}{2}\left\|P \widehat{D} \widehat{G}^{-1}\right\| \leq 1-\frac{\|\widehat{B}\|^{2}\left\|\left(\frac{2}{3} \widehat{D}\right)^{-1}\right\|}{\beta(1-\mu) \min _{i} Q_{i}} . \tag{33}
\end{gather*}
$$

By the inequality (13) and Lemma 1, we have

$$
\begin{align*}
& 2 P \widehat{D} \widehat{G}^{-1}-\left(P \widehat{A}+\widehat{A}^{T} P\right)-P \widehat{B}((1-\mu) Q)^{-1}(\widehat{B})^{T} P \\
&-P(\tau \widehat{C}) R^{-1}(\tau \widehat{C})^{T} P-Q-R>0 . \tag{34}
\end{align*}
$$

So a sufficiently small $\varepsilon>0$, an appropriate θ and a sufficiently large α can meet the following inequality:

$$
\begin{align*}
& -\alpha\left[2 P \widehat{D} \widehat{G}^{-1}-\left(P \widehat{A}+\widehat{A}^{T} P\right)-\frac{(\alpha+\beta)}{\alpha} e^{\frac{\varepsilon}{\alpha} \tau} Q\right. \\
& -e^{\frac{\varepsilon}{\alpha} \tau} R-P \widehat{B}((1-\mu) Q)^{-1} \widehat{B}^{T} P \\
& -\frac{1}{\theta} P\left(\tau \widehat{C)} R^{-1}(\tau \widehat{C)} T P]\right. \\
& +\widehat{A}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \frac{\varepsilon}{\alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{A} \leq 0 . \tag{35}
\end{align*}
$$

From Eq. (33) and $\left\|(I-F)^{-1}\right\| \leq \frac{1}{1-\|F\|}$ ([38]), we also have

$$
\begin{align*}
\beta & \geq \frac{\|\widehat{B}\|^{2}\left\|\left(\frac{2}{3} \widehat{D}\right)^{-1}\right\|}{(1-\mu) \min _{i} Q_{i}\left(1-\left(\frac{\varepsilon}{2 \alpha}\left\|\widehat{D}^{-1}\right\|+\frac{\varepsilon}{2}\left\|P \widehat{G} \widehat{D}^{-1}\right\|\right)\right)} \\
& \geq \frac{\|\widehat{B}\|^{2}\left\|\left(\frac{2}{3} \widehat{D}\right)^{-1}\right\|}{(1-\mu) \min _{i} Q_{i}}\left\|\left(I-\frac{\varepsilon}{2 \alpha} \widehat{D}^{-1}-\frac{\varepsilon}{2} P \widehat{G} \widehat{D}^{-1}\right)^{-1}\right\| \\
& \geq \frac{\|\widehat{B}\|^{2}\left\|\left(\frac{2}{3} \widehat{D}-\frac{\varepsilon}{3 \alpha} I-\frac{\varepsilon}{3} P \widehat{G}\right)^{-1}\right\|}{(1-\mu) \min _{i} Q_{i}} . \tag{36}
\end{align*}
$$

Thus, by Eq.(32), $\frac{2}{3} \widehat{D}-\frac{\varepsilon}{3 \alpha} I-\frac{1}{3} \varepsilon P \widehat{G}$ is a positive diagonal matrix, and we have

$$
\begin{align*}
& F^{T}(\widehat{Q}(t-\tau(t)))\left[\widehat{B}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \frac{\varepsilon}{\alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{B}\right. \\
&-\beta(1-\mu) Q] F(\widehat{Q}(t-\tau(t))) \\
& \leq \lambda_{\max }\left(\frac{2}{3} \widehat{D}-\frac{\varepsilon}{3 \alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \\
& \cdot \| \widehat{B} F\left(\widehat{Q}(t-\tau(t)) \|^{2}\right. \\
&-\lambda_{\min }[\beta(1-\mu) Q] \| F\left(\widehat{Q}(t-\tau(t)) \|^{2}\right. \\
& \leq\left\|\left(\frac{2}{3} \widehat{D}-\frac{\varepsilon}{3 \alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1}\right\|\|\widehat{B}\|^{2} \\
&\left\|\|F(\widehat{Q}(t-\tau(t)))\|^{2}\right. \\
&-\lambda_{\min }[\beta(1-\mu) Q] \| F\left(\widehat{Q}(t-\tau(t)) \|^{2}\right. \\
& \leq 0 \tag{37}
\end{align*}
$$

Similarly, given appropriate θ satisfing $0<\theta<1-$ $\frac{\left.\|\widehat{C}\|^{2} \| \frac{2}{3} \widehat{D}-\frac{\varepsilon}{3 \alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{C} \|}{\frac{\alpha}{\tau^{2}} \min _{i} R_{i}}$, we can obtain

$$
\begin{array}{r}
\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T}\left[\widehat{C}^{T}\left(\frac{2}{3} \widehat{D}-\frac{1}{3} \frac{\varepsilon}{\alpha} I-\frac{1}{3} \varepsilon P \widehat{G}\right)^{-1} \widehat{C}\right. \\
\left.-(1-\theta) \frac{\alpha}{\tau^{2}} R\right]\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right) \leq 0 \tag{38}
\end{array}
$$

By Eqs. (35), (37) and (38), we can easily get

$$
\begin{equation*}
\dot{V}(\widehat{Q}(t), t) \leq 0 \tag{39}
\end{equation*}
$$

Therefore, $V(\widehat{Q}(t), t) \leq V(Q(0), 0), e^{\epsilon t} \widehat{Q}^{T}(t) \widehat{Q}(t) \leq$ $V(\widehat{Q}(t), t) \leq V(\widehat{Q}(0), 0)$, and then $\widehat{Q}^{T}(t) \widehat{Q}(t) \leq$ $V(\widehat{Q}(0), 0) e^{-\epsilon t}$. Consequently, the trivial solution of (14) is globally exponentially stable, which implies that the equilibrium point of system (6) is globally exponentially stable. This completes the proof.

Remark 3: In Eq. (35), by choosing a sufficiently large α, a fixed β, and a sufficiently small ε, we can make some coefficients of Eq. (35) smaller, that is, $\frac{\alpha+\beta}{\alpha} e^{\frac{\varepsilon}{\alpha} \tau} \rightarrow 1, e^{\frac{\varepsilon}{\alpha} \tau} \rightarrow$ 1. However, for θ, except for satisfying (38), it can't be too small, therefore, an appropriate θ is needed.

Remark 4: In [29], βQ is a diagonal matrix and $B^{T}(D-$ $\left.\frac{\varepsilon}{2 \alpha} I-\frac{\varepsilon}{P G}\right)^{-1} B$ is a symmetrical matrix. So we don't think it's proper to write the inequality, $\beta Q \geq B^{T}\left(D-\frac{\varepsilon}{2 \alpha} I-\frac{\varepsilon}{P G}\right)^{-1} B$ (Eq.(22) in [29]). In proof of our Theorem 2, we use a transformation method used in (37).

Remark 5: Theorem 1 can be regarded as a corollary of Theorem 2, when $\mu=0$.

In [33], Chen and Wang investigated the globally power stability of RVNNs with unbounded time-varying delays. Next, inspired by their method, we will investigate the globally power stability of RVVDE (6) to obtain the criterion of the globally power stability of QVNN (1). As far as we know, few papers concern the globally power stability of QVNNs.

Theorem 3: Under Assumption 2 and suppose $\tau(t) \leq \eta t$, $0<\eta<1$, system (6) has a unique equilibrium point Q^{*} which is globally power stable if there exist positive diagonal
matrices Y, U and V and a positive definite matrix P_{1}, such that the following LMI:

$$
\left(\begin{array}{cccc}
P_{1} \widehat{D}+\widehat{D} P_{1}-Y-P_{1} & -P_{1} \widehat{A} & -P_{1} \widehat{B} & -P_{1} \widehat{C} \\
-\widehat{A}^{T} P_{1} & Y & 0 & 0 \\
-\widehat{B}^{T} P_{1} & 0 & U & 0 \\
-\widehat{C}^{T} P_{1} & 0 & 0 & V
\end{array}\right)>0
$$

$$
\begin{equation*}
P_{1} \geq U, P_{1} \geq V \tag{40}
\end{equation*}
$$

holds.
Proof: By Eq. (40) we can find three sufficiently small constants $\alpha_{1}>0$ and $\gamma>0$ and $\varpi>0$, such that

$$
\left(\begin{array}{cccc}
P_{1} \widehat{D}+\widehat{D} P_{1}-Y-\star & -P_{1} \widehat{A} & -P_{1} \widehat{B} & P_{1} \widehat{C} \tag{41}\\
-\widehat{A}^{T} P_{1} & Y & 0 & 0 \\
-\widehat{B}^{T} P_{1} & 0 & U & 0 \\
-\widehat{C}^{T} P_{1} & 0 & 0 & R
\end{array}\right)>0
$$

where $*=\alpha_{1} P_{1}+(1-\eta)^{-\gamma} P_{1}+\varpi P_{1}$. And we can find a sufficiently large T , for all $t \geq T$, such that $\frac{\gamma}{t}<\alpha_{1}, 0<$ $\frac{\tau t}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right]<\varpi$.

Define a function $V_{1}(\widehat{Q}(t))=t^{\gamma} \widehat{Q}(t)^{T} P_{1} \widehat{Q}(t), t \geq T$, where $\widehat{Q}(t)=Q(t)-Q^{*}, F(\widehat{Q}(t))=\widehat{f}\left(\widehat{Q}(t)+Q^{*}\right)-$ $\widehat{f}\left(Q^{*}\right)$. And denote $M(t)=\sup _{0 \leq s \leq t} V_{1}(\widehat{Q}(s))$, which is a non-decreasing function and obviously, $V_{1}(\widehat{Q}(t)) \leq M(t)$.

Now, we will prove that $M(t)$ is bounded, that is, for all $t \geq T$, we have $M(t)=M(T)$.

Firstly, for any $t \geq T$, if $V_{1}(\widehat{Q}(t))<M(t), M(t)$ is a non-increasing function, and then $M(t)=M(T)$.

Secondly, if $V_{1}(\widehat{Q}(t))=M(t)$, one can obtain

$$
\begin{aligned}
& \frac{d V_{1}(\widehat{Q}(t))}{d t} \\
&= \gamma t^{\gamma-1} \widehat{Q}(t)^{T} P_{1} \widehat{Q}(t)+2 t^{\gamma} \widehat{Q}(t)^{T} P_{1}[-\widehat{D} \widehat{Q}(t) \\
&+\widehat{A} F(\widehat{Q}(t))+\widehat{B} F(\widehat{Q}(t-\tau(t))) \\
&+\widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s) d s] \\
&= t^{\gamma}\left\{\widehat{Q}(t)^{T}\left(\frac{\gamma}{t} P_{1}-2 P_{1} \widehat{D}\right) \widehat{Q}(t)\right. \\
&+2 \widehat{Q}(t)^{T} P_{1} \widehat{A} F(\widehat{Q}(t)) \\
&+2 \widehat{Q}(t)^{T} P_{1} \widehat{B} F(\widehat{Q}(t-\tau(t))) \\
&+2 \widehat{Q}(t)^{T} P_{1} \widehat{C} \int_{t-\tau}^{t} F(\widehat{Q}(s) d s\} \\
& \leq t^{\gamma}\left\{\widehat{Q}(t)^{T}\left(\frac{\gamma}{t} P_{1}-2 P_{1} \widehat{D}\right) \widehat{Q}(t)\right. \\
&+\widehat{Q}(t)^{T} P_{1} \widehat{A} Y^{-1}\left(P_{1} \widehat{A}\right)^{T} \widehat{Q}(t) \\
&+F(\widehat{Q}(t))^{T} Y F(\widehat{Q}(t)) \\
& \quad+\widehat{Q}(t)^{T} P_{1} \widehat{B} U^{-1}\left(P_{1} \widehat{B}\right)^{T} \widehat{Q}(t) \\
& \quad+F(\widehat{Q}(t-\tau(t)))^{T} U F(\widehat{Q}(t-\tau(t))) \\
& \quad+\widehat{Q}(t)^{T} P_{1} \widehat{C} V^{-1}\left(P_{1} \widehat{C}\right)^{T} \widehat{Q}(t) \\
&+\left(\int_{t-\tau}^{t} F(\widehat{Q}(s)) d s\right)^{T} V\left(\int_{t-\tau}^{t} F(\widehat{Q}(s) d s)\right\} \\
& \leq t^{\gamma}\left\{\widehat { Q } (t) ^ { T } \left[\frac{\gamma}{t} P_{1}-2 P_{1} \widehat{D}+P_{1} \widehat{A} Y^{-1}\left(P_{1} \widehat{A}\right)^{T}\right.\right. \\
&+Y+P_{1} \widehat{B} U^{-1}\left(P_{1} \widehat{B}\right)^{T} \\
&\left.+P_{1} \widehat{C} V^{-1}\left(P_{1} \widehat{C}\right)^{T}\right] \widehat{Q}(t)
\end{aligned}
$$

$$
\begin{align*}
& +F(\widehat{Q}(t-\tau(t)))^{T} U F(\widehat{Q}(t-\tau(t))) \\
& \left.+\tau \int_{t-\tau}^{t} F(\widehat{Q}(s))^{T} V F(\widehat{Q}(s)) d s\right\} \tag{42}
\end{align*}
$$

where we use Lemma 3, Lemma 4 and Assumption 2 with $\widehat{G}=I$.

Since $M(t)=\sup _{0 \leq s \leq t} V_{1}(\widehat{Q}(s))$, when $s \in[t-\tau, t] \subset[0, t]$, $V_{1}(\widehat{Q}(s)) \leq M(t)=V_{1}(\widehat{Q}(t))$. And for $P_{1} \geq U, P_{1} \geq V$ and Assumption 2, one can obtain

$$
\begin{align*}
t^{\gamma} & F^{T}(\widehat{Q}(t-\tau(t))) U F(\widehat{Q}(t-\tau(t))) \\
& \leq t^{\gamma} \widehat{Q}(t-\tau(t))^{T} P_{1}(t-\tau(t)) \\
& =\left(\frac{t}{t-\tau(t)}\right)^{\gamma} V_{1}(\widehat{Q}(t-\tau(t))) \\
& \leq\left(\frac{t}{t-\tau(t)}\right)^{\gamma} V_{1}(\widehat{Q}(t)) \\
& \leq(1-\eta)^{-\gamma} t^{\gamma} \widehat{Q}(t)^{T} P_{1} \widehat{Q}(t), \tag{43}\\
t^{\gamma} \tau & \int_{t-\tau}^{t} F^{T}(\widehat{Q}(s)) V F(\widehat{Q}(s)) d s \\
& \leq t^{\gamma} \tau \int_{t-\tau}^{t} \widehat{Q}(s)^{T} V \widehat{Q}(s) d s \\
& \leq t^{\gamma} \tau \int_{t-\tau}^{t} \widehat{Q}(s)^{T} P_{1} \widehat{Q}(s) d s \\
& =t^{\gamma} \tau \int_{t-\tau}^{t} \frac{1}{s^{\gamma}} V_{1}(\widehat{Q}(s)) d s \\
& \leq t^{\gamma} \tau \int_{t-\tau}^{t} \frac{1}{s^{\gamma}} V_{1}(\widehat{Q}(t)) d s \\
& =t^{\gamma} V_{1}(\widehat{Q}(t)) \tau \int_{t-\tau}^{t} \frac{1}{s^{\gamma}} d s \\
& =\frac{\tau t}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right] V_{1}(\widehat{Q}(t)) \\
& =\frac{\tau t^{\gamma}+1}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right] Q(t)^{T} P_{1} Q(t) \tag{44}
\end{align*}
$$

Thus, Eq. (42) can be written as follow:

$$
\begin{align*}
& \frac{d V_{1}(\widehat{Q}(t))}{d t} \\
& \leq t^{\gamma} \widehat{Q}(t)^{T}\left[\frac{\gamma}{t} P_{1}-P_{1} \widehat{D}-\widehat{D} P_{1}+P_{1} \widehat{A} Y^{-1}\left(P_{1} \widehat{A}\right)^{T}\right. \\
&+Y+P_{1} \widehat{B} U^{-1}\left(P_{1} \widehat{B}\right)^{T}+P_{1} \widehat{C} V^{-1}\left(P_{1} \widehat{C}\right)^{T} \\
&\left.+(1-\eta)^{-\gamma} P_{1}+\frac{\tau t}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right] P_{1}\right] \widehat{Q}(t) \\
& \leq t^{\gamma} \widehat{Q}(t)^{T}\left[\alpha_{1} P_{1}-P_{1} \widehat{D}-\widehat{D} P_{1}+P_{1} \widehat{A} Y^{-1}\left(P_{1} \widehat{A}\right)^{T}\right. \\
&+Y+P_{1} \widehat{B} U^{-1}\left(P_{1} \widehat{B}\right)^{T}+P_{1} \widehat{C} V^{-1}\left(P_{1} \widehat{C}\right)^{T} \\
&\left.+(1-\eta)^{-\gamma} P_{1}+\varpi P_{1}\right] \widehat{Q}(t) \tag{45}
\end{align*}
$$

By Lemma 1, Eq. (41) is equivalent to the following inequality:

$$
\begin{align*}
& P_{1} \widehat{D}+\widehat{D} P_{1}-\alpha_{1} P_{1}-Y-(1-\eta)^{-\gamma} P_{1}-\varpi P_{1} \\
& \quad-P_{1} \widehat{A} Y^{-1}\left(P_{1} \widehat{A}\right)^{T}-P_{1} \widehat{B} U^{-1}\left(P_{1} \widehat{B}\right)^{T} \tag{46}\\
& \quad-P_{1} \widehat{C} V^{-1}\left(P_{1} \widehat{C}\right)^{T}>0
\end{align*}
$$

Therefore, $\frac{d V_{1}(\widehat{Q}(t))}{d t} \leq 0$, when $V_{1}(\widehat{Q}(t))=M(t)$, for all $t \geq T$. Thus, $M(t)$ is also non-increasing at t, and then $M(t)=M(T)$.

FIGURE 1. The state trajectories of $q^{r}(t), q^{i}(t), q^{i}(t), q^{k}(t)$ of QVNN (52).

In short, $M(t)=M(T)$ for all $t \geq T$. Therefore, for all $t \geq T, V(\widehat{Q}(t)) \leq M(T)$, and then, $t^{\gamma} \lambda_{\max }\left(P_{1}\right)\|\widehat{Q}(t)\|^{2} \leq$ $M(T)$, thus, $\|\widehat{Q}(t)\| \leq \lambda_{\max }^{-\frac{1}{2}}\left(P_{1}\right) M(T)^{\frac{1}{2}} t^{\frac{-\gamma}{2}}$.

FIGURE 2. The state trajectories of $\boldsymbol{q}^{r}(t), q^{i}(t), q^{j}(t), q^{k}(t)$ of QVNN (53).

Then, $Q(t)$ converges to Q^{*} with power convergence rate $-\frac{\gamma}{2}$ in the system (6). This completes the proof.

Remark 6: Theorem 3 applies to both QVNNs and RVNNs. And Theorem 3 can also be regarded as a generalization of [33].

FIGURE 3. The state trajectories of $q^{r}(t), q^{i}(t), q^{j}(t), q^{k}(t)$ of Example 4.1 in [27].

Remark 7: For $0<\frac{\tau t}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right]<\varpi$, let $\varphi(t, \gamma)=\frac{\tau t}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right], 0<\gamma<1, t \geq T$, $t>\tau$, we can easily find that $\varphi(t, \gamma)$ is a monotone increasing
function about t with a fixed γ, and $\frac{\tau T}{1-\gamma}\left[1-\left(1-\frac{\tau}{T}\right)^{1-\gamma}\right]<$ $\varphi(t, \gamma)<\tau^{2}$. Furthermore, similarly, we can find $\varphi(t, \gamma)$ is a monotone decreasing function about γ with a fixed t, and $\lim _{\gamma \rightarrow 1} \frac{\tau T}{1-\gamma}\left[1-\left(1-\frac{\tau}{T}\right)^{1-\gamma}\right]=-\ln \left(1-\frac{\tau}{T}\right)$. Therefore, we can find a appropriate T and γ, for all $t \geq T$, such that $\frac{\gamma}{t}<\alpha_{1}$, $0<\frac{\tau t}{1-\gamma}\left[1-\left(1-\frac{\tau}{t}\right)^{1-\gamma}\right]<\varpi$.

If the QVNN (1) is studied without distributed delays, i.e. $C=0$, then the following QVNN model can be obtained

$$
\begin{equation*}
\dot{q}(t)=-D q(t)+A f(q(t))+B f(q(t-\tau(t)))+U \tag{47}
\end{equation*}
$$

which is the QVNN model discussed in [23].
By decomposing system (47), one gets a matrix differential equation as follow:

$$
\begin{equation*}
\dot{Q}(t)=-\widehat{D} Q(t)+\widehat{A} \widehat{f}(Q(t))+\widehat{B} \widehat{f}(Q(t-\tau(t)))+\widehat{U} \tag{48}
\end{equation*}
$$

where $\widehat{D}, \widehat{A}, \widehat{B}, \widehat{U}, \widehat{f}(Q(t))$ are same as those in system (6). By transformation $\widehat{Q}(t)=Q(t)-Q^{*}$, one can get the following vector-matrix form of real-valued system (49):

$$
\begin{equation*}
\dot{\widehat{Q}}(t)=-\widehat{D} \widehat{Q}(t)+\widehat{A} F(\widehat{Q}(t))+\widehat{B} F(\widehat{Q}(t-\tau(t))) \tag{49}
\end{equation*}
$$

where $F(\widehat{Q}(t))=\widehat{f}\left(\widehat{Q}(t)+Q^{*}\right)-\widehat{f}\left(Q^{*}\right)$.
Moreover, the QVNN (47) shares the same equilibrium point and identical dynamics behavior with system (49) when $q(t)=q^{(r)}(t)+i q^{(i)}(t)+j q^{(j)}(t)+k q^{(k)}(t)$ corresponds to $Q(t)=\left(q^{(r)}(t)^{T}, q^{(i)}(t)^{T}, q^{(j)}(t)^{T}, q^{(k)}(t)^{T}\right)^{T}$.

Similar to Theorem 2 and Theorem 3, one can get the following corollaries.

Corollary 1: Under Assumption 2, there exist positive diagonal matrices P and Q such that:

$$
\begin{equation*}
2 P \widehat{D} \widehat{G}^{-1}-\left(P \widehat{A}+\widehat{A}^{T} P\right)-P \widehat{B} Q^{-1}(\widehat{B})^{T} P-Q>0, \tag{50}
\end{equation*}
$$

then, for each $U \in \mathbb{R}^{n}$, system (49) has a unique equilibrium point which is globally exponentially stable, independent of the delays.

Corollary 2: Suppose $\tau(t) \leq \eta t, 0<\eta<1, \widehat{G}=I$, system (49) has a unique equilibrium point Q^{*} and Q^{*} is globally power stable if there exist positive diagonal matrices Y, U and a positive definite matrix P_{1}, such that the following LMI:

$$
\left(\begin{array}{ccc}
P_{1} D+D P_{1}-Y-P_{1} & -P_{1} A & -P_{1} B \\
-A^{T} P_{1} & Y & 0 \\
-B^{T} P_{1} & 0 & U
\end{array}\right)>0
$$

$$
\begin{equation*}
P_{1} \geq U \tag{51}
\end{equation*}
$$

holds.
Remark 8: Neural network is of great value to military, image processing, artificial intelligence, and other application fields. In these applications of neural networks, stability is an important factor. For fewer results on the stability of QVNNs with mixed delays, it is necessary to discuss the dynamics behavior of these QVNNs. Based on the rule of quaternion operation, the existence, uniqueness and globally exponential stability of the equilibrium of QVNNs with both
discrete and distributed delays are investigated in [27]. However, compared with the method of [27], our decomposing method is simpler and requires fewer conditionalities.

IV. ILLUSTRATIVE EXAMPLES

In this section, two numerical examples are provided to illustrate the effectiveness and superiority of the proposed results.

Example 1: Consider the QVNN model as follow:

$$
\begin{align*}
\dot{q}(t)=-D q(t)+A f(q(t))+ & B f(q(t-\tau(t))) \\
& +C \int_{t-\tau}^{t} f(q(s)) d s+U \tag{52}
\end{align*}
$$

where
A

$$
=\left(\begin{array}{cc}
1.3+5.2 i-0.5 j-1.3 k & 1.6+0.5 i-3.7 j+1.3 k \\
-1.8+1.1 i+1.5 j+1.6 k & 1.2+3.1 i+3.5 j+1.2 k \\
1.8+1.1 i+3.5 j+0.6 k & -5.1-5.1 i+3.6 i+1.6 k \\
9.6-2.5 i-1.9 j+2.4 k \\
-0.6+1.5 i+1.9 j+2.4 k \\
1.7-1.6 i+1.9 j+0.4 k
\end{array}\right),
$$

B

$$
\begin{aligned}
= & \left(\begin{array}{ll}
1.3+0.3 i+1.4 j+1.3 k & 1.3-2.5 i-1.3 j+0.6 k \\
-2.3+3.1 i-1.5 j-1.4 k & 1.2+3.3 i+1.6 j+1.3 k \\
1.4+1.3 i-1.3 j-2.2 k & -1.5+2.2 i+0.3 j-1.6 k \\
& 1.4-2.0-3.3 j+1.6 k \\
& 1.2-1.3 i+2.6 j+1.3 k \\
& -1.3-0.2 i-1.1 j-1.0 k
\end{array}\right)
\end{aligned}
$$

C

$$
=\left(\begin{array}{ll}
2.4+1.3 i+0.1 j+1.4 k & 1.6+1.1 i+1.2 j+1.1 k \\
-1.8+0.1 i+1.2 j+1.6 k & 1.2+3.3 i+1.4 j+3.2 k \\
1.8+1.5 i+0.8 j+1.7 k & -5.1+1.3 i+2.4 j+1.2 k \\
& 9.6+1.1 i+1.2 j+1.1 k \\
& -0.6+2.1 i+0.2 j+0.1 k \\
1.7+1.1 i-1.2 j+2.1 k
\end{array}\right),
$$

D
$=\operatorname{diag}\{95,95,85\}$,
U
$=(2+1.2 i+2 j+3 k, 1-3.2 i+j+2 k, 3-2.1 i+j-3 k)^{T}$,
$f(q(t))$
$=0.18 \tanh (q(t)), \quad \tau(t)=0.45 \sin t+0.35, \tau=0.6$.
By using the LMI toolbox in MATLAB, QVNN (52) has the following feasible solutions:

$$
\left.\begin{array}{cccccc}
0.0000 & 0.0000 & 0.0000 & -0.0000 & 0.0000 & -0.0000 \\
-0.0000 & 0.0000 & 0.0000 & -0.0000 & 0.0000 & -0.0000 \\
-0.0000 & -0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & -0.0000 & -0.0000 & -0.0000 & -0.0000 \\
0.0000 & -0.0000 & -0.0000 & 0.0000 & -0.0000 & -0.0000 \\
0.0000 & -0.0000 & -0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0028 & -0.0000 & 0.0000 & 0.0000 & -0.0000 & 0.0000 \\
-0.0000 & 0.0028 & -0.0000 & -0.0000 & 0.0000 & -0.0000 \\
0.0000 & -0.0000 & 0.0032 & -0.0000 & 0.0000 & 0.0000 \\
0.0000 & -0.0000 & -0.0000 & 0.0028 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & -0.0000 & 0.0028 & -0.0000 \\
0.0000 & -0.0000 & 0.0000 & 0.0000 & -0.0000 & 0.0032
\end{array}\right)
$$

Therefore, consider the above P, Q, R, P_{1}, U, V, the conditions in Theorem 2 and Theorem 3 are satisfied. Note that Theorem 1 can be regarded as a special case of Theorem 2, when $\mu=0$. So no need to verify Theorem 1 , that is, QVNN (52) has a unique equilibrium point and it is globally exponentially stable and globally power stable. And solution trajectories of the QVNN (52) with distributed delay are shown in Figure 1.

Example 2: Consider the QVNN model as follow:

$$
\begin{equation*}
\dot{q}(t)=-D q(t)+A f(q(t))+B f(q(t-\tau(t)))+u, \tag{53}
\end{equation*}
$$

where
A

$$
=\left(\begin{array}{cc}
1.2-0.5 i-0.2 j+0.5 k & 1.2-0.2 i-1.4 j+0.3 k \\
0.3-0.3 i+0.6 j+0.7 k & 0.9-0.5 i-1.0 j+0.6 k
\end{array}\right)
$$

B
$=\left(\begin{array}{cc}0.2+0.5 i+0.3 j+1.0 k & -0.4+1.0 i-0.4 j+0.5 k \\ 1.0-0.9 i+1.0 j+0.5 k & 0.1+1.0 i-1.1 j+1.0 k\end{array}\right)$,

$$
\begin{aligned}
& D \\
& =\operatorname{diag}\{17,18\}, \quad u=(2-i+j+k, 3+0.1 i-j-3 k)^{T}
\end{aligned}
$$

$f(q(t))$

$$
=0.18 \tanh (q(t)), \quad \tau(t)=0.45 \sin t+0.35, \tau=0.6
$$

By using the LMI toolbox in MATLAB, QVNN (53) has the following feasible solutions:

$$
\begin{aligned}
& P=\left(\begin{array}{cccccc}
0.3880 & -0.0003 & -0.0000 & 0.0024 & 0.0000 & 0.0056 \\
-0.0003 & 0.3605 & -0.0024 & -0.0000 & -0.0056 & -0.0000 \\
-0.0000 & -0.0024 & 0.3880 & -0.0003 & -0.0000 & 0.0024 \\
0.0024 & -0.0000 & -0.0003 & 0.3605 & -0.0024 & 0.0000 \\
0.0000 & -0.0056 & -0.0000 & -0.0024 & 0.3880 & -0.0003 \\
0.0056 & -0.0000 & 0.0024 & 0.0000 & -0.0003 & 0.3605 \\
-0.0000 & -0.0024 & 0.0000 & 0.0056 & 0.0000 & -0.0024 \\
0.0024 & 0.0000 & -0.0056 & 0.0000 & 0.0024 & -0.0000
\end{array}\right. \\
& \left.\begin{array}{cc}
-0.0000 & 0.0024 \\
-0.0024 & 0.0000 \\
0.0000 & -0.0056 \\
0.0056 & 0.0000 \\
0.0000 & 0.0024 \\
-0.0024 & -0.0000 \\
0.3880 & -0.0003 \\
-0.0003 & 0.3605
\end{array}\right), \\
& Q=\operatorname{diag}\{35.3877,35.3877,35.3877,35.3877, \\
& \text { 35.3877, 35.3877, 35.3877, 35.3877\}, } \\
& P_{1}=\left(\begin{array}{cccccc}
7.1603 & -0.2056 & -0.0013 & 0.1046 & -0.0289 & -0.0059 \\
-0.2056 & 6.9692 & -0.1090 & -0.0038 & -0.0498 & -0.0418 \\
-0.0013 & -0.1090 & 7.1576 & -0.2109 & -0.0728 & -0.0778 \\
0.1046 & -0.0038 & -0.2109 & 6.9547 & -0.0751 & -0.1555 \\
-0.0289 & -0.0498 & -0.0728 & -0.0751 & 7.1676 & -0.2049 \\
-0.0059 & -0.0418 & -0.0778 & -0.1555 & -0.2049 & 6.9467 \\
-0.0024 & -0.0317 & -0.0062 & 0.0067 & -0.0198 & -0.0392 \\
0.0317 & 0.0019 & -0.0079 & 0.0059 & 0.0701 & 0.0603
\end{array}\right. \\
& \left.\begin{array}{cc}
-0.0024 & 0.0317 \\
-0.0317 & 0.0019 \\
-0.0062 & -0.0079 \\
0.0067 & 0.0059 \\
-0.0198 & 0.0701 \\
-0.0392 & 0.0603 \\
7.1690 & -0.2009 \\
-0.2009 & 6.9743
\end{array}\right), \\
& Y=\operatorname{diag}\{4.8490,4.8490,4.8490,4.8490 \text {, } \\
& \text { 4.8490, 4.8490, 4.8490, 4.8490\}, } \\
& U=\operatorname{diag} 4.7941,4.7941,4.7941,4.7941 \text {, } \\
& \text { 4.7941, 4.7941, 4.7941, 4.7941\}. }
\end{aligned}
$$

Therefore, consider the above P, Q, P_{1}, Y, U, the conditions in Corollary 1 and Corollary 2 are satisfied, that is, QVNN (53) has a unique equilibrium point and it is globally exponentially stable and globally power stable. And solution trajectories of the QVNN (53) with distributed delay are shown in Figure 2. On the other hand, the parameters in Example 2 do not meet the theorem 1 in [23]. So the method of [23] is invalid for QVNN (53). Accordingly, our results are more adaptable to all kinds of QVNN than that of [23].

Remark 9: Because we don't have to consider the multiplication of quaternions, our decomposing method is of higher converging speed than that in [27]. By our decomposing method, the state trajectories of Example 4.1 of [27] are shown in Figure 3.

V. CONCLUSION

In this paper, the globally exponential stability and the globally power stable of QVNNs with discrete and distributed delays are investigated respectively. Firstly, we decompose the considered QVNN into four real-valued systems, and then form a real-valued matrix differential equation, by which we equivalently discuss the dynamics behavior of QVNN, instead of considering the noncommutativity for the multiplication of quaternion. Some criteria are given by some matrix inequalities to affirm the existence and uniqueness of the equilibrium of QVNNs, which is globally exponentially stable and power stable too. By using LMI toolbox in MATLAB, the proposal criteria can be verified easily. Theorems 1 and 2 can be regarded as a simplification of [27], and Theorem 3 can be regarded as a generalization of [33]. In the future, we consider that synchronization is also an important dynamic characteristic of various network problems, and we will focus on the synchronization of QVNNs, especially finite-time synchronization or fixed-time synchronization of QVNNs.

ACKNOWLEDGMENT

The authors would like to thank the editor and reviewers for a number of constructive comments and suggestions that have improved the quality of the article.

REFERENCES

[1] L. O. Chua and L. Yang, "Cellular neural networks: Theory," IEEE Trans. Circuits Syst., vol. CAS-35, no. 10, pp. 1257-1272, Oct. 1988.
[2] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Feynman Comput., vol. 79, no. 8, pp. 7-19, 2018.
[3] R. Yang, B. Wu, and Y. Liu, "A halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays," Appl. Math. Comput., vol. 265, pp. 696-707, Aug. 2015.
[4] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, "Network traffic classifier with convolutional and recurrent neural networks for Internet of Things," IEEE Access, vol. 5, pp. 18042-18050, 2017.
[5] Z. Zhang, Y. Zou, and C. Gan, "Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression," Neurocomputing, vol. 275, pp. 1407-1415, Oct. 2017.
[6] Y. Liu, Z. Wang, J. Liang, and X. Liu, "Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays," IEEE Trans. Cybern., vol. 43, no. 1, pp. 102-114, Feb. 2013.
[7] B. Shen, Z. Wang, and H. Qiao, "Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements," IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 5, pp. 1152-1163, May 2017.
[8] H. Shen, Y. Zhu, L. Zhang, and J. H. Park, "Extended dissipative state estimation for Markov jump neural networks with unreliable links," IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2, pp. 346-358, Feb. 2017.
[9] Y. Li, B. Li, Y. Liu, J. Lu, Z. Wang, and F. E. Alsaadi, "Set stability and, stabilization of switched Boolean networks with state-based switching," IEEE Access, vol. 6, pp. 35624-35630, 2018.
[10] S. Zhu, J. Lu, and Y. Liu, "Asymptotical stability of probabilistic Boolean networks with state delays," IEEE Trans. Autom. Control, to be published.
[11] Y. Li, R. Liu, J. Lou, J. Lu, Z. Wang, and Y. Liu, "Output tracking of Boolean control networks driven by constant reference signal," IEEE Access, vol. 7, pp. 112572-112577, 2019.
[12] J. Cao and R. Li, "Fixed-time synchronization of delayed memristor-based recurrent neural networks," Sci. China Inf. Sci., vol. 60, no. 3, pp. 108-122, Jan. 2017.
[13] T. Kumagai, R. Hashimoto, and M. Wada, "Learning of limit cycles in discrete-time neural network," Neurocomputing, vol. 13, no. 1, pp. 1-10, Sep. 1996.
[14] F. Zou and J. A. Nossek, "Bifurcation and chaos in cellular neural networks," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 40, no. 3, pp. 166-173, Mar. 1993.
[15] G. Bao and Z. Zeng, "Stability analysis for memristive recurrent neural network under different external stimulus," Neural Process. Lett., vol. 47, no. 2, pp. 601-618, 2018.
[16] W. Zhang, C. Li, and T. Huang, "Global robust stability of complexvalued recurrent neural networks with time-delays and uncertainties," Int. J. Biomathematics, vol. 7, no. 2, Mar. 2014, Art. no. 1450016.
[17] T. Isokawa, H. Nishimura, and N. Matsui, "On the fundamental properties of fully quaternionic hopfield network," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jun. 2012, pp. 1-4.
[18] A. Hirose, Application Fields and Fundamental Merits of Complex-Valued Neural Networks. Hoboken, NJ, USA: Wiley, ch. 1, 2013, pp. 1-31.
[19] S. L. Adler and D. R. Finkelstein, "Quaternionic quantum mechanics and quantum fields," Phys. Today, vol. 49, no. 6, pp. 58-60, Jun. 1996.
[20] S. Buchholz and N. Le Bihan, "Optimal separation of polarized signals by quaternionic neural networks," in Proc. Eur. Signal Process. Conf., 2006, pp. 1-5.
[21] N. Huo, B. Li, and Y. Li, "Existence and exponential stability of anti-periodic solutions for inertial quaternion-valued high-order hopfield neural networks with state-dependent delays," IEEE Access, vol. 7, pp. 60010-60019, 2019.
[22] X. Chen, Z. Li, Q. Song, J. Hu, and Y. Tan, "Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties," Neural Netw., vol. 91, pp. 55-65, Jul. 2017.
[23] Y. Liu, D. Zhang, and J. Lu, "Global exponential stability for quaternionvalued recurrent neural networks with time-varying delays," Nonlinear Dyn., vol. 87, no. 1, pp. 553-565, 2017.
[24] X. Chen, Q. Song, Z. Li, Z. Zhao, and Y. Liu, "Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 2769-2781, Jun. 2018.
[25] T. Isokawa, T. Kusakabe, N. Matsui, and F. Peper, "Quaternion neural network and its application," in Proc. Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst. Berlin, Germany: Springer, 2003, pp. 318-324.
[26] Z. Tu, J. Cao, A. Alsaedi, and B. Ahmad, "Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach," Nonlinear Anal.-Model. Control, vol. 23, no. 3, pp. 361-379, 2018.
[27] Z. Tu, Y. Zhao, N. Ding, Y. Feng, and W. Zhang, "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Appl. Math. Comput., vol. 343, pp. 342-353, Feb. 2019.
[28] H. Bao and J. Cao, "Finite-time generalized synchronization of nonidentical delayed chaotic systems," Nonlinear Anal., Model. Control, vol. 21, no. 3, pp. 306-324, May 2016.
[29] W. Lu, L. Rong, and T. Chen, "Global convergence of delayed neural network systems," Int. J. Neural Syst., vol. 13, no. 3, pp. 193-204, Nov. 2011.
[30] S. Arik, "New criteria for global robust stability of delayed neural networks with norm-bounded uncertainties," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1045-1052, Oct. 2014.
[31] H. Zhang, Z. Wang, and D. Liu, "Global asymptotic stability and robust stability of a class of Cohen-Grossberg neural networks with mixed delays," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 3, pp. 616-629, Aug. 2009.
[32] C. Huang, J. Lu, D. W. C. Ho, G. Zhai, and J. Cao, "Stabilization of probabilistic Boolean networks via pinning control strategy," Inf. Sci., vol. 510, pp. 205-217, Feb. 2020.
[33] T. Chen and L. Wang, "Power-rate global stability of dynamical systems with unbounded time-varying delays," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 8, pp. 705-709, Aug. 2007.
[34] M. Forti and A. Tesi, "New conditions for global stability of neural networks with application to linear and quadratic programming problems," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 7, pp. 354-366, Jul. 1995.
[35] Y. Liu, D. Zhang, J. Lu, and J. Cao, "Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays," Inf. Sci., vol. 360, pp. 273-288, Sep. 2016.
[36] E. E. Yaz, "Linear matrix inequalities in system and control theory," Proc. IEEE, vol. 86, no. 12, pp. 2473-2474, Dec. 1998.
[37] K. Gu, "An integral inequality in the stability problem of time-delay systems," in Proc. IEEE Conf. Decis. Control, vol. 3, pp. 2805-2810, Dec. 2000.
[38] G. Golub and C. Loan, Matrix Computations, 3rd ed. John Hopkins Univ. Press, Baltimore, MD, USA, 1996.

HUILING DUAN received the B.S. degree in mathematics from the Hubei University for Nationalities, Enshi, China, in 2003, and the M.S. degree in mathematics from Southwest University, Chongqing, China, in 2006. She is currently a Lecturer with the School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou. Her research interests include differential equations and dynamical systems, system optimization and neural networks.

TAO PENG received the B.S. degree in mathematics from the Hubei University for Nationalities, Enshi, China, in 2003, and the M.S. degree in mathematics from Chongqing University, Chongqing, China, in 2007. He is currently pursuing the Ph.D. degree with the School of Mathematics, Southeast University, Nanjing, China. His research interests include system optimization and neural networks.

ZHENGWEN TU received the B.S. degree in mathematics and applied mathematics and the M.S. degree in applied mathematics from China Three Gorges University, Yichang, China, in 2008 and 2011, respectively, and the Ph.D. degree from Southeast University, Nanjing, China, in 2018. He is currently an Associate Professor with Chongqing Three Gorges University. His research interests are mainly in stability of dynamical systems and dynamical behaviors of neural networks.

JIANLONG QIU received the M.S. and Ph.D. degrees in applied mathematics from Southeast University, Nanjing, China, in 2000 and 2007, respectively. From August 2008 to January 2013, he was a Postdoctoral Researcher with the School of Automation, Southeast University. From December 2009 to May 2010, he was a Visiting Scholar with the Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, USA. From July 2014 to July 2015, he was also a Visiting Scholar with the Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA. He is currently a Professor with the School of Automation and Electrical Engineering, Linyi University, Linyi, Shandong, China, where he is also the Director Key Laboratory of Complex Systems and Intelligent Computing in Universities of Shandong. He has published authored/coauthored more than 70 peer-reviewed journals and conference papers. His research interests include computational intelligence, neural networks, genetic network, logistics system complex systems and complex networks, optimization and control, stability theory, applied mathematics, and various application fields.

JIANQUAN LU (Senior Member, IEEE) received the B.S. degree in mathematics from Zhejiang Normal University, Zhejiang, China, in 2003, the M.S. degree in mathematics from Southeast University, Nanjing, China, in 2006, and the Ph.D. degree in applied mathematics from the City University of Hong Kong, Hong Kong, in 2009.

From 2010 to 2012, he was an Alexander von Humboldt Research Fellow with PIK, Germany. He is currently a Professor with the School of Mathematics, Southeast University. He has published more than 90 articles in refereed international journals. His current research interests include collective behavior in complex dynamical networks and multiagent systems, logical networks, and hybrid systems. He was named as a Highly Cited Researcher by Clarivate Analytics, in 2018. He was elected Most Cited Chinese Researchers by Elsevier, from 2014 to 2018, a recipient of an Alexander von Humboldt Fellowship, in 2010, Program for New Century Excellent Talents in University by The Ministry of Education, China, in 2010, and the Second Award of Jiangsu Provincial Progress in Science and Technology, in 2016, as the First Project Member, and the First Award of Jiangsu Provincial Progress in Science and Technology, in 2010, as the Second Project Member. He is an Associate Editor of Neural Processing Letters (Springer), the Journal of the Franklin Institute (Elsevier), and Neural Computing and Applications (Springer), and a Guest Editor of Science China Information Sciences, Mathematics and Computers in Simulation (Elsevier), and IET Control Theory and Applications.

[^0]: The associate editor coordinating the review of this manuscript and approving it for publication was Jun $\mathrm{Hu}{ }^{(\mathbb{D}}$.

