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ABSTRACT A dual-band negative group delay (NGD) microwave circuit with low signal-attenuation
and arbitrary frequency ratio is proposed. Closed-form analytical equations are derived for the design
of the proposed dual-band negative group delay circuit (NGDC) with the variable frequency ratio. The
characteristic parameters of the microstrip lines that influence the frequency ratio are investigated. Under
the condition that the microstrip circuit can be implemented with the common printed circuit board (PCB)
fabrication technology, the frequency ratio can vary between 1.1 and 6.3. For verification, three dual-band
NGDCs with the frequency ratio of 1.105, 3, and 5.667 are designed, fabricated, and measured. Good
agreements are observed between simulated and measured results, indicating the validity of the proposed
methods.

INDEX TERMS Arbitrary frequency ratio, dual-band microwave circuit, low signal-attenuation, negative
group delay.

I. INTRODUCTION
Modern wireless communication systems are required to
operate at several frequency bands and work across different
communication standards. Therefore, more than one of the
single-frequency devices are used, which result in complex
circuit structure and large size. So, multiband circuit com-
ponents need to be used to reduce the system complexity
and circuit size [1]–[3]. Moreover, the group delay (GD)
has attracted a lot of attention because the variation of GD
can cause dispersion and non-identity of the output in ultra-
wideband applications [4]. Therefore, negative group delay
(NGD) compensation circuits [5]–[8] are needed to equal-
ize the delay. The negative group delay circuit (NGDC) is
first proposed in [9]. And the NGD characteristics could be
generated by RLC resonant circuits [10] or left-handed mate-
rials [11]. Based on the mode of transmission, the NGDCs
can be divided into two categories: the reflection type and
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the transmission type. For the reflection type, the couplers
are usually needed to transform the circuit into transmission
type [12]–[15]. Therefore these circuits are often oversized.
For the transmission types [16], [17], additional components
are not required but the energy consumption is severe. Then
some passive circuits or structures based on the amplifier
are presented to reduce the insertion loss (IL) [18]–[23].
However, these circuits only operate at one frequency and
are incompetent for multiband application. In [24], a dual-
band NGDC with the right/left-handed transmission line is
proposed. Nevertheless, it still needs to use couplers and has
a significant decrease in signal. In order to realize miniatur-
ization, some novel circuits are presented [25]–[28]. In [25],
it is using dual-plane defected structures to generate dual-
band NGD. However, the dimensions of the structure can-
not be calculated. In [26], a couple of λg/4 open-circuited
stubs are utilized, but it suffers high IL and the port match-
ing cannot be obtained. For [27], [28], although the size is
reduced by meandering transmission lines, the loss is still
considerable. So the active dual-band NGDC is put forward
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to achieve gain compensation [29]. However, all the circuits
in [24]–[29] are unable to achieve the frequency ratio greater
than 3.

In this paper, a dual-band NGDC with arbitrary frequency
ratio is proposed to reduce the signal attenuation. The pro-
posedNGDC consists of two one-port open-circuited coupled
lines, a resistor Rm connected by two transmission lines,
and an open-circuited stub (or a short-circuited stub) con-
necting with two resistors R. The frequency ratio is mainly
controlled by the coupling coefficient of the coupled lines
and the characteristic impedance of the stub. And a wider
range of frequency ratios can be obtained by using different
stubs.

FIGURE 1. Configuration of the proposed NGD microwave circuit.

II. THEORY AND DESIGN EQUATION
The proposed NGDC topology is shown in Fig. 1. It is
composed of a resistor Rm inserted between two transmission
lines with characteristic impedance Zm and electrical length
θm, two one-port open-circuited coupled lines with even-
and odd-mode characteristic impedance Z0e, Z0o and electri-
cal length θ0, and an open-circuited stub with characteristic
impedance Z1 and electrical length θ1 (or a short-circuited
stub with characteristic impedance Z2 and electrical length
θ2) connecting with two resistors R. The even- and odd-mode
characteristic impedances of the coupled lines are calculated
with Equation (1).

Z0e = Z

√
1+ k
1− k

, (1a)

Z0o = Z

√
1− k
1+ k

. (1b)

where Z and k represent the characteristic impedance and
the coupling coefficient of the coupled line, respectively. The
couple lines are used to reduce signal attenuation, and the
different forms of the stub can achieve a wider range of
frequency ratios.

As for analyzing, the even- and odd-mode equivalent cir-
cuits are shown in Fig. 2. According to [30], the different
forms of coupling lines can be discussed. And based on
transmission line theory and network analysis, the even- and

FIGURE 2. Odd- and even-mode equivalent circuits. (a) Odd-mode.
(b) Even-mode.

odd-mode input admittance Yin_odd and Yin_even_i are
expressed as

Yin_odd = A1 + jA2, (2a)

Yin_even_i = A3i + jA4i (i = 1, 2), (2b)

where i = 1 represents the circuit with the open-circuited
stub, i = 2 represents the circuit with the short-circuited
stub. This representation is also applicable to subsequent
derivation. And the expressions of A1, A2,A3i, and A4i in the
Equations (2a) and (2b) could be found in theAppendix. Once
the Yin_odd and Yin_even_i are obtained, the S-parameters of the
dual-band NGD microwave circuit can be expressed as [31]

S11_i = S22_i =
Y 2
0 − Yin_oddYin_even_i(

Y0 + Yin_odd
) (
Y0 + Yin_even_i

) , (3a)

S12_i = S21_i =
Y0
(
Yin_odd − Yin_even_i

)(
Y0 + Yin_odd

) (
Y0 + Yin_even_i

) , (3b)

where Y0 = 1/Z0, Z0 is the port impedance. According to
Equations (2a), (2b), and (3b), the S21_i can be derived as

S21_i =
X1i + jX2i
X3i + jX4i

. (4)

Then, the GD of the proposed circuit can be obtained as

τi = −
d 6 S21_i
dω

=
X ′1iX2i − X1iX

′

2i

X2
1i + X

2
2i

−
X ′3iX4i − X3iX

′

4i

X2
3i + X

2
4i

. (5)

The values of X1i, X2i, X3i, X4i, X ′1i, X
′

2i, X
′

3i, and X
′

4i are given
in the Appendix.

In this design, θm, θ0, θ1, and θ2 are all fixed to π /2 at the
center frequency f0 = (f1 + f2) / 2, where f1 is the lower
working frequency and f2 is the higher working frequency.
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FIGURE 3. The flow chart of the proposed dual-band NGDC design.

So the variables to be solved are Z , k , Z1 (or Z2), Zm, Rm,
and R. Once the f0, f1 and f2 are selected, Equations (3a),
(3b), and (5) can be used to calculate the circuit parameters.
By setting the target values (|S11_i|, |S21_i|, and τi at twowork-
ing frequencies), six equations are obtained. And the number
of variables to be solved is also six. Due to the closed-form
equations are very complex, it is difficult to get the concrete
expression of each variable. Thus, an optimization algorithm
is utilized to solve the closed-form equations. In this paper,
the cuckoo search algorithm [32] is adopted to solve the
parameters. In order to use the algorithm, the problem of
solving nonlinear equations first should be transformed into
solving the optimal value. So the six equations need to be
converted into a function as

G (X) = |g1 (X)| + |g2 (X)| + |g3 (X)|

+ |g4 (X)| + |g5 (X)| + |g6 (X)| . (6)

The subfunctions in Equation (6) are shown as

g1 (X) =
∣∣∣S11_i (X)∣∣f=f1 ∣∣∣

g2 (X) =
∣∣∣S11_i (X)∣∣f=f2 ∣∣∣

g3 (X) =
∣∣∣S21_i (X)∣∣f=f1 ∣∣∣−M1

g4 (X) =
∣∣∣S21_i (X)∣∣f=f2 ∣∣∣−M2

g5 (X) = τi (X)|f=f1 − N1

g6 (X) = τi (X)|f=f2 − N2,

(7)

FIGURE 4. Effect of Zm on the frequency ratio of the proposed dual-band
NGDC. (a) open-circuit stub. (b) short-circuit stub.

whereX is a row vector consisting of the six variables,M1 and
N1 are the target values of |S21_i|, and τi at f1,M2 and N2 are
the target values of |S21_i|, and τi at f2. To realize the input-
and output-port matching, the condition that |S11_i| = 0
must be satisfied at the corresponding working frequency.
So whenG(X ) approaches to 0, the values of variables can be
obtained. For the selection of the circuit structure, it needs to
be analyzed according to the frequency ratio. This problem
will be explained in detail in section III. And then, based
on the requirement of the algorithm, the range of variables
should be given. Fortunately, the accuracy of the cuckoo
search algorithm does not depend on the range of variables,
so the range can be selected according to the characteristic
impedance of themicrostrip lines that can be realized. Finally,
the variable values can be obtained by the cuckoo search
algorithm.

To summarize, a flow chart of the proposed design is shown
in Fig. 3. The first step is to determine the targets of frequency,
the S-parameters and the GD. Then based on the impedance
range of the realizable microstrip lines, the variable interval
should be given. After that, the variable values under the
corresponding targets can be solved using the algorithm.
But in some cases, the solved GD is not the extremum in
the frequency range, so an additional judgment is needed.
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FIGURE 5. Effect of Z on the frequency ratio of the proposed dual-band
NGDC. (a) S-parameters. (b) GD.

If the GD is the extremum, the program finishes, otherwise
search again. Due to the inherent attenuation of the actual
circuit and the GD characteristics, there will be a minimum
IL under a fixed GD. When the target of |S21_i| is lower
than its extremum, there is no solution. Therefore, a decision
box is added to control this situation. If the solutions cannot
be available after more than 100 searching times, the search
ends. In this case, the requirements for τi and |S21_i| need a
compromise.

III. ANALYSIS OF THE PROPOSED DUAL-BAND
NGD CIRCUIT
In this part, the variation of Zm, Z , k0,Zi (i = 1, 2) with the
frequency ratio is introduced. If the center frequency changes,
the design parameters may need to change, but the overall
trend is still the same. Therefore, the solutions can be used to
guide the selection of the circuit structure.

The changes in GD with frequency under different Zm
are shown in Fig. 4. And the other design parameters
remain fixed. As can be seen, whether it is the structure
of open-circuited stub or short-circuited stub, the effect of
Zm on the frequency ratio is small, so it is not discussed
later.

FIGURE 6. Effect of k on the frequency ratio of the proposed dual-band
NGDC. (a) S-parameters. (b) GD.

A. FREQUENCY RATIO OF DUAL-BAND NGDC WITH
OPEN-CIRCUITED STUB
To discuss the relationship between the characteristic param-
eters of the microstrip lines and the frequency ratio, the target
values τ1, |S11_1| and |S22_1| are fixed. Fig. 5 shows the
S-parameters and GD with the change of Z . The frequency
ratio is proportional to Z remaining the bandwidth of GD < 0
and |S21_1| unchanged at f1 and f2. The analysis of k is given
in Fig. 6. As k increases the frequency ratio and the NGD
bandwidth are expanding while |S21_1| is decreasing, and the
change is obvious. So the choice of k needs a consideration.
If a wide bandwidth is needed with a small frequency ratio,
the |S21_1| needs to lower. And Fig. 7 gives the effect of Z1
on the frequency ratio. With the increase of Z1, two NGD
working frequencies are getting closer, and there is a slight
reduction in NGD bandwidth and |S21_1|. Based on the above
analysis of the frequency ratio, the minimum of the frequency
ratio can be obtained under larger Z1 along with smaller
Z and k . On the contrary, the maximum of the frequency
ratio can be obtained. So, the extreme values of the frequency
ratio can be calculated under the condition that the microstrip
circuit can be implemented with the common printed circuit
board (PCB) fabrication technology. In this analysis, the val-
ues are calculated with fixed τ1 of −3 ns and |S11_1| of
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FIGURE 7. Effect of Z1 on the frequency ratio of the proposed dual-band
NGDC. (a) S-parameters. (b) GD.

TABLE 1. Design parameters of the dual-band NGDC with open-circuited
stub under the extreme values of frequency ratio.

−40 dB. Table 1 shows two sets of design parameters of the
proposed dual- band NGDC with the open-circuited stub for
the extreme frequency ratios of 1.095 and 2.205. It means that
the frequency ratio can change from 1.095 to 2.205. If the
chosen GD is different from this example, the frequency ratio
may have slight changes.

B. FREQUENCY RATIO OF DUAL-BAND NGDC WITH
SHORT-CIRCUITED STUB
In this part, the same approach will be taken to discuss the
relationship between the frequency ratio and characteristic
parameters of the microstrip lines. And in order to be con-
sistent with part A, the values are still solved with fixed
τ2, |S11_2| and |S22_2|. Fig. 8 shows the effect of Z on the
frequency ratio. The frequency ratio is inversely proportional
to Z . And the NGD bandwidth and |S21_2| keep unchanged
at f1 and f2. The analysis of k is provided in Fig. 9. The
frequency ratio and the NGDbandwidth are both proportional

FIGURE 8. Effect of Z on the frequency ratio of the proposed dual-band
NGDC. (a) S-parameters. (b) GD.

TABLE 2. Design parameters of the dual-band NGDC with short-circuited
stub under the extreme values of frequency ratio.

to k . And |S21_2| is decreasing as k rises. And Fig. 10 shows
the S-parameters and GD with the change of Z2. With the
increase of Z2, the frequency ratio is increasing, and there
is also a slight reduction in NGD bandwidth and |S21_2|.
According to the analysis of the frequency ratio, theminimum
value of the frequency ratio can be obtained with larger Z
as well as smaller k and Z2. On the contrary, the maximum
value of the frequency ratio can be obtained. In this analysis,
the values are calculated under τ2 = −3 ns and |S11_2| =
−40 dB. Table 2 displays two sets of design parameters
of the dual-band NGDC with the short-circuited stub. The
minimum and maximum frequency ratio is 2.095 and 6.297,
respectively.

IV. EXPERIMENTAL VERIFICATION
Based on the derivation and numeric analysis, three dual-
band NGD microwave circuits’ prototypes with different
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Y. Meng et al.: Dual-Band NGD Microwave Circuit With Low Signal Attenuation and Arbitrary Frequency Ratio

FIGURE 9. Effect of k on the frequency ratio of the proposed dual-band
NGDC. (a) S-parameters. (b) GD.

frequency ratio are designed for demonstration. These proto-
types are simulated and optimized in the HFSS EM software.
The used substrates are F4B with a thickness of 1.5 mm,
the dielectric constant of 2.55, and a loss tangent of 0.003.
And an Agilent N5230A network analyzer is used for mea-
surements. The desired frequency ratios are 1.105, 3 and
5.667 with the center frequency of 1 GHz. And the τi is
set at −3 ns and the |S11_i| is set as −40 dB on the desired
frequency.

A. THE DUAL-BAND NGDC (A) WITH n = 1.105
In the case of n = 1.105, f1 is 950 MHz, and f2 is 1050 MHz.
And the circuit is the one with the open-circuited stub. The
|S21_1| is set as −3.5 dB. Fig. 11 shows the layout of the
proposed circuit. And based on the Equations (3a), (3b), (5)
and the cuckoo search algorithm, the design parameters are
obtained as Z = 72.3 �, k = 0.2633, Zm = 117.3 �,
Z1 = 122.6 �, Rm = 129.2 �, and R = 11.8 �. Using the
transmission line synthesis tool ADS Linecalc, the physical
dimensions of transmission lines are calculated. But they
are theoretical values without considering the discontinuous
interfaces. After optimizing by HFSS, the final dimensions
are w0 = 3.9 mm, l0 = 15 mm, wm = 0.7 mm, lm =
56.5 mm, w1 = 0.7 mm, l1 = 52.7 mm, w = 1.9 mm,
s = 0.64 mm, l2 = 18.4 mm, l3 = 16.9 mm, l4 = 40.24 mm,
d = 1mm,Rm = 130�, andR = 9.1�. Because of the extra

FIGURE 10. Effect of Z2 on the frequency ratio of the proposed dual-band
NGDC. (a) S-parameters. (b) GD.

FIGURE 11. Layout of the proposed dual-band NGDC (A) with n = 1.105.

FIGURE 12. Photograph of the proposed dual-band NGDC (A) with
n = 1.105.

loss caused by the substrate and copper strip, the resistance
R is smaller than the theoretical calculation. The photograph
of the fabricated dual-band NGDC with n = 1.105 is shown
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FIGURE 13. Simulation and measured results of the proposed dual-band
NGDC (A) with n = 1.105. (a) S-parameters. (b) GD.

FIGURE 14. Layout of the proposed dual-band NGDC (B) with n = 3.

FIGURE 15. Photograph of the proposed dual-band NGDC (B) with n = 3.

in Fig. 12. The overall circuit dimension is 40 mm× 98 mm.
(Around 0.19λg × 0.47λg, where λg is the guided wavelength
of 50-� TLs at the center frequency.)

FIGURE 16. Simulation and measured results of the proposed dual-band
NGDC (B) with n = 3. (a) S-parameters. (b) GD.

FIGURE 17. Layout of the proposed dual-band NGDC (C) with n = 5.667.

Fig. 13 shows the measured results of S-parameters and
GD, along with simulated ones for comparison. For the f1
of 954 MHz, the measured GD and |S21_1| are −3.54 ns
and −4.53 dB, respectively. The NGD fractional band-
width (FBW) is 1.57% from 946 to 961 MHz, and the
input/output return loss (RL) is better than 16.6 dB in the
NGD bandwidth with a maximum RL of 27.2 dB. For the f2
of 1051 MHz, the measured GD and |S21_1| are −3.47 ns,
and −4.24 dB, respectively. The NGD FBW is 1.33%
from 1044 to 1058 MHz, and the input/output RL is better
than 20.1 dB in the NGD bandwidth with a maximum RL
of 32.3 dB.
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TABLE 3. Performance comparison.

FIGURE 18. Photograph of the proposed dual-band NGDC (C) with
n = 5.667.

B. THE DUAL-BAND NGDC (B) WITH n = 3
In this instance, n is selected as 3. So f1 is 500 MHz, and
f2 is 1500 MHz. And the circuit is the one with the short-
circuited stub. The |S21_2| is set as −9 dB. Fig. 14 shows the
layout of the proposed circuit. And then the design parameters
are Z = 104.3 �, k = 0.4471, Zm = 69.3 �, Z2 = 40.1
�, Rm = 114.4 �, and R = 17.5 �. After optimizing by
HFSS, the final dimensions are w0 = 3.9 mm, l0 = 15 mm,
wm = 2.4 mm, lm = 55.1 mm, w1 = 4.7 mm, l1 = 51.5 mm,
w = 0.6 mm, s = 0.3 mm, l2 = 13.5 mm, l3 = 13.6 mm,
l4 = 40.9 mm, d = 1 mm, Rm = 110 �, and R = 15 �.
The photograph of the fabricated dual-band NGD circuit with
n = 3 is shown in Fig. 15. The overall circuit dimension is
40 mm × 103 mm (Around 0.19λg × 0.50λg).
Fig. 16 shows the measured results of S-parameters and

GD, along with simulated ones for comparison. For the lower
band with f1 of 496 MHz, the measured GD and |S21_2| are
−2.93 ns and −8.35 dB, respectively. The NGD FBW is
7.66% from 480 to 518 MHz, and the input/output RL is bet-
ter than 15.6 dB in the NGD bandwidth with a maximum RL
of 23.3 dB. For the upper band with f2 of 1499MHz, the mea-
sured GD and |S21_2| are −3.05 ns, and −10.2 dB, respec-
tively. The NGD FBW is 3.67% from 1470 to 1525 MHz,
and the input/output RL is better than 15.5 dB in the NGD
bandwidth with a maximum RL of 25.4 dB.

C. THE DUAL-BAND NGDC (C) WITH n = 5.667
In this case, n is 5.667, f1 is 300 MHz, and f2 is 1700 MHz.
And the circuit is the one with the short-circuited stub. The
|S21_2| is set as −5 dB. Fig. 17 shows the layout of the
proposed circuit. After the calculation, the design parameters

FIGURE 19. Simulation and measured results of the proposed dual-band
NGDC (C) with n = 5.667. (a) S-parameters. (b) GD.

are Z = 81.2 �, k = 0.3573, Zm = 64.7 �, Z2 = 144.4 �,
Rm = 127.8 �, and R = 17.7 �. After optimizing the final
dimensions are w0 = 3.9 mm, l0 = 15 mm, wm = 1.3 mm,
lm = 49.5 mm, w1 = 0.3 mm, l1 = 58.5 mm, w = 1.6 mm,
s = 0.6 mm, l2 = 15.8 mm, l3 = 14.6 mm, l4 = 36.2 mm,
d = 1 mm, Rm = 150 �, and R = 12 �. The photograph
of the fabricated dual-band NGD circuit with n = 5.667 is
shown in Fig. 18. The overall circuit dimension is 40 mm ×
99 mm. (Around 0.19λg × 0.48λg.)
Fig. 19 shows the measured results of S-parameters and

GD, along with simulated ones for comparison. In Fig. 19,
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for the f1 of 300 MHz, the measured GD and |S21_2| are
−3.57 ns and−4.6 dB, respectively. The NGDFBW is 5.00%
from 293 to 308 MHz, and the input/output RL is better
than 17.5 dB in the NGD bandwidth with a maximum RL of
25.7 dB. For the f2 of 1704MHz, themeasuredGD and |S21_2|
are −3.21 ns, and −5.3 dB, respectively. The NGD FBW is
1.58% from 1693 to 1720 MHz, and the input/output RL is
better than 18.5 dB in the NGD bandwidth with a maximum
RL of 28.5 dB.

V. DISCUSSION
In Figs. 13, 16, and 19, good agreements can be obtained
among the simulated and measured results. However, it can
be noted that measured loss is larger than that of the sim-
ulated results. This is mainly caused by the lossy substrate
and copper strip. And the measured GD is slightly lower
than simulated. This is due to the tolerance of manufacture.
Table 3 shows the comparison of the proposed NGDC with
previous works. The proposed NGDC can achieve a wider
frequency ratio range than that in [24]–[28]. And it has lower
IL and better RL performance than that in [24]–[28]. Besides
[26], the proposed NGDC has a better figure of merit (FOM)
which can be defined as [33], [34]

FOM = |τ (f )| × BWNGD × |S21 (f )| . (8)

Except for [27], [28], the circuit size of the proposed NGDC
is smaller than all the previous works.

VI. CONCLUSION
In this paper, a compact dual-bandNGDChas been presented.
The closed-form analytical equations have been derived to
guide the design. And the characteristic parameters of the
microstrip lines that influence the frequency ratio have been
investigated. For demonstration, three dual-band NGDCs
with a frequency ratio of 1.105, 3, and 5.667 have been
designed, fabricated, and measured at the center frequency
of 1 GHz. The proposed NGDC has wider frequency ratio
range, lower IL and better RL performance. In addition, its
size is also small. So it can be applied in various microwave
circuits and systems.

APPENDIX
Because the electrical length and GD of the transmission line
are frequency dependent, the equations of them are given as

θm = θ0 = θ1 = θ2 =
π

2
×

f
f0
, (A1)

τm =
θm

ω0
, τ0 =

θ0

ω0
, τ1 =

θ1

ω0
, τ2 =

θ2

ω0
, (A2)

where f0 is the center frequency, ω0 = 2π f0.
The values of A1, A2, A3i and A4i in Equation (2) are given

as follow:

A1 =

(
Rm
/
2
) (
1+ tan2 θm

)
R2m
/
4+ Z2

m tan2 θm
, (A3)

A2 =

(
R2m
/
4− Z2

m
)
tan θm

Zm
(
R2m
/
4+Z2

m tan2 θm
)− 2

(Z0e + Z0o) cot θ0
, (A4)

A3i =
a1a3i + a2ia4

(a1 + a4a5)2 + (a2i + a3ia5)2
(i = 1, 2) , (A5)

A4i =
a1a4 − a2ia3i − a24a5 − a

2
3ia5

(a1 − a4a5)2 + (a2i + a3ia5)2
+

1
Zm tan θm

, (A6)

where

a1 = R(Z0e − Z0o)
/
2, (A7)

a21 =
(Z0e − Z0o)2 tan θ0

4

−
(Z0e − Z0o) (Z0o cot θ0 + 2Z1 cot θ1)

2
, (A8)

a22 =
(Z0e − Z0o)2 tan θ0

4

−
(Z0e − Z0o) (Z0o cot θ0 − 2Z2 tan θ2)

2
, (A9)

a31 = (Z0e + Z0o)
/
2+ 2Z1 cot θ1 tan θ0, (A10)

a32 = (Z0e + Z0o)
/
2− 2Z2 tan θ2 tan θ0, (A11)

a4 = R tan θ0, (A12)

a5 = −Z0o cot θ0. (A13)

The values of X1i, X2i, X3i, X4i, X ′1i, X
′

2i, X
′

3i, and X
′

4i used
in the Equation (4) and Equation (5) are given as follow:

X1i = Y0 (A1 − A3i) , (A14)

X2i = Y0 (A2 − A4i) , (A15)

X3i = Y 2
0 + Y0 (A1 + A3i)+ A1A3i − A2A4i, (A16)

X4i = Y0 (A2 + A4i)+ A2A3i + A1A4i, (A17)

X ′1i = Y0
(
A′1 − A

′

3i
)
, (A18)

X ′2i = Y0
(
A′2 − A

′

4i
)
, (A19)

X ′3i = Y0
(
A′1 + A

′

3i
)
+ A′1A3i + A1A

′

3i − A
′

2A4i − A2A
′

4i,

(A20)

X ′4i = Y0
(
A′2 + A

′

4i
)
+ A′2A3i + A2A

′

3i + A
′

1A4i+A1A
′

4i,

(A21)

where

A′1=

[
Rm tan θm

(
1+ tan2 θm

)
τm
(
R2m
/
4+ Z2

m tan2 θm
)

−2
(
Rm
/
2
) (
1+ tan2 θm

)2
Z2
m tan θmτm

]
(
R2m
/
4+ Z2

m tan2 θm
)2 ,

(A22)

A′2=

[(
R2m
/
4−Z2

m
) (
1+tan2 θm

)
τm
(
R2m
/
4+ Z2

m tan2 θm
)

−2
(
R2m
/
4− Z2

m
)
tan2 θmZ2

m
(
1+ tan2 θm

)
τm

]

×
1

Zm
(
R2m
/
4+ Z2

m tan2 θm
)2 + 2

(
1+ cot2 θ0

)
τ0

Z0e + Z0o
,
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(A23)

A′3i=



(
a′1a3i + a1a

′

3i

+a′2ia4 + a2ia
′

4

)[
(a1 − a4a5)2

+ (a2i−a3ia5)2

]
−

(
a1a3i
+a2ia4

)

×

[
2 (a1 − a4a5)

(
a′1 − a

′

4a5 − a4a
′

5

)
+2 (a2i + a3ia5)

(
a′2i + a

′

3ia5 + a3ia
′

5

) ]
[

(a1 − a4a5)2 + (a2i + a3ia5)2
]2 ,

(A24)

A′4i =



(
a′1a4 + a1a

′

4 − a
′

2ia3i − a2ia
′

3i

−2a4a′4a5 − a
2
4a
′

5 − 2a3ia′3ia5 − a
2
3ia
′

5

)
×
[
(a1 − a4a5)2 + (a2i + a3ia5)2

]
−
(
a1a4 − a2ia3i − a24a5 − a

2
3ia5

)
×

[
2 (a1 − a4a5)

(
a′1 − a

′

4a5 − a4a
′

5

)
+2 (a2i + a3ia5)

(
a′2i + a

′

3ia5 + a3ia
′

5

) ]

[
(a1 − a4a5)2 + (a2i + a3ia5)2

]2
+ (1+ tan θm) τm

/
Zm, (A25)

a′1 = 0, (A26)

a′21 =

(Z0e−Z0o)

[
(Z0e − Z0o)

(
1+ tan2 θ0

)
τ0
/
2+ Z0o

×
(
1+cot2θ0

)
τ0+2Z1

(
1+cot2θ1

)
τ1

]
2

,

(A27)

a′22=

(Z0e−Z0o)

[
(Z0e − Z0o)

(
1+ tan2 θ0

)
τ0
/
2+ Z0o

×
(
1+cot2θ0

)
τ0+2Z2

(
1+tan2θ2

)
τ2

]
2

,

(A28)

a′31 = 2Z1
(
1+tan2 θ0

)
cot θ1τ0−2Z1

(
1+cot2 θ1

)
tan θ0τ1,

(A29)

a′32 = −2Z2
(
1+tan θ20

)
tanθ2τ0−2Z2

(
1+tan2 θ2

)
tan θ0τ2,

(A30)

a′4 = R
(
1+ tan2 θ0

)
τ0, (A31)

a′5 = Z0o
(
1+ cot2 θ0

)
τ0. (A32)
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