
Received December 28, 2019, accepted January 29, 2020, date of publication March 5, 2020, date of current version April 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978547

Bioacoustics Data Analysis – A Taxonomy,
Survey and Open Challenges
RAMA RAO KVSN 1, JAMES MONTGOMERY1, (Member, IEEE),
SAURABH GARG 1, (Member, IEEE), AND MICHAEL CHARLESTON2
1School of Technology, Environments and Design, University of Tasmania, Hobart, TAS 7005, Australia
2School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia

Corresponding author: Rama Rao KVSN (ramarao.kaluri@utas.edu.au)

This work was supported by an Australian Government Research Training Program (RTP) Scholarship.

ABSTRACT Biodiversity monitoring has become a critical task for governments and ecological research
agencies for reducing significant loss of animal species. Existing monitoring methods are time-intensive
and techniques such as tagging are also invasive and may adversely affect animals. Bioacoustics based
monitoring is becoming an increasingly prominent non-invasive method, involving the passive recording of
animal sounds. Bioacoustics analysis can provide deep insights into key environmental integrity issues such
as biodiversity, density of individuals and present or absence of species. However, analysing environmental
recordings is not a trivial task. In last decade several researchers have tried to apply machine learning
methods to automatically extract insights from these recordings. To help current researchers and identify
research gaps, this paper aims to summarise and classify these works in the form of a taxonomy of the
various bioacoustics applications and analysis approaches. We also present a comprehensive survey of
bioacoustics data analysis approaches with an emphasis on bird species identification. The survey first
identifies common processing steps to analyse bioacoustics data. As bioacoustics monitoring has grown,
so does the volume of raw acoustic data that must be processed. Accordingly, this survey examines how
bioacoustics analysis techniques can be scaled to work with big data. We conclude with a review of open
challenges in the bioacoustics domain, such as multiple species recognition, call interference and automatic
selection of detectors.

INDEX TERMS Bioacoustics, biodiversity, density estimation, species identification, features, syllables.

I. INTRODUCTION
Throughout human history people have developed bothmutu-
ally supporting and conflicting relationships with the natural
world. Significant animal species loss has been observed
in recent decades due to habitat destruction, which puts
environmental integrity and biodiversity at risk [1], [2].
Imbalanced biodiversity may result in undesirable effects
such as change in climatic conditions and pollution. Hence,
assessing biodiversity and monitoring of individual species
by ecologists and zoologists is increasingly important. How-
ever, zoologist’s species estimates can vary significantly,
with a high order of variation between their assessments [3].
Moreover, monitoring methods such as marking and tagging
of animals, which primarily depend on visual characteris-
tics, are invasive and may harm animals. Hence, to over-
come the difficulties of invasive methods and manual data
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collection complications leading to unproductive analysis,
there is need for a sophisticated non-invasive approach for
monitoring animals. As animals indicate and communicate
their presence through sounds, sound monitoring is a suitable
non-invasive method. The sounds generated by animals can
be used to understand their distribution and behaviour. The
science related to studying sound is known as acoustics, and
the subfield related to the study of biologically-produced
sound is bioacoustics. Acoustic sounds can be recorded with
ease, played, synthesized and analysed to recognize animal
communication [4]. Acoustic monitoring reduces the need
for invasive survey techniques [5] and offers a way to monitor
remote locations in a cost effective manner. Moreover, acous-
tic signals provide significant information on environmental,
seasonal and climatic effects on species [6].

Bioacoustics is used in a number of ecological applications
including biodiversity assessment, density estimation and
species identification as well as learning about tempo-spatial
behaviour, ecology and communication. In order to obtain
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significant information about these application areas using
bioacoustics, a common series of processing steps is fol-
lowed, and considerable research has been conducted in vari-
ous aspects of this process flow. To the best of our knowledge,
there is no broad survey in this domain discussing bioacous-
tic process flow activities and their application to particular
environmental monitoring areas. Au and Hastings [7] and
Zimmer [8] have presented a detailed discussion with a focus
on marine bioacoustics. This paper reviews the current body
of work in the field of bioacoustics, with an emphasis on bird
acoustics and the problem of species identification. Based on
this survey open challenges and research opportunities are
identified. The key contributions of the paper are summarized
as follows:
• Presents a holistic review of state-of-the-art research
works in the bioacoustics domain.

• Summarizes bioacoustics workflow steps and compre-
hensively presents relevant detailed studies about each
step, as many previous researchers have focused only on
either a single step or single animal.

• Presents a taxonomy of bioacoustics applications such as
density estimation and biodiversity, with a special focus
on species identification.

• Reviews big data analytics for bioacoustics data to
handle the massive data generated from different
sources.

• Describes different bioacoustics specific software, iden-
tifying open issues and research targets for future bioa-
coustics research.

The review should benefit both ecologists looking to use
bioacoustics analysis and researchers investigating analysis
and processing techniques for this domain.

This paper is organized as follows. Section II formally
introduces bioacoustics terms and important applications
of bioacoustics analyses. Section III discusses collection
technologies and pre-processing methods, while Section IV
discusses different audio features that are widely used in
bioacoustics analysis studies. We present a taxonomy of
bioacoustics analysis techniques in Section V, summarising
work related to density estimation, biodiversity and species
identification. Section VI presents a discussion on several
techniques that have been used to identify bird sounds auto-
matically while Section VII discusses other animal species
identification methods in order to provide a comprehensive
view. Section VIII discusses different work that has been
designed to deal with big data and various bioacoustics
software that is available. Section IX discusses open research
challenges in the bioacoustics field.

II. BIOACOUSTICS: OVERVIEW
Bioacoustics is a formal study that involves the production,
transmission and reception of sound [9], [10] to gain insights
about animal relationships with atmosphere. Before proceed-
ing to discuss bioacoustics analysis in detail, this section
provides a background to biacoustics such as its origins,
applications, call categories and activities.

A. BACKGROUND
Bioacoustics has origins during the second world war [11] to
monitor fish sounds. During World War II, acoustic devices
like sonar were developed to detect acoustics in the ocean.
The detected fish acoustics are primarily used for sensing,
discovering and catching fish. At night time, using these
acoustics, fisherman are able to detect the type of fish and
their abundance. Dang and Andrews [11] also described work
carried out in England and Russia on fish species identifica-
tion. Initially it was done by correlating the response with
swim bladder harmonics. Knowledge of fish school shape
was used at a later stage to identify species. Based on this
work, Dang and Andrews [11] concluded that:
• The sound of one species would be qualitatively differ-
ent from another.

• Sounds may vary depending on the season and
behavioural contexts.

Riede et al. [12] also supported these findings by experi-
menting on dog barking in two different behavioural contexts,
healthy and unhealthy dogs. Barks of the dogs in these two
different contexts are recorded. Riede et al. [12] established
that there is considerable variation of sound in two different
contexts. Hence, obtaining sounds of animals in different
contexts, seasons and species may be useful for several bioa-
coustics analysis applications.

B. BIOACOUSTICS APPLICATIONS
Acoustics can be used to study and analyse several key
phenomena such as:
Biodiversity: This concerns knowing about abundance and

evenness of animal species living in particular surroundings
or on the earth. Assessing and maintaining biodiversity will
help us to maintain ecosystems, which is as essential as air
and water. Bioacoustics serves as an important tool to assess
biodiversity.
Species Identification: Species can be termed as a cluster

of animals with similar characteristics. Each species can
be classified based on biological characteristics specific to
it. Bioacoustics can be applied to this field of research to
assist the classification into genus, species and individual
levels.
Density Estimation (abundance): In a defined location,

some species may be commonly found but some may be rare.
Using bioacoustics, we can find relative abundance such as
the percentage of organisms found at a particular location.
Migrations: Most species relocate from one place to

another place due to climatic conditions, foraging or for
breeding. Using bioacoustics, we can monitor such relocation
patterns.
Cryptic Species Detection: Some species which are not

native to the surroundings, difficult to observe and rare
species can also be detected using bioacoustics.
Animal Communication: This can be defined as exchange

of information between sender and receiver animal that will
affect and trigger change in the emotions and behaviours of
the receiver animal.
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C. TYPES OF ACOUSTICS
In the bioacoustics domain, typically used terms are active/
passive acoustics and calls/songs. This section introduces
such bioacoustic jargon.

1) ACTIVE VERSUS PASSIVE
Acoustic detection can be categorized into active and
passive [13]. Active acoustics involves production of sound
by a device that converts variations into electrical signals.
To convert signals, transducer is typically used with sev-
eral measures in active acoustics to understand or iden-
tify the species population. Species identification with this
method requiresmore information. On the other hand, passive
acoustics encompasses obtaining data, listening sounds and
analysis.

2) CALLS VERSUS SONGS
Bird vocalization activity is key for exchange of infor-
mation. Each bird sound is different and varies in terms
of pitch, rhythm and pattern. For vocalization, birds have
evolved a unique primary sound-producing organ named the
syrinx [14]. Functionally, the syrinx is very similar to vocal
cords in human. In addition to the syrinx, bird sound is
coordinated by several groups of muscles such as respira-
tory apparatus and upper vocal tract [15]. More detailed
discussion of syrinx and call structure can be found in
Bolhuis and Everaert [16] and Kershenbaum et al. [17].
The sounds made by birds can be broadly divided into two

categories, Calls and Songs [18].
1) Bird Calls: Calls are very short and simple sounds.

Calls fall into several categories such as mating calls,
reproduction calls, feeding calls, distress calls, and
excitement calls. These calls can be used to perform
analytic activities such as species identification. For
instance, Glaw andVences [19] consideredmating calls
to identify species.

2) Bird Songs: Songs are of longer duration sounds than
calls. Male and female birds produce songs of approx-
imately the same length. Bird song can be best heard
during Spring and are most likely to sing at dawn, as it
is a favourable time for several activities [20]. These
songs are to attract other birds or for defence.

In order to utilize these calls or songs for any bioacoustics
application, several steps are involved constituting a process
flow.

D. BIOACOUSTICS ANALYSIS PROCESS FLOW
Many bioacoustics analyses comprise the steps illustrated
in Figure 1:

FIGURE 1. Common bioacoustics process flow.

• Data Collection: This activity involves recording animal
sounds in the field and obtaining the recorded audio data
in digital format.

• Pre-processing: The collected raw audio data may con-
tain noise. This step may be applied to remove noise and
prepare the collected audio data ready for analysis.

• Syllable Extraction: These are like fingerprints of the
audio signal that are analogous to phonetics for humans,
which capture important segments of the signal.

• Feature Extraction: This activity captures the
significant/informative properties of the signal for better
understanding.

• Analysis: Various kinds of analysis can be performed
using the above features.

A detailed discussion on these steps will be presented in the
subsequent sections.

III. DATA COLLECTION AND PREPARATION
Data collection and preparation is the first bioacoustics anal-
ysis activity. It involves gathering the data and further making
it ready for analysis through several pre-processing steps.
This section primarily focuses on two aspects, recording and
pre-processing.

A. FIELD RECORDINGS AND VISUALIZATION
For recording animal sounds, two devices are used, a micro-
phone and a sound recorder. A detailed discussion on these
two devices is presented below.

1) MICROPHONES
Microphones convert sound into electrical signals with the
help of a transducer. In addition to the transducer, several
other parameters such as efficiency, self-noise, polar pattern
and frequency also play a major role in recording quality.
There are a variety of microphones including dynamic micro-
phones, piezoelectric transducers, condenser microphones,
solid-dielectric microphones, electret (capacitor-based)
microphones, hydrophones and directionalmicrophones [21].

1) Dynamic Microphones: These are robust, reliable
and are particularly suitable for loud environments.
A mechanical element in the device produces power by
the process of electromagnetic induction.

2) Piezo-electric Transducers: These are particularly
useful in detecting high frequencies(e.g., bats) and
as microphones for musical instruments. Whenever
acoustic waves are created, these transducers produce
power which make them more suitable to detect ultra-
sonic sound.

3) Condenser microphones: These microphones have a
diaphragm whose movement changes the capacitance
in a condenser. This change in the condenser is trans-
formed to electrical energy.

4) Solid-dielectric microphones: These have to be charged
by external supply or by using internal batteries.
These are best suited for bat detection but mechanical
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membranes are subject to humidity changes, giving
scope for noise introduction.

5) Electret microphones: These consume low power
requirements, being pre-charged. The recently intro-
duced Micro-Electrical-Mechanical System (MEMS)
comes under this category. These devices are small and
very sensitive.

6) Hydrophones: These are particularly useful for detect-
ing underwater sounds. The sensitivity issue in electret
microphones is addressed in these by utilizing a piezo-
electric element, which produces voltage when com-
pressed by sound waves. These are omni-directional
single transducer microphones, covering frequency
range up to 100kHz. Tomonitor larger regions, an array
of hydrophones can be used. A pack of hydrophones
coupled with amplifiers and transmitter in a pres-
sure resistant container is capable of recording even
underwater sounds.

7) Directional microphones: These microphones are con-
figured to focus on the sound originating from one
direction or a single source. Directional microphone
recording can be for two purposes. One purpose is
for ambiance recording, which is used to understand
detailed audio characteristics of a specific environ-
ment. All sounds in that particular environment will
be recorded. The other purpose is for species record-
ing, where sound is selectively recorded from a single
source avoiding noise from other sources. For this pur-
pose devices such as parabolic receivers are preferred,
because they reduce unwanted noises coming from
other directions and focus only on sound coming from
the desired object.

2) SOUND RECORDERS
As discussed earlier, Microphones convert sounds to elec-
trical signals and sound recorders subsequently record these
generated electrical signals. Sound recorders can be of
two types: analog or digital. Analog recorders such as cas-
settes suffer more signal degradation. Digital recorders have
replaced analog by overcoming all the major disadvantages.
Digital recorders usually store the audio files in ‘uncom-
pressed wave (.wav) format’. Such .wav files are stored
digitally and the storage volume depends on available storage
capacity. Hence long-term acoustic monitoring programs
have to be planned properly with an automated recording
system with sufficient systems deployed backed up with
enough power and storage facilities. More detailed discussion
on bioacoustics prerequisites, precautions while recording,
hardware, power requirements and other information has
been outlined by the Bioacoustic Diversity group [22]. The
recorded sounds can be archived, similarly to any other digital
data on a CD, DVD or BluRay disc, The recorded sound
file documentation should be accompanied with metadata
information such as locality, temperature and frequency.

Once audio data is obtained in digital format, it can be
visualized using different tools.

3) SOUND VISUALIZATION
Visualizing acoustic properties such as temporal and spec-
tral characteristics is important for analysis. To visualize,
play and edit audio recordings many tools are available.
Two commonly used visualizations are oscillograms and
spectrograms.

1) Oscillogram: This is a basic graphic display unit in
terms of voltages and amplitudes revealing temporal
changes of sound. It exposes the signal frequency com-
position data at a particular moment.

2) Spectrogram: This is the most widely used tool in
bioacoustics for visualization as it visualizes in three
dimensions: frequency, time and amplitude. Visualiza-
tion is constructed by Fourier decomposition.

Once data are collected and optionally visualized, the next
process is often to remove noise from the audio.

B. NOISE REMOVAL
In the context of bioacoustics, noise can be interpreted as an
unwanted and unpleasant sound which is added to the desired
sound involuntarily. These unwanted sounds may originate
from several sources including airplanes, wind and rain [23].
Such noise should be processed and removed. To process
noisy signals, there are several standard methods that can be
applied to audio signals. This section discusses such noise
processing methods.

1) WIENER FILTER METHODS
Lim et al. [24] pointed out that, relative to phase, short-time
spectral amplitude is important for speech quality. Grounded
on the concept of short-time spectral amplitude, noise
removal techniques can be broadly classified into two cate-
gories [24]. The first category encompasses using the process
of spectral subtraction for explicit estimation of the short-time
spectral magnitude, which will remove noise and enhance the
signal. The second category of speech signal enhancement
is based on Wiener filtering. In this method, several filters
are initially obtained from the degraded speech. Among these
filters, an optimal filter will be found. To estimate the noise,
this optimal filter is applied in the time or frequency domain.
Since zero-phase frequency response is computed using the
Wiener filter, spectral amplitudewill be enhanced keeping the
filtered speech phase similar to that of degraded speech.

2) SIGNAL SUBSPACE METHODS
Ephraim and Van Trees has proposed the subspace
method [25]. The basic principle lies in decomposing the
noisy signal vector space into two subspaces, a noise
subspace and a signal-plus-noise subspace, by using
Karhunen-Loeve transform (KLT). On these sub spaces,
linear estimation is applied on a frame by frame by using
two criteria. The first estimator criterion is signal distortion
power minimization on an average residual noise power. This
is called a time domain constrained estimator. The second cri-
terion estimator is called spectral domain constrained estima-
tor, again focused on signal distortion power minimization,
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but with a condition that the residual noise should be less
than a threshold. KLT is applied to the two estimators. The
KLT decomposition estimator is extracted by computing an
eigen decomposition of the Toeplitz covariance estimate of
noisy vector. By nullifying the KLT components of noise
subspace, signal subspace KLT components are modified by
using either of the estimators. While the spectral subtrac-
tion method uses DLT, the subspace method uses KLT for
decomposing the noisy signal vector space. Ephraim and Van
Trees [25] pointed out that sub space method performance
was better than spectral subtraction method with less distor-
tions, no residual noise, and noise being additive and white.
These authors concluded that coloured noise could also be
whitened. Lev-Ari and Ephraim [26] have extended the signal
subspace approach to the colored noise process by proposing
explicit forms of time and spectral domain estimators.

3) STATISTICAL METHODS
1) Minimum Mean Square Error (MMSE) method:

Ephraim and Malah [27] stated that neither spectral
subtraction norWeiner filter are optimal spectral ampli-
tude estimators. From noisy observations, these authors
proposed to derive an optimal short time spectral ampli-
tude (STSA) estimator by utilizing MMSE. To derive
an MMSE STSA estimator, Fourier expansion coef-
ficients of speech and noise probability distributions
must be known. To obtain them, using either a sta-
tistical model or probability distribution measurement
can be used. Since the probability distributions of
samples is time varying, it would be complicated and
impractical to measure them. Hence a statistical model
utilizing asymptotic properties of Fourier expansion
coefficients has been used by the authors. These Fourier
coefficients are presumed to be independent Gaussian
random variables. This estimator also considers the
presence of speech signals in noisy observations. Since
the complex exponential of MMSE does not affect
STSA estimation, derivation is proposed from the noisy
signal.

2) Unified Approach: Model based methods have become
popular in speech enhancement. Ephraim [28] pro-
posed a unified statistical framework to address speech
enhancement issues such as quality, intelligibility,
robustness of speech coders and recognition systems
to noise. Vector quantization and hidden markov mod-
els (HMM) are two powerful statistical techniques that
have found good application in speech enhancement
domain in terms of signal estimation and classification
of noisy signals. To design speech enhancement sys-
tems with HMM, the type of HMM used for signal
and noise and distortion measures plays a key role.
Ephraim [28] further discusses how HMMs can be
extended in several ways to resolve noise problems.

However, all these methods (Weiner, signal sub space, statis-
tical) assume that noise can be estimated from the first few
frames determined by voice activity detectors (VAD) [23].

These authors discussed that it is not practical to assume that
first few frames only contain noise. In bioacoustics record-
ings, bird calls without any gap in the first few frames are
found in several recordings. In such situations noise esti-
mation algorithms based on such an assumption will suffer.
In addition, VADs do not work in low signal-noise-ratio
(SNR). To address this, Cai et al.proposed a novel noise
reduction algorithm which can estimate noise from every
frame [23]. This algorithm also eliminates VAD.

After noise removal, next step is to extract features. Dif-
ferent audio features that are used by various studies in bioa-
coustic analyses are presented in the next section.

IV. AUDIO FEATURES USED FOR BIOACOUSTICS
ANALYSIS
This section mainly discusses three different types of features
that were used in bioacoustics studies during the process
of analysis such as acoustic features, syllables and other
features.

A. ACOUSTIC FEATURES
1) SPECTRAL AND TEMPORAL
These are the features which are extracted from frequency
and time plots of the signal using oscillograms or spec-
trograms. Commonly used features are Start Frequency,
End Frequency, Maximum Frequency, Minimum Frequency,
Middle Frequency, Maximum Intensity frequency and
Duration.

2) MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)
MFCCs are extensively applied in human speech identifi-
cation. Human and certain animal auditory systems possess
similarities and their basilar membrane physical characteris-
tics yield similar frequency characteristics [29]. Cai et al. [23]
also discussed several similarities between human and bird
with regard to hearing, vocal tract and auditory processing.
These similarities enable MFCCs to be the useful for species
identification across a diverse set of animals such as frogs,
crickets [30]–[32] and birds [31], [33].

Neither human nor animal perception scale is linear
[30], [31] with critical band frequencies very much influ-
enced by energies. To resolve such linearity disturbances,
MFCCs streamline the frequencies across the continuum.
Further, MFCCs offer several advantages: they are simple,
robust and computationally efficient. They have good accu-
racy, computation not requiring any performance tuning
and exceptional recognition rates irrespective of call type
[30], [32]. MFCC computation typically involves these steps:

1) Audio signal is split into short frames typically ranging
between 20 ms to 30 ms

2) Since spectral content does not exist in every frame,
segmentation irregularities exist which are rectified by
multiplying each frame with a Hamming window. This
will minimize signal discontinuities and create frame
overlapping with good resolution.
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3) On this Hamming windowed signala Fourier transform
is applied to calculate the power spectrum and identify
the frames of concern.

4) The resulting spectrum is mapped to the mel-frequency
scale.

5) Subsequently, a filter bank is applied to mel-scale
mapped spectrum to identify each frequency region
energy.

6) Logarithm is applied obtain energy log for each filter.
7) These log energies are transformed to cepstral domain

by applying a discrete cosine transform(DCT).
8) The DCT will result in a 64-dimensional cepstral fea-

ture vector referred to as MFCC.

Classically, only the lower 12 DCT values out of 64 are
retained to reduce the complexity and increase accuracy.

3) ENTROPY BASED
To identify frog species, Han et al. [34] applied a hybrid
spectral entropy method for extracting several features such
as Spectral centroid, Shannon entropy and Renvi entropy.
To enhance species identification, this study specifically used
two types of entropies to create a hybrid feature system.
• Spectral centroid: This is very useful in pattern recogni-
tion. It represents the centre point of the spectrum where
the sound is bright.

• Shannon entropy: This is used to measure the degree
of the signal which quantifies the richness of sound.
After the species richness index, this is the most pre-
ferred index as it increases the evenness in the rela-
tive richness in a habitat. This measure characterizes
acoustic diversity even at time units with low probability
amplitude mass function. Shannon entropy serves as an
information content richness measure which quantifies
the diversity.

• Renyi entropy: This has found its applications exten-
sively in the fields of signal processing, data mining,
classification and segmentation. In information theory,
Renyi entropy is an estimate of the noise during signal
transfer. In this study, authors used Renyi entropy to
identify the noise content and its complexity.

Dayou et al. [35] has also used Shannon entropy, Renyi
entropy with Tsallis entropy as features. Tsallis entropy, also
referred to as q-entropy, is another generalization of Shannon
entropy. This study utilized Tsallis entropy to measure the
signal complexity.

B. SYLLABLES
The process of dividing audio signal into fragments is called
segmentation. Bird vocalization hierarchies can be divided
into notes, syllables, phrases and calls. Among these, for
bird species recognition, syllables are ideal, as phrases and
calls have more variations in terms of region and individ-
uality [36]. Syllables are brief sounds which the species
produces with the lungs in a single blow of air and hence
can be considered similar to phonetic sounds in humans [29].

Somervuo et al. [37] termed syllables as organized sequence
of brief sounds from a species-specific vocabulary.
The process of syllable segmentation primarily involves

computing a threshold value of the signal. Using a threshold
value and signal energy level, the syllables can be identified.
The start of a syllable is recognized as the point where sig-
nal energy first exceeds the threshold and where the energy
drops it is considered as the end point. The signal between
the start and end point is referred as the syllable [30]. The
number of syllables varies between 12 to 96 according to
species [34].

The predominant way to perform this syllable identifica-
tion is through spectrogram analysis and manual labeling.
However, manual process is time intensive and subjective.
Towards automating this, Harma [38] used a sinusoidal
parameterization model to extract syllables. Each syllable
is parameterized by the sinusoidal model by represent-
ing its frequency and amplitude trajectories. To improve
recognition accuracy and characterize syllable harmonics,
Somervuo and Harma [39] introduced four supplementary
parameters. Kogan and Margoliash [33] have experimented
with syllable extraction using HMM.

As discussed earlier, the bird acoustics hierarchy contains
notes at the lowest level and syllables at the next higher level.
Several works have been done based on syllables and their
feature extraction. However, at the lower level below syllables
there are notes, which may also be used for classification.
Graciarena et al. [40] has created bird species models from
note sequences. Note sequence models were produced using
unsupervised clustering techniques. The note models are
trained by performing vector quantization of acoustic features
and two-pass index alignment training models. To create bird
species models, a note n-gram model with support vector
machine (SVM) is used to capture note sequence statistics.
When compared with Guassian mixture models (GMM), note
model is superior in several aspects such as multi-scale mod-
eling, syllable modeling and modeling longer time depen-
dencies. The features are obtained by computing note loop
lattices, extracting n-gram statistics and normalizing them.
SVM is used for training.

It is evident that any speech recognition system depends on
the vocabulary and grammar of the language. Bird acoustics
also have a vocabulary and grammar. These structured brief
sounds are known as syllables. Lakshminarayanan et al. [41]
developed probabilistic models to process these syllables
for species identification. Inspired by document classifica-
tion, syllables are treated as words and species as topic.
A probabilistic model is built based on document classifi-
cation. Lakshminarayanan et al. [41] introduced the Inde-
pendent Syllable model in which the syllable frames are
treated by two models, the Independent Frame Independent
Syllable (IFIS) model and Markov Chain Frame Indepen-
dent Syllable (MCFIS) model. Then a maximum aposteriori
rule is derived for each model. These authors concluded
through numerical evaluation that classifier performance is
competitive.
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From the above, we can say that segmenting into pulses or
syllables has become essential for most ecological machine
learning problems. However, audio from recorders contains
more noise, which compramise the classification accuracy.
Hence for noisy signals syllable extraction, Neal et al. [42]
proposed a supervised model for audio segmentation which
transforms the input signals into a spectrogram representation
and creates a binary masked label for each time-frequency
slot as either bird sound or noise. This activity extracts
individual song syllables of the bird, even when there are
overlapping syllables. The binary mask is evaluated with
manually-labelled ground truth using a metric of true positive
rate (TPR) versus false positive rate (FPR), and a metric of
energy-weighted TPR versus FPR. Experiments indicate that
the method achieves 90.5% TPR for the first metric, and
93.6% TPR for the second, which suggests that the proposed
method performs better than segmentation by energy thresh-
olding method.

Most of the research in syllable extraction is call depen-
dent. Cheng et al. [31] developed call independent identi-
fication of 10 passerine (perching birds) species using four
machine learning methods, namely radial basis function net-
works (RBFN, a special kind of artificial neural network
(ANN)), SVM, HMM and GMM. The models are trained
using any type of syllables and used on the same or different
types.

In the Multi-Instance Multi Label (MIML) framework
developed by Briggs et al. [43], the classified objects consti-
tute bags (audio recording) of instances (syllables) and class
labels (set of species). This bag generator algorithm converts
recordings into bag of instances.

Colonna et al. [44] presented a technique to treat syllables
in real time by simply storing time series statistics instead of
using sliding windows. The beginning and ending of each syl-
lable is detected and the noise part is eliminated. Incremental
versions of signal energy (E) and zero crossing rate (ZCR)
equations are computed. The power of these two equations
is that they remember past decisions even when new sam-
ples arrive. They also use few parameters thus consuming
less memory and processing constraints. However they suffer
from a high false positive rate. To handle the problem of false
positives, a mode filter has been utilized which considers
the most frequently observed value as precise. Further, the
k-NN classifier is used for classification. Experiments
demonstrated 37% improvement and is well suited for wire-
less sensor networks.

Following syllable identification, the next step is to extract
various features from these syllables or directly from the
signal. This is discussed in the next section.

C. OTHER FEATURES
1) LINEAR PREDICTIVE CODING (LPC)
LPC is robust in providing approximation of vocal track
spectral envelope based on past samples. LPC exploits the
relationship by converting them as a set of coefficients, called

LPC coefficients. LPC coefficients can be computed by using
Durbins method [45] and autocorrelation analysis.

2) CODE BOOK OF FRAME LEVEL FEATURES
Any bird classification algorithm begins with extracting
audio signal features. Such features that are extracted belong
to single frame which are very short segments. However,
Briggs et al. [46] pointed out that because single frame
features are insufficient, it would be advantageous to extract
features from multiple frames to represent sound in order
to apply them on several standard classification algorithms.
Features extracted from these multiple frames will form
a fixed-length feature vector. From this vector, a common
approach is to take an average of interesting frames. However,
Briggs et al. [46] proposed a codebook concept, inspired by
similar work in the fields of computer vision and music genre
classification. In the codebook concept, the features from
all frames are aggregated as a bag of code words through
clustering.

3) MARSYAS FRAMEWORK
TheMARSYAS (Music Analysis, Retrieval and Synthesis for
Audio Signals) framework was developed by Tzanetakis [47]
for use in music information retrieval applications. This fea-
ture is well applied in music genre classification research
work. Lopes et al. [48] has first made use of this feature set
in the domain of bird species recognition. More details about
this feature set can be found at the MARSYAS portal [47].

Once the features are extracted, the next step is to perform
analysis on various bio-acoustic applications.

V. A TAXONOMY OF BIOACOUSTICS ANALYSES
Bioacoustics analysis provides us with deep insights into
key environmental integrity issues such as biodiversity, den-
sity estimation and species identification. Each bioacoustics
application has diverse analysis techniques and methods. For
a comprehensive outlook of the techniques related to each
bioacoustics application, we present a taxonomy illustrated
in the Figure 2. This section focuses on presenting the details
of taxonomy and work on Density Estimation, biodiversity
and species identification.

A. DENSITY ESTIMATION
Density or abundance estimation is an approach to assess
bird population size. This helps in bird conservation as it
can assist in evaluating the impact of pollution and habitat
loss on birds. After the 2002 World Summit on Sustain-
able Development, it has been globally agreed to reduce the
extinction of animal species. This activated the investigation
of approaches for monitoring bird population trends. To mon-
itor population trends, there are two models, namely open
and closed. Closed population models assume that births,
deaths and immigrations do not occur while open popula-
tion models relax these assumptions. Seber [49] discussed
several estimation methods for closed population and open
populations. For closed population methods such as absolute
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FIGURE 2. Analyses Taxonomy.

density and relative density were proposed while Jolly-Seber
method, regression and several methods are discussed for
open population. Williams et al. [50] extensively discussed
a framework for modelling, estimation and management of
animal population. Some of the most frequently used density
estimation methods are discussed below.

1) PLOT SAMPLING
Although a typical objective is to estimate total bird pop-
ulation, it is more practical to estimate the population in
small areas and use these small area samples to estimate
the total. Plot Sampling is one such method that esti-
mates population based on samples from random plots.
Reynolds et al. [51] developed a circular plot method that
estimates the bird density in a given area. In their circular
plot method, stations are established at scattered locations to
monitor birds. Whenever a bird sound is heard, it is counted.
The distance from each station to where they were found
first is estimated. For each species, a plot is drawn for the
areas where the observed bird species begin to decline. The
density count is a sum of individual bird counts found within
a specified radius.

Dawson and Efford [52] discussed several issues with the
plot methods and further pointed out that counting of one or
other bird species and estimate their density may not be fea-
sible until counts on sample plots are available and complete.
This introduces reliability and detectability challenges which
are addressed by using distance vector approach.

2) DISTANCE SAMPLING
Detecting an animal relies primarily on the distance between
animal and sensor. Distance sampling methods use distance
as a key parameter to estimate the probability of detection
as a function of distance. To have a broad area coverage,
a systematic design with a large number of distances will be
recorded. Further, a detection function g(y) should be defined
to calculate animal detection probability by using the distance

point values. Rosenstock et al. [53] made use of distance
sampling method to count land birds. This method overcomes
many drawbacks of index count. Burnham et al. [54] utilized
a Fourier series method to estimate bird abundance.

Hiby and Ward [55] discussed a variation to distance sam-
pling which is cue counting. In cue counting, cues produced
by animals are counted rather direct animal observations. Cue
counting was initially used in estimating whale density by
using whale blows as cues. Since it is difficult to differentiate
individual whale cues, cue density is estimated as the number
of whale blows per unit area per unit time. The obtained value
of cue density is divided by an estimated average cue rate to
obtain whale density. Buckland [56] extended this technique
to birds where a call or song from a bird is considered as a
cue. Cue density is the number of bird calls per unit area per
unit time and cue rate is the average number of calls per unit
time. Using these two, bird density can be estimated.

3) COUNT BASED METHODS
Though spatial replication themes are generally used to count
animals, it is difficult to estimate population size from them
as they generate sparse count data. Royle [57] developed an
N -mixture model to overcome this and estimate population
from such sparse data. For a population size of N specific to
the site, viewed as distributed poisson independent random
variables. Carol and Lombard have developed estimators but
they have limitations. This model has attempted to address
this issue.

4) VARIANCE ESTIMATION
To draw meaningful inferences, precision is considered to
be an important parameter for density estimation. Precision
estimation should be reliable. To obtain reliable precision
measure, variance estimation method will be used. There
are two approaches for variance estimation namely analytic
variance estimation and bootstrap variance estimation [58].
The first approach is analytic variance, which is estimated in
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terms of random (e.g. detection probability) and constant (e.g.
number of sensors, recording time) components. The second
approach, bootstrap variance estimation uses resampling of
several units such as sensors to generate a boot strap dataset
which is used to obtain estimate of density. The resampling
is repeated many times which yields a density estimation
set. Using the variance of these set of estimates, variance of
original estimator can be approximated.

B. BIODIVERSITY
Conservation of biodiversity in a general sense aims at main-
taining a balance of a large variety of interdependent biolog-
ical creatures. These dependencies mean losing that balance
threatens environmental health as a whole. One of the main
threats to global biodiversity is tropical habitat loss due to
human activities. Laiolo [4] has elaborately discussed the
effects of human activities on animals and on environmental
acoustics due to noise pollution, habitat fragmentation, chem-
ical pollution, direct human disturbance, hunting, introduced
diseases and food supplementation. This threatens biodiver-
sity which initiates the dire need to survey. Acoustics will
be an important input to analyse the biodiversity. Below we
discuss biodiversity analysis research works.

1) TRADITIONAL MEASURES
The ShannonWiener statistic (H) is a species diversity index.
It is used to estimate species richness. Riede [3] has made use
of this statistic to estimate crickets diversity of the Amazon
forest. Sound generated by crickets were recorded at Amazon
Rainforest for a duration of two weeks at 10 different points
daily two times. With Condenser microphones, individual
songs are recorded very closely. Spectrogram has shown
frequencies ranging from 0 to 10 kHz. Mostly the frequencies
below 3 kHz are identified to be produced by frogs, mammals,
birds etc. Within a range of 4 kHz to 9 kHz, acoustics of
crickets are identified. Bird wingmovement causes resonance
and generates sounds at a certain pulse rate and at a narrow
frequency. These two parameters (pulse rate and carrier fre-
quency) differ species to species and hence can be used to
identify species. The frequency is dense at 5 kHz to 8 kHz
with up to 80 pulse rate. We can get an understanding of
species and their abundance by using recordings of ith species
and total recordings by using shannon-wiener statistic. Based
on authors experiment results, Shannon-Wiener statistic turns
out to beH = 2.789. This value ofH is low (typically should
be 5.0), which indicates the cricket diversity is low.

2) ACOUSTIC INDICES
In earlier bioacoustic analyses, all the biodiversity estimation
methods relied on species richness estimation. However,
Sueur et al. [59] attempted to address biodiversity estimation
by considering a community level. They derived α and β
indices to analyse the animal sounds. The α index indicates
species count in the area whereas β index designates dif-
ferent species in that community. The α index is derived
from Acoustic Entropy Index (H ) which is obtained by the

product of temporal and spectral entropies. To obtain tempo-
ral entropy, Shannon index is used and for spectral entropy
short time Fourier transform is used. Acoustic Entropy
Index (H ) will be zero for solo tone and tend to reach 1 as the
number of tones increases. Using the value ofH , species rich-
ness can be estimated. To derive β index, Acoustic dissimilar-
ity Index (D) is computed as product of temporal and spectral
dissimilarities. The value of D increases if there are different
species in the community. Their results demonstrated that
acoustic entropy index typically ranged between 0.3 to 0.9.

Particularly during spring, certain habitat’s acoustics sub-
stantially affect these H index values. To address this,
Depraetere et al. [60] developed an alternative to α index
which is referred as Acoustic Richness (AR). Temporal
entropy and amplitude of the signal are primarily used to
develop this index. AR enhanced the acoustic clarity by
addressing the noise component. Tests demonstrated that it
is as good as human observation. Acoustic Richness revealed
that there is good acoustic activity at small forests rather than
in big forests.

Sueur et al. [10] has given an overview on α and β indexes
developed during several years. Their survey indicates that,
up to now 21 α indexes and seven β indices were proposed.
Authors recommended the simultaneous use of these indexes
to obtain more complementary information to build sophisti-
cated mathematical tools for biodiversity monitoring.

However, technological advances such as sensors and other
sophisticated devices have made it possible to collect huge
amounts of acoustic recordings from several remote loca-
tions resulting in a surge of audio data. Processing such
enormous quantities of data is a challenge. One approach
to meet this challenge is to reduce the size of the audio
recordingswithout loosing important information. Inlinewith
this, Towsey [61] has stated that acoustic indices offer bet-
ter solution in such scenario, which substantially reduce
acoustic recording information and at the same time give a
comprehensive understanding of the whole audio recording.
The reduction is possible, as acoustic indices summarize the
energy aspects of the recordings and yield a single value.
Sankupellay et al. [62],Towsey et al. [61] and Towsey [63]
have made use of several indices in their works and discussed
calculation and application of acoustic indices for assessing
biodiversity. The acoustic indices used in their work are Aver-
age Signal Amplitude, Background Noise, Signal to Noise
Ratio (SNR), Acoustic Activity, Count of Acoustic Events,
Average Duration of Acoustic Events, temporal entropy,
Spectral Cover, Entropy of spectral maxima, spectral entropy,
Entropy of the Variance Spectrum, Spectral Diversity and
Spectral Persistence. Among these, authors concluded that,
spectral entropy, Spectral Diversity and Spectral Persistence
are the most useful indices for obtaining optimized samples.

3) SOUNDSCAPE
Although biodiversity can be estimated by species rich-
ness, Celis-Murillo et al. [64] has developed a soundscape
recording system (SRS) to overcome the limitations of point
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count methods. The SRS design consists of four microphones
positioned above ground level and capturing sound by plac-
ing microphones facing each other at 90 degrees to each
other. On the collected acoustic data, a closed population
capture-recapture approach is used to for species richness
estimation. Further jackknife estimator is used to perform
interpolation on estimates. Average detection probability is
calculated which in turn helps to estimate species richness.
To understand dissimilarities in species composition, a jac-
card similarity index is used. Results have demonstrated that,
SRS has given better average detection probability and with
jackard index tending to 1.0 showing good similarity among
species.

4) SAMPLING
Most bioacoustic analysis depends ideally on the quality of
recorded acoustic data. However, some recordings may be
made in less tha ideal circumustances such as bad weather.
This should not affect the analysis. Bardeli et al. [65] has
described algorithms which work even in bad recording con-
ditions. Sounds of the Eurasian bittern species are used by
authors to test the algorithms. The sounds are found to be
short segments. Short segment calls with higher frequency
are not suitable to apply pattern recognition. Hence input
signals are down sampled and analysed by sliding window.
This down sampled signal aids in obtaining energy weighted
novelty measure. The peaks in this novelty measure curve
indicates calls. But this may contain noise, which can be elim-
inated from a bittern call by subtracting with a low pass filter.
Even then, this may contain several false positive detections.
An auto correlation method is applied to reduce the false
positives. This method is adequate for bittern calls, but if very
low calls are to be detected, false positives will be a challenge.
Also since the acoustic sensors record huge volumes of data
over long periods, analysing such huge volume is complex
and may be subjected to false positives and negatives.

Hence, Wimmer et al. [66] have made use of sampling
methods. Data were collected at four locations for a period of
five days by placing sensors at the center of each site. Survey-
ors critically analysed the callsmanually and annotated. In the
spectrogram, a specific marking is made and a tag is assigned
to this selection. To simplify, the recordings are split into one
minute segments. Five different samples (full day-random,
dawn, dusk, dawn+dusk, systematic) are collected from these
one minute segments. Samples drawn during the dawn period
shown high detection rate, followed by dawn+dusk period
samples. This sampling method can reduce the manual anal-
ysis burden. But removing noise and cryptic vocalizations
will ease the analysis. Authors concluded that strengths of
both manual and automated analysis makes biodiversity more
feasible.

Thus far, we have discussed two important aspects of bioa-
coustics applications: density estimation and biodiversity.
Another significant application area of bioacoustics is species
identification, which is discussed in the next section.

C. SPECIES IDENTIFICATION
There are three broad categories of approaches for species
identification: manual, automatic and semi-automatic.

1) MANUAL
Until a few decades ago, only ornithologists and ecologists
used to identify birds using their expertise. Based on sev-
eral factors such as bird origin, colour patterns, environ-
ment context (time, weather, habitat etc.) and its behaviour,
experts could identify the species of the bird. However, this
method has several disadvantages such as availability of few
experts who can identify confidently and observer bias due to
variations in their abilities. Moreover, manual observation is
limited to smaller volumes.

2) AUTOMATIC
Overcoming drawbacks of the manual method, automatic
species identification has taken this initiative to next level
by using several Machine Learning Algorithms powered by
numerous machine learning techniques. We would present
automatic species identification methods used by various
studies in case of birds and other animals.

3) SEMI-AUTOMATIC
Semi-automatic methods consist of using both manual and
automatic notions and will be of immense use in real time
scenarios. In real time, acoustic sensors, which are effective
in monitoring and classification would capture huge amount
of data. To analyse such big data, combination of manual
and automatic methods i.e. semi-automatic methods were
developed. This is because manual methods are not scalable
while automatic methods suffer high false positives and false
negative rate. Hence, to have a right balance of manual and
automatic method benefits, Truskinger et al. [67] designed
a semi-automatic analysis method (also known as crowd
based analysis method) to analyse big data, which is a
combination of manual and automatic methods. The central
notion of this method is to source complex classification
task to a set of participants (crowd) and use tools at certain
places to perform analysis. Authors implemented this method
for rapid scanning of spectrograms. Authors ascertain that,
humans can distinguish regions of interest intelligently and
effectively from the spectrograms. Beyond human capability,
certain tools were used to analyze further. Experiment results
show that analysis is sped up by twelve times. There are
several other semi-automatic methods available in addition to
crowd-based.

VI. BIRD IDENTIFICATION METHODS
As discussed earlier, bird sounds can be of call or song type,
and both vary from species to species. Both types of sounds
are useful for species identification. To automatically identify
species based on these calls or songs, a wide variety of
sophisticated approaches have been proposed in the literature.
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These are discussed below, based on the type of algorithm
used.

A. NEURAL NETWORKS
Bird vocalization hierarchies can be divided into notes,
syllables, phrases and calls. Among these, syllables (sets of
notes) are considered to be the best for bird species recogni-
tion, as phrases and calls have more variation by region and
individuals. To work on such syllables, Selouani et al. [36]
developed a model with a combination of time delay neural
networks and an autoregressive (AR) version of the back
propagation algorithm. This combination increases context
memorization capability and pattern matching capacity. For
this combination model, during training, a multilayer percep-
tron is trained on sounds using standard back propagation
techniques. Training is iteratively repeated until the error
reaches a value which is less than a user-specified threshold.
When used for prediction, a value of zero indicates no match
while 1 indicates a strong match against the training data.
Though recurrent networks perform quite well, to overcome
difficulties when events are time shifted, a delay component
is introduced to the network, which enhances its pattern
recognition capacity even when encountering misalignments.
Results demonstrated 83% accuracy with 16% of improve-
ment over a base ANN system. However, this method had
trouble processing large datasets. Seeking to address issues
of scalability, Deecke et al. [68] developed a classification
model that applies dynamic time-warping and an adaptive
resonance theory (ART) neural network to categorize dol-
phins. This method classified the species as well as humans
and was found to be effective in the case of large dataset
analysis.

Juang and Chen [69] mentioned that bird sounds fol-
low temporal patterns, which indicates the output not only
depends on present input but also on past and future inputs.
In such cases, rather than simply applying a back propagation
feed forward neural network which increases the delay in
input, creating a large network, it is advantageous to use a
recurrent network. Towards this direction, Juang and Chen
proposed a prediction based singleton-type recurrent fuzzy
neural network model to address scaling and complexity
issues. To apply the model data are gathered and syllables
extracted. LPC is applied to calculate 12 coefficients. These
12 features are used to train a singleton-type recurrent fuzzy
neural network, which achieved a high recognition rate.

Cai et al. [23] investigated bird species recognition with
different set of features and pre-processing methods using
neural networks. The authors established sensor networks
to record sounds and images. They employed voice activity
detectors (VAD) to estimate the noise level from noise-only
frames, although these VADs may not work well with signals
having low SNR. Hence, they developed a noise reduction
algorithm. Using the output of this noise reduction algorithm,
MFCC features are extracted. Tomodel changes, deltaMFCC
features and delta-delta MFCC features were used in com-
bination with time delay neural networks, which combine

information both from past and current frames. Thirteen
dimensional MFCC and 13 dynamic features are input to
Time delay Neural Networks. Their results demonstrated
98.7% accuracy.

McIlraith and Card [70] tested classification of birds using
a back propagation and multivariate statistics method. Ini-
tially, a windowed Fourier analysis was applied to acquire
time frequency representation of the signal. Further, as a part
of pre-processing, using power spectral densities statistical
estimates of the spectrum are obtained and linear predictive
coding (source-filter model) is applied. Data dimensional-
ity was reduced using a discriminant analysis technique.
To extract spectral features, a fast Fourier transform was
applied to LPC wave forms. Next, a back propagation clas-
sifier with 10 inputs, 12 hidden nodes, and six outputs is
applied. As a secondmethod, after parsing and normalization,
ANOVA is applied. Overall, the authors found that this
combination of pre-processing and statistical methods helped
in feature refinement and that the back propagation method
can trade-off accuracy for computational efficiency.

In summary, machine learning techniques applied to bioa-
coustic data have been used extensively by ecologists. The
reader is also referred to the 2008 review of machine learning
applied to ecology in general by Olden et al. [71].

B. DEEP LEARNING METHODS
A relatively recent extension to ANN techniques are deep
learning methods, which can be superior in identifying latent
features in a dataset, and which have been proposed as suit-
able for large bioacoustics datasets [72].

Fazekas et al. [73] has developed a deep learning based
model for bird song identification. The input data for this
model is two-fold: data collected from habitats as well as
and its meta data. To clean the acoustic data and separate
noise, several pre-processing steps are applied. The cleaned
data is fed into a convolution neural network with four layers.
The authors concluded that frequency features aremore easily
distinguishable than time features.

Sankupellay and Konovalov [74] have used a 50 layer
neural network named ResNet-50 which is a deep learning
approach used in residual learning. The authors concluded
thatmodel was able to achieve good accuracy for shorter input
calls. Xia et al. [75] presented a survey outlining various deep
learning based acoustic event detection studies.

C. PROBABLISTIC MODELS
Trawicki et al. [29] developed a model to assist in identify-
ing species decline by using HMM and MFCC. The model
is trained on data representing 115 species. Syllables are
extracted and joined together to generate multiple song types,
then divided into frames (of 25 ms size and 10 ms step
size). Using frames with a hamming window, fast Fourier
transforms(FFT) are computed. FFT is fed to filter bank to
obtain log amplitudes. These are used to compute 12 MFCCs
using a discrete cosine transform (DCT). To these MFCCs,
delta coefficients and log energy are also added as features.
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With this feature vector, the HMM was used for speaker
identification comprising states, transitions and output like-
lihood through use of a GMM. Results indicated 83% to 95%
accuracy in classification.

Many of the methods consider only a particular type of
song. Similar to text independent recognition in humans,
Fox et al. [32] developed a call independent identifica-
tion method for birds. Recordings and divided into frames,
then multiplied by a Hamming window. To these windowed
frames, a Fourier transform is applied and multiplied by a
mel-scale filter bank. To convert the filter bank energies to the
cepstral domain, a DCT is applied. This generates the feature
set. Once the classifier is trained with known signals, it is
used to analyze the features from unknown signals to obtain a
similarity score for identifying classes. Results indicate 67%
to 97% accuracy. Cheng et al. [31] has also worked on a call
independent recognition system using MFCC and Gaussian
Mixture Models (GMM) for classification of passerine bird
species. The GMM enables representation of bird-dependent
spectral shapes and supports modeling any arbitrary densities.

Somervuo et al. [37] names syllables as ‘‘an orga-
nized sequence of brief sounds from a species-specific
vocabulary’’. Feature extraction from these syllables is crit-
ical and at the same time forms the basis for classification.
The authors compared three of the best parametric models,
sinusoidalmodelling, amel-cepstrummodel and a descriptive
parameters model, to determine which provides superior fea-
tures for classification. Initially, the recording data is divided
into syllables using an iterative time-domain algorithm.Using
a threshold, syllables that are 15 ms apart are grouped
together, forming segmented regions. The segmented regions
are parameterized using the three models. In the sinusoidal
model, the analysis-by-synthesis method is used for param-
eter estimation to find the most significant frequency per
frame. A frequency domain algorithm is also used to obtain
the phase andmagnitude of the sinusoidal pulse. Each leading
sinusoid is analysed for harmonic structure by dividing into
four classes. As the result of sinusoidal modelling, a sequence
of triplets and the four harmonic classes are produced.
However one issue observed with this model is that it resulted
in a relatively large number of parameters, so DCT was then
applied to reduce the number of parameters. The second
model, a mel-cepstrum model, involves applying DCT to
logarithmic mel-spectrum features to reduce dimensionality.
However, the computedMFCC feature vector in this casemay
miss pitch information. This lost information can be obtained
by the third method, which is descriptive parameters model.
Seven spectral and five temporal features are identified by
this method. Dynamic time wraping is applied to calculate
the distances between syllables. To model probability density
functions, GMMs were used and trained using the standard
expectation maximization algorithm. Results indicated that
the best model is MFCC combined with dynamic time warp-
ing. The optimal feature set can be obtained by combination
of MFCC with descriptive parameters.

Lee et al. [76] proposed a two-dimensional MFCC model
which collects both static and dynamic features. Instanta-
neous cepstrum represents static features, while temporal
variations represent dynamic features. Static features are
acquired by applying a 2D-DCT to logarithmic energies
of Mel-scale bandpass filters to obtain a matrix. The first
15 rows and the first five columns of the matrix are chosen
as preliminary sound features of a syllable, making 74 coef-
ficients in total. Dynamic features are also obtained in a
similar manner. These two types of features are combined
to obtain a large vector. The feature vector is normalized,
and then further PCA is applied for dimensionality reduc-
tion. To increase accuracy of feature vector, prototype vec-
tors are generated using vector quantization (VQ) and a
Gaussian mixture model. To improve further the discrim-
inability between various brid species, linear discriminant
analysis (LDA) was employed. A nearest neighbour classifier
is used for classification, with 84% classification accuracy.

D. NAIVE BAYES AND DECISION TREES
Bayesian techniques have been used to investigate a variety
of ecological phenomena [77]. Vaca-Castano and Rodriguez
[78] developed a database model of features that can save
information as attributes and entities from various sources,
which can be useful for later analyses. However, several
analysis tools produce a huge number of attributes from
the acoustic signal. In resource-constrained applications such
as bird species identification using sensor networks, ascer-
taining the most important attributes plays a major role.
Vilches et al. [79] has explored the use of data mining tech-
niques to the problem of attribute dimensionality reduction
in the case of bird species recognition. Three algorithms such
as Decision tree based ID3 and J4.8, the probabilistic classi-
fier naive bayes and vector quantization were applied to the
dataset. In the first step, vector quantization is applied, which
will convert a numeric vector to quantized vector values. The
quantization calculates three values such as two intermediate
vectors, partition and codebook. As a next step ID3, a deci-
sion tree algorithm is applied to the quantized data which
calculates the attributes’ entropy. In the resultant decision
tree, the most significant attributes (leaves) are used for bird
classification. This is applied in the J4.8 algorithm to gain the
advantages of reduced error pruning and numeric data han-
dling. The extracted attributes are then fed into a Naive Bayes
classifier to overcome some drawbacks of decision trees (they
may be unstable or complex). Results indicated that J4.8 algo-
rithm is accurate up to 98.39% while Naive Bayes have given
slightly better performance on reduced datasets (when the
number of attributes is reduced from 71 to 47).

E. HIERARCHICAL CLASSIFICATION
Silla and Kaestner [80] discussed the relatively new method
of hierarchical classification of bird species from acoustic
data. A dataset from the xeno-canto library was used. For
feature extraction, they used the MARSYAS framework,
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producing 64 features. Hierarchical classification can be
achieved using three approaches, a flat classification
approach, a local model hierarchical classification approach
(each non-leaf node trained and top down classification), and
a global model hierarchical classification approach (which
predicts class in hierarchy levels). In this work, the global
model hierarchical classification approach was based on
Naive Bayes. Hierarchical precision, hierarchical recall and
the hierarchical F-measure were used as evaluation metrics.
The hierarchical F-measure obtained from the experiments
indicated that this approach outperforms flat and local models
and was found to be useful when class counts are high and if
class hierarchy exists.

Signal detection (feature extraction) and signal character-
ization (classification) are the two major activities of the
species identification. Acevedo et al. [81] focused on signal
characterization, for which they considered three supervised
machine learning algorithms, linear discriminant analysis
(LDA), decision tree and SVM. A dataset of 10,061 calls
were used. LDA assumes features vectors of a class follow
a Gaussian distribution. Decision trees iteratively partition
until a condition is met and each partition represents a class.
Further pruning is applied to avoid over fitting. SVM opti-
mizes training and function complexity. Results indicate that
SVM achieved 94.5% accuracy while decision trees and LDA
achieved 89% and 71% accuracies respectively.

Many classification approaches implicitly make the sim-
plifying assumption that only a single species is present in a
recording (requiring multiple passes with different classifiers
to identify all species present). Briggs et al. [43] developed a
multi-instance multi label (MIML) supervised classification
framework, which predicts multiple species present in a
recording in a single analysis pass. In MIML, the classi-
fied objects constitute bags (audio recordings) of instances
(syllables) and class labels (set of species). A bag generator
algorithm converts the recording into a bag of instances.
Random forest is used for segmentation. TheMIML classifier
is applied to identify the species in the recording using
three underlying classification algorithms: MIMLSVM,
MIMLRBF and MIMLkNN. Experiments demonstrated
96% accuracy. Further in [82], Briggs et al. discussed more
sophisticated methods for detection and classification of
multiple species in noisy environment.

Stowell and Plumbley [83] experimented with unsuper-
vised feature learning as a surrogate to MFCC. Usually,
MFCC features are obtained by applying short-time Fourier
to audio, producing a Mel Spectrum which is transformed
using cepstral analysis and preserving the last 13 coeffi-
cients. Rather than transformation, Stowell and Plumbley
proposed automatic feature learning. For feature learning,
initially a high pass filter and normalization are applied to
spectrograms. Further spectral median noise reduction is per-
formed. Subsequently, features are derived from the dataset
using PCA. For feature learning, spherical k-means is used.
To reduce the feature set further, mean and standard deviation,
or maximum of each feature is tested. The authors used the

random forest classifier. They observed that feature learning
boosted performance, especially for single-label classifica-
tion tasks, but for datasets with few annotations, the perfor-
mance of this model is not promising.

F. METHOD COMPARISON WORKS
A common approach in audio classification is to use the
average value of features calculated across several frames
of the source audio. This approach was used by the SVM
approach of Fagerlund [84]. In contrast, Briggs et al. [46] rep-
resented audio features using histograms, as in the codebook
approach, instead of averaged frame level features. A code-
book is collection of ‘‘words’’ where each word is a feature
vector. The experiment was conducted by segmenting the
signal into frames and applying noise reduction. Frames of
interest were identified and only 10% with the highest mag-
nitude retained. Then MFCCs are calculated and histograms
constructed, resulting in a 5000 dimensional feature vector.
The codebook is constructed using the k-means clustering
algorithm. Several frame-level features are aggregated and
applied with the classifiers nearest neighbour (with L1, L2,
KL (Kullback-Leibler divergence) and Hellinger distances),
Interval-IID MAP classifier, and SVMs. The interval-IID
model was proposed by those authors to model feature
dissemination, subsequently obtaining a MAP classifier.
This classifier aggregates histograms of features and uses
the KL-nearest neighbour algorithm for classification. The
study indicated that frame histograms are better than average
frame level features, nearest neighbour classifiers using KL
and Hellinger distances outperformed SVM and rather than
Euclidean distances, the KL and Hellinger distances metrics
are appropriate for histograms.

Kampichler et al. [85] experimented with several clas-
sification algorithms including decision trees, ANN, SVM,
random forest and fuzzy classifiers. Ocellated Turkey bird
acoustics were chosen as the dataset for these five techniques.
They concluded that the performance of neural networks,
LDA and SVMwas poor, while the joint use of decision trees
and random forest is highly recommended to achieve a high
level of accuracy, transparency and comprehensibility.

Lopes et al. [48] has also emphasised that the choice of
machine learning algorithm and features plays a major role in
classification performance. The authors used the MARSYAS
framework to produce feature sets, which are mostly used
in automated music genre classification problems. The fea-
ture set has 64 features which comprise 12 MFCCs, and
means and variances of timbral features. In comparison with
Inset-Onset Interval Histogram Coefficients (IOIHC) and the
sound ruler feature sets, the authors claim that theMARSYAS
feature set’s performance is better [86]. Several classifiers
were trained and tested using these features: Naive Bayes;
k-NN with three clusters; the decision tree classifier J4.8;
an MLP neural network trained with the back-propagation
momentum algorithm; and the SVM classifier using the
Platts Sequential Minimization Algorithm (SMO) imple-
mentation. Results indicated that, rather than using full bird
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TABLE 1. Summary of articles addressing bird species identification.

song recordings, the use of pulses (sounds with high ampli-
tudes) significantly increases classification performance.
Using these pulses, the best results are obtained with a
multi-layer perceptron classifier and SMO classifier, with up
to 95% accuracy.

Most of the research in species identification is call depen-
dent. Cheng et al. [87] developed call independent identifi-
cation of 10 passerine species using four machine learning
methods, radial basis function networks (RBFN, a special
kind of ANN), SVM, HMM and GMM. For these models,
MFCCs and Linear Predictive Coefficients (LPCs) are chosen
as feature sets. One feature vector per frame was extracted,
which contains 13 LPCs and 24 MFCCs. Using these fea-
tures, training and test data were prepared separately for the
species identification purpose. They concluded that the LPC
feature set with HMM classifier and MFCCs feature set with
SVM were the best combinations.

Table 1 summarizes the discussion on bird species
identification.

VII. OTHER ANIMAL IDENTIFICATION METHODS
While a major target for bioacoustics analysis is birds, many
other animals emit identifiable sounds and have been the
subject of bioacoustics-based ecological studies. This section
summarizes such research on bats, cetaceans, terrestrial,
ground-based animals, and insects.

A. BATS
1) MULTIVARIATE ANALYSIS TECHNIQUE
Vaughan et al. [88] used multivariate analysis of echolocation
call parameters to identify bat species. Echolocation calls
of around 536 bats were recorded from 15 known species
in Great Britain. The recorded sounds were analysed using
sonographs. From each sequence of calls, either the second
or, i nthe case of noisy data, penultimate call was used.
Calls were characterised by six features: duration, interpulse
interval, peak, start, end and centre frequencies. Multivariate
analysis was used, demonstrating good results. The authors
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concluded that, of the six features, the most informative
are the duration, start and end frequencies. In related work,
O’Farrell et al. [89] devised a qualitative identification
approach using critical call parameters max and min frequen-
cies, linearity, and slope. In a given time pass duration, each
individual bat may make series of calls which is referred to
as a sequence. The approach begins by establishing a library
of recordings of known species. New, unidentified calls are
compared with these archived calls visually using the min and
max frequencies to qualitatively classify bats. The quality of
the method depends on the library of identified recordings
and visualization expertise of a human operator.

2) PATTERN RECOGNITION APPROACH USING SYNERGETIC
CLASSIFIER
Within any species there will be call variation between indi-
viduals [90]. To address this, Obrist et al. [91] developed
a pattern recognition approach using a synergetic classifier.
Variation between individuals may mean that individuals
of one species are misclassified as another when visually
inspecting spectrograms of their calls. This is because spec-
trograms show characteristics in the form of frequency curve.
This shape or curve may be better analysed by pattern recog-
nition software to classify the signals. Using standard equip-
ment, 643 sequences of calls were recorded and a high pass
filter applied to cut single echolocation calls, with additional
processing to identify the cleanest calls producing 14354 calls
suitable for analysis. Calls were characterized by duration,
high and low frequencies with the help of a discriminant func-
tion. The discriminant function is repeated for various per-
centages and these values are transformed for comparisons.
Next synergetic algorithm is implemented which combines a
class of training patterns in to a feature vector, allowing it to
handle high dimensions. A training base was established by
selecting 20 calls from each of 26 species and testing on the
database. The database was successively refined, then within
species variability was tested using coefficients of variation.
Discriminant Function Analysis (DFA) is used to explore
the classification strength. Finally, the authors concluded that
this method has the strength of processing huge data sets in
addition to classification accuracy and trustworthiness.

3) DISCRIMINANT FUNCTION ANALYSIS (DFA)
Hughes et al. [92] tested the robustness of DFA on identifying
Thai bat species. Recordings were made of free flying bats
and spectrograms created to extract call structure informa-
tion. Calls were divided into four categories based on their
structure: broadband FM calls, narrowband FM calls, long
multiharmonic calls and short multiharmonic calls. One call
from each individual is considered for analysis with 10 fea-
tures calculated: duration, frequency of maximum energy,
start, end, max, and min frequencies, frequency range, num-
ber of harmonics, interharmonic distance, and pulse interval.
The DFA technique with cross-validation was applied to clas-
sify the species. For calls in the broadband FM category, DFA
achieved an accuracy up to 85.9%, while it achieved 70.4%

for those in the narrowband FM category. For long harmonic
calls DFA shows 84.4% accuracy, and 96.7% classification
accuracy in the case of short harmonic calls. Hence for all
call types DFA resulted in greater than 70% classification
accuracy.

4) ARTIFICIAL NEURAL NETWORKS (ANN)
Although the DFA method has become a highly trusted
approach for classification of bat species, other machine
learning algorithms have also been used. Preatoni et al. [93]
evaluated four different classification methods (DFA, clus-
ter analysis, CART, and ANN) by collecting 3-second call
sequences from 126 bats. Noise is eliminated by digital fil-
tering and the cleanest ultrasonic clicks extracted. Each click
was characterised by its pulse duration, max intensity fre-
quency, and start, end, middle, min and max frequencies. Due
to multicollinearity, only four features—duration, min and
max frequencies, and frequency of maximum intensity— are
considered for DFA and cluster analysis methods whereas all
the seven parameters were used for ANN and CART. evaluate
performance of networks during training. After comparison
of the four methods, the authors concluded that DFA and
ANN performed well, while cluster analysis was poor for
classification. CART had only moderate success separating
the classes.

Jennings et al. [94] has conducted an experiment to eval-
uate the classification of bats by humans and an ANN.
Recordings of 3–4 calls of 16 species were made. The
recordings were given to 26 human participants working
on bats (academicians, researchers, ecologists). They were
asked to classify the calls using any method except statistical
modelling. If a species is identified correctly, a score of 1 is
assigned. On the other hand, from the same recorded calls
dataset, several frequency parameters are measured and are
fed into an ANN. Classification performance was assessed
using sensitivity (% of known calls classified) and positive
predictive power (% of unknown calls classified). Results
indicated that the ANN performed 75% better than humans.
The authors concluded that by improving the ANN and
training data, this can be further improved.

Apart from DFA and ANN methods, support vector
machines (SVMs) have also been used in the classification
of bat species by Redgwell et al. [95]. The authors also
tested ensemble neural networks (ENN) while keeping DFA
as a canonical approach against which to measure perfor-
mance. The experiment commenced by procuring a library
of 713 calls from 14 species. A Butterworth high pass filter
was used to remove noise and improve the signal. An algo-
rithm fromMATLAB was used for call extraction which will
iteratively run until it finds a frequency with highest energy
with 8 kHz difference from previous repetition or average
signal to noise ratio (SNR) exceeds 0.01. Twelve parameters
were extracted from each call. Five are considered to be ‘‘base
parameters’’: duration, start frequency, end frequency, middle
frequency and max energy frequency. The sixth and seventh
are rate of change and bandwidthmeasurements, respectively.
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TABLE 2. Summary of articles addressing bat species identification.

To obtain the next four parameters, each call was exposed
to a Hilbert transform and multiplying by its conjugate to
obtain the call’s energy distribution. The 12th parameter is a
discrete variable that divides calls into various categories such
as constant frequency, frequency modulated, quasi constant
frequency and kinkled (calls with unexpected weakness of
frequency in last quarter). Untransformed data is used by
DFA since it is robust to normality deviation. DFA showed
73% accuracy in species classification. Twenty SVMs were
trained using a radial function with the step-varying range.
All the classifiers were combined to identify calls, with
the combined SVMs achieving 87% classification accuracy.
The ENN approach achieved 98% accuracy. The authors
concluded that SVM and ENN performed better than DFA
and also that the five base parameters are most critical for
classification.

Some research-based analysis techniques have been trans-
formed into end-user tools. For instance, Walters et al. [96]
developed an ANN based continental scale tool iBatsID,
which assists in classifying any European bat calls, achieving
93% of group classification and 83% of species classification.
This tool was made publicly available for monitoring bat
acoustics in Europe.

In conclusion, for acoustic based bat species classification,
methods such as DFA, SVM, and ANN have been extensively
used. A summary is presented in Table 2.

B. OTHER TERRESTRIAL ANIMALS
1) FROGS
Bedoya et al. [30] has pointed out that acoustic-based iden-
tification of species has the advantage of being non-invasive,
with advantages over marking procedures which may harm
animals, particularly sensitive species. They used an unsuper-
vised classification for anurans based on a fuzzy classifier and
MFCCs. Datasets from two different sources were collected
with 916 calls from 13 anuran species (from STRI) and
813 calls from 6 anuran species (from Antioquia) considered
for analysis. The authors developed a four stage classification
methodology:

1) Noise reduction: Threshold estimation is performed to
identify noisy segments. A Fast Fourier transform FFT)
is applied on the windows of noisy segments, which
gives a threshold estimate. During noise removal,
the gain control is set to be in the limits of this thresh-
old value. These gain controls are applied to the FFT,
followed by an inverse FFT and finally a hamming
window, which optimizes the signals.

2) Segmentation: The noise-reduced signal is divided into
segments for easier analysis. A syllable of fixed length
is formed, which is product of individual vocalizations.
The start and end points of the calls are identified in
comparison with the threshold value.
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TABLE 3. Summary of articles addressing frog species identification.

3) Feature extraction: The syllables are divided into
frames. A Fourier transform is calculated for each
frame to identify interesting frequency bands in the
frame and to calculate the power spectrum, which
is mapped to the mel frequency scale, from which
MFCCs are calculated. The mean values of the MFCCs
are used as the classification inputs.

4) Classification: The author’s Learning Algorithm for
Multivariate Data Analysis (LAMDA) is used, initial-
izing cluster 0 as a non-information cluster (NIC). The
first element goes unrecognized and is put into this
NIC. A new cluster is created by calculating the mean
and Global Adequacy Degree (GAD) values of the call.
This process is repeated until all calls are analysed.
To classify an unknown call, the GAD is calculated
and the call is assigned to the species that exhibits the
maximum GAD.

Results demonstrated 99% of accuracy in classification.
Further this method is able to detect different species even
they are not present in training stage.

Han et al. [34] introduced a spectral entropy approach
for frog species identification. The method consists of the
following three steps:

1) Syllable segmentation: Using the Raven software pack-
age (see Section VIII-A.2), syllables are extracted and
digitized. From 12 to 96 syllables can be extracted from
a call of 3 seconds duration.

2) Feature extraction: Three different features are
extracted from syllables:

• Spectral centroid: A highly informative feature for
machine learning representing the center point of
the spectrum where the sound is ‘‘bright’’.

• Shannon entropy: This quantifies the richness of
sound.

• Renyi entropy: It is used to identify the complexity
of the sound, i.e., to identify the noise content.

3) Classification: The above entropies are given as input
to a k-Nearest Neighbor classifier.

Results demonstrated that the use of entropy in the classi-
fier has improved the accuracy.

Dayou et al. [35] also studied the use of an entropy-based
approach for frog species identification. The work applied a
k-NN classifier using Shannon entropy, Renyi entropy and
Tsallis entropy as the features. The approach achieved 100%
classification accuracy for seven species out of the nine
present in their dataset.

Xie et al. [97] developed models to recognise different
calls within four frog species. Their work sought to select
suitable acoustic features for identifying the likely species
and a potentially different set of features for identifying the
calls within a species. The technique achieved an average
accuracy of 84% at the species level and just below that when
identifying calls. By combining the two approaches accuracy
up to 93% could be achieved.

Table 3 summarizes frog species identification works.

2) DOGS
Bioacoustics relating to dogs has focused on identifying the
state of the animal or situation they are in.

Yin and McCowan [98] analysed dog barks to examine
classification in different contexts. Ten dogs ranging from 3 to
13 years of age, of both sexes, were considered for analysis.
Recordings were made in disturbance, isolation and playing
situations. Only 5% of the collected data was identified as
noise and the remaining 95% used for analysis. Sixty fre-
quency and 60 amplitudemeasures were taken, with a number
of features derived from these. Spectrograms were gener-
ated using FFTs with a hamming window. To discriminate
between different barks in several contexts DFA was used,
producing a set of features useful for classification. Results
indicated good recognition and classification accuracy.

Riede et al. [12] has also studied dog barking. They con-
sidered two dog categories, with a dataset comprising 10 dogs
in good health and 10 dogs in unhealthy condition (e.g.,
undergoing treatment in a veterinary clinic). Barks of the dogs
in these two different contexts were recorded. To identify the
differences in the acoustics, harmonic to noise ratio (HNR)
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TABLE 4. Summary of articles addressing dog species identification.

TABLE 5. Summary of articles addressing insect species identification.

was calculated. The harmonics of healthy dogs’ barks shows
them to be regular, while the barks of unhealthy dogs are
irregular. Due to illness, some noise will be introduced which
also influences the acoustics. Recordings of all dogs over
a 6-month period was used. The authors concluded that
HNR-based classification is a good measure for quantifying
noise in bioacoustics in the context of dogs. Table 4 summa-
rizes dog species identification works.

3) ELEPHANTS
Clemins et al. [99] has made a study of one male and six
female African elephants. Data were collected by fitting each
animal with a microphone and radio frequency transmitter.
Acoustic features are extracted from spectrograms using a
hamming window. A 60 ms window is used for call classi-
fication and 300 ms window is used for speaker identifica-
tion. To model transitions, a Hidden Markov Model is used.
For classifying vocalization type, the Hidden Markov Model
performed as well as humans. Further, speaker identification
was performed in different contexts, one where the male was
isolated from the females, and another was when the male
waswith four other elephants. The accuracy of the experiment
was 82.5%.

4) INSECTS
Acoustics have also been used to study insects.
Chesmore and Nellenbach [100] identified an automatic
method for identification of grasshoppers and crickets. Using
time domain signal processing and an ANN, they demon-
strated 100% classification accuracy, and claimed that the
approach can be used for other species as well.

Potamitis et al. [101] has highlighted that insects can be
categorized based on their appearance and sound production.
Trapping and identifying insects through appearance is diffi-
cult. Hence several forms of soundsmade by insects in several
instances such as eating, flying or locomotion can be used
as a means of communication. The sounds produced include
mating calls or sounds to warn others of danger. Species
recognition is done in a two-step process:

1) Signal parameterization: the energy of fixed length
frames is estimated, and then a discrete Fourier trans-
form is applied. A linearly spaced filter bank is applied
to the DFT and linear frequency cepstral coefficients
are calculated. The first 24 of these are used for recog-
nition. On all feature vectors dynamic normalization is
applied.

2) Classification: These normalized features are used with
probabilistic neural networks (PNN) and Gaussian
mixture models (GMM) classifiers. For each target
species, a model is built. The Bayesian rule is applied
to finalize the class of the target predicted.

The models’ accuracy was 90–99%. Table 5 summarizes
works on insect species identification.

C. CETACEANS
Cetaceans includes whales, dolphins and related species.
Soon after the SecondWorldWar it was identified that acous-
tics could be used with these for different kinds of analy-
sis. By the 1970s the potential for species recognition was
known, but could not proceed due to technology limitations.
Advances in the digital technologies have paved the way for
cetacean species identification using acoustics [102].

1) STATISTICAL METHODS
DFA has been applied by Oswald et al. [103] to identify
dolphin species. Whistles from four species were collected
and only loud and clear whistles of nine decibels more
than background noise were chosen randomly for analy-
sis. Four different spectrograms with variable frequencies
were created and eight measures extracted: start, end, min
and max frequencies, duration, infection points, number of
steps, and a harmonics indicator. Taking these measures as
input, a DFA based on orthogonal linear functions classi-
fied to specified groups. Results indicated that, although
the DFA classified accurately, recording quality and analy-
sis bandwidth greatly influence the effectiveness of species
classification. The authors concluded that a bandwidth of
not less than 24 kHz is needed for accurate analysis and
classification.
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TABLE 6. Summary of articles addressing cetacean species identification.

2) REAL-TIME ODONTOCETE CALL CLASSIFICATION
ALGORITHM (ROCCA)
Several large species like whales produce whistles that
can be easily identified, but to recognize whistles of
species like delphinds is more challenging. To address
this, Oswald et al. [104] developed a tool named ROCCA
(Real-time Odontocete Call Classification Algorithm) which
classifies the species in real time. From the recordings,
50% (35 whistles per session) of whistles that were loud and
clear were randomly selected. As in their previous work start,
end, min and max frequencies, duration, infection points,
number of steps, and a harmonics indicator were used as fea-
tures, supplemented by slope of beginning and end sweeps.
After normality tests and transformation, DFA was applied
to these measures to classify them. Mahalanobis distance is
calculated to identify the group centroid. Another classifica-
tion method, CART, which creates a binary tree, was also
applied. The jackknife method was used to obtain classifica-
tion scores. DFA showed up to 63.5% accuracy while CART
gave 57% accuracy.

3) GAUSSIAN MIXTURE MODEL (GMM))
Roch et al. [105] used a Gaussian mixture model for species
classification using the common analysis pattern of collec-
tion of the call data, call detection, feature extraction and
finally classification steps. Recordings were obtained from
the California coastline. Single species calls only were kept
for further analysis. Using spectrograms, calls’ start and end
points were identified, and calls with good quality and above
18 dB, were considered for analysis. The identified calls are
divided into frames of size 21 ms and a hamming window
applied. A filter was applied to identify the poor calls below
5 kHz. To derive the classification features, cepstral features
were identified by applying the discrete cosine transform on
the filter. Since it is difficult to assess the values of a GMM,
an initial Gaussian classifier was initialized using mean and
covariance values. An iterative algorithm was applied which
splits each single mixture into two mixtures with an offset
value. The algorithm is iterated until the anticipated mixtures

are formed. Once the expectation is known with this algo-
rithm, the model is trained. Then the posterior probability of
each species was computed using Bayes’ rule. The posterior
values from each observation was summed up correctly to
identify the species. The model achieved up to 75% classifi-
cation accuracy. Table 6 summarizes the work on cetaceans.

From the studies summarised above (for birds, bats, other
terrestrial animals, and cetaceans) one can see that various
techniques have been used for different animal types, but with
some commonalities. These are summarised in Table 7.

VIII. BIOACOUSTICS SOFTWARE AND BIG DATA
A. SYSTEMS AND SOFTWARE
As discussed earlier, bioacoustics analysis involves several
activities such as data collection, visualization, pre-
processing, feature extraction and analysis. Due to their high
complexity, each activity requires support from sophisticated
software tools to enable automatic processing. Several orga-
nizations have developed software which to support some
or all of these activities. Initially we provide discussion
on general audio processing software and, in subsequent
sections, we discuss bioacoustics specific software and big
data handling systems.

1) GENERAL AUDIO PROCESSING SOFTWARE
Software such as Sound Ruler, Audacity and seewave are
designed for general audio processing purposes, but can also
used in bioacoustics work.

1) SoundRuler is free and open source interactive visual
tool to perform analysis tasks on acoustic data [106].
Bee [107] provides a comprehensive overview of
the software’s features and its operation. Its features
include handling unlimited size audio files, adjustable
filters, support for both manual and automatic analysis
and generation of more than 50 acoustic measures.
It can produce graphical summaries of acoustic data,
such as spectrograms and oscillograms.

2) Audacity is sound processing software developed at
Carnegie Mellon University by Dominic Mazzoni and
Roger Dannenberg in 2000. It facilitates multiple
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TABLE 7. Similar techniques applied to the study of different animal groups.

source recording and several post-processing activities.
It offers several features such as recording, editing,
importing and exporting, as well as support for multiple
channel modes, and spectrum analysis.

3) Seewave (typically rendered in all lower case) is an
R package (available through CRAN) for performing
sound analysis and synthesis. According to the see-
wave website [108], it offers a variety of functions for
analysis, display, manipulation, editing and synthesis
of audio. Further, this tool processes both 2D and 3D
spectrograms, computes entropy, correlation and sev-
eral other values.

2) BIOACOUSTICS SPECIFIC SOFTWARE
The software discussed below are specifically developed for
bioacoustics applications.

1) AviSoft-SASLab Pro is a tool for performing various
bioacoustics activities [109]. The software displays real
time spectrograms with high quality output. It offers
automated syllables classification with advanced meta-
data management capabilities. It is good platform for
managing large number of audio files and is suitable for
batch and real-time processing. It is available in both
freeware and proprietary versions.

2) Raven [110] is designed by the Cornell Lab of Ornithol-
ogy, which supports data uploading, visualization and
acoustic analysis. Raven Lite is a freeware version
that can used for research on birdsong recognition.
It possess several features such as annotations, detec-
tion, correlation, support for various data acquisition
software, multiple simultaneous windows and views,
support for multiple audio formats, editing, filtering
and amplifying facilities.

3) Kaleidoscope Pro [111] is produced by Wildlife
Acoustics, a manufacturer of field recorders, and offers
a variety of features, including detecting similar sounds
and identifying them as clusters, sound visualization,
and tools for editing and labelling, as well as intelligent
classifiers that can perform species recognition. It also
has support for batch processing and noise analysis.

4) Bioacoustic Workbench:Wimmer et al. [112] proposed
a web-based workbench to address issues associated
with the large volume of bioacoustics data being col-
lected. They developed a framework which facilitates
uploading, organisation and structure, visualization,
recording and analysis through annotation facilities.
Data upload is provided via a web service, which has
the advantages of ease of access and support for data
backup. Role-based access control mechanisms enable
small to large project groups to be managed. The play-
back and visualization components facilitate splitting
audio into segments. Users can perform manual analy-
sis throughmarking annotations and search the acoustic
database for matches.

5) Automated Remote Biodiversity Monitoring Network
(ARBIMON), developed by Aide et al. [113] is a
combination of research field project and web service
supporting data hosting and species identification. The
software component of the system generates spec-
trograms using short-time fourier transforms (STFT)
and Hann windows. Signals are further processed to
generate regions of interest. The interface for species
identification has four components: a visualizer for
inspection, listening and manual analysis; a species
validation component that allows the user to specify
the presence or absence of species vocalization in a
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recording; a model building component to train the
data using ROIs (using HMM); and a model applica-
tion component, which allows an entire dataset to be
processed with a previously creaed model.

6) Multi-layer framework model: Zhang et al. [114]
describe a big acoustic data management framework,
analysis and visualization tool. Data is collected from
sensors, recorders and handheld devices. This large
scale data collection is exposed to issues such as large
volume, and high variety and velocity. These three
issues are expected to grow further in future as the
monitoring and sensing area increases. To address
this, the authors presented a Multi-layer framework
model for acoustic data. The framework includes a
data collection layer and data management layer for
upload and management of audio, respectively. The
third layer offers event processing which performs
pre-processing, rapid scanning of spectrograms as dis-
cussed in Truskinger et al. [115] and identification of
events of interest. The fourth layer performs knowledge
discovery (data mining). The system offers visualiza-
tion using spectrograms, tag linking and 3D display.
The authors concluded that their future work will focus
on mining and extracting knowledge through tags, bird
acoustics correlation analysis, their behaviours with
respect to environment, time and location.

7) High Performance Computer Acoustic Data Acceler-
ator (HPC-ADA): Also with a view to addressing big
data issues in bioacoustics, Dugan et al. [116] proposed
HPC-ADA, which operates on cloud infrastructure.
authors designed software named Detection and Local-
ization using Machine learning Algorithms (DeLMA)
which can run across multiple cloud-based machines
and run a variety of actual machine learning tools.
Scalability is achieved by distribution of jobs, while
use of a generic data format supports interoperabil-
ity. MATLAB libraries are used in DeLMA to deal
with algorithms efficiently across distributed computer
architectures.

8) Finally, Reyes and Camargo [117] developed a pro-
totype system based on the use of visual analytics
to assists in tasks such as species identification. The
experiment initiated by collecting bird audio sounds
and extracting MFCC features. Further cosine distance
function is used to identify similarity between audio
records through its vector representations. To obtain a
2D representation and reduce dimensionalty, PCA is
used. Based on 2D visualization and distance matrix,
users can visually analyse bird species’ sounds.

B. BIG DATA HANDLING SOFTWARE
Bioacoustics data is growing, as the data is received from dif-
ferent sources at different rates resulting in the generation of a
massive volume of data. As a branch of ecology, bioacoustics
has the task of identifying species, performing density esti-
mation, tracking environmental changes, and so on, which

requires data to be gathered for a long time periods and at
appropriate, potentially huge scales. qualifies bioacoustics as
a big data challenge. Al-Jarrah et al. [118] pointed out that
current machine learning algorithms need to be scalable to
deal with big data challenges. They reviewed the current state
of research in sustainable data modelling such as ensemble
models, Bayes nonparametric learning models, local learning
strategy, semi-parametric approximation and deep learning
authors also discussed several batch and stream processing
big data computing methods. Their opinion was that these
sustainable data models are capable of handling huge vol-
umes of data with ease, in any field of science.

A number of research projects are working to address
the big data challenges in this field. Kelling et al. [119]
discussed the phases of a biodiversity research data science
workflow. Initially observation data collected from various
sources should be validated and organized. As an example
of observational data, the authors developed an avian knowl-
edge network containing 60 bird occurrences with descriptive
metadata. Since the observation data is from a diverse set
of sources and dispersed, a common data warehouse such as
birdmonitoring data exchange (BMDE)was developed. Then
analysis can be performed on such common data by using
bagged decision trees and several non-parametric tools.

Technology advances have enabled automated collection
of larger volumes of acoustic data, which presents challenges
for storage and organisation. Kasten et al. [120] developed an
ensemble extraction model from sensor data streams. To sup-
port online and incremental learning from the sensor steams
to detect bird species, the Multi-Element Self-Organizing
tree (MESO) memory system. After filtering and transfor-
mations, spectrograms are plotted to represent each seg-
ment. Piecewise aggregate approximation (PAA) was used
to decrease the dimensionality of the time series. Further,
symbolic aggregate approximation (SAX) converts the PAA
representation to symbols which helps in computing anomaly
score of the signal. On this, a distributed stream processing
pipeline named Dynamic River was created. Followed by
this, MESO is used for classification and detection. A trained
MESO instance returns either an exact matching pattern
or similar pattern. The authors stated that the classification
accuracies are promising. For these experiments, ensembles
are extracted from data streams comprising a single signal.
Ensembles extraction from multiple correlated data streams
is left as future work.

Truskinger et al. [67] have presented their applied research
on managing and analysing huge raw audio datasets. Their
core contribution lies in the presentation of analysis method-
ologies for practical large scale acoustic data. authors catego-
rized automated analysis activities into two broad groups. The
first group comprises event detectors, which work on spectral
components to identify regions of interest. The second group
are acoustic indices, which calculate summary statistics of an
audio stream. Initial exploration of results was performed in
R, which was then transcoded to C#. Currently the project is
migrated to cloud and their future work aims at developing a
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scalable architecture, enhancing analysis functions and spec-
trogram generation.

Dugan et al. [121] has developed an efficient and scal-
able algorithm for data processing. The acoustic data-mining
accelerator (ADA) algorithm uses distributed computing con-
cepts, where sound is partitioned into blocks and each block
is assigned to one worker. All results from the workers are
collected and merged to provide analytical results. results
demonstrated two times improvement in execution speeds.
The authors’ future work aims at working on multi-channel
and multi-rate data.

IX. OPEN CHALLENGES
Even though there has been lot of work to address issues in
analyzing bioacoustics data, there remain several open issues
that have to be tackled before developing a fully automated
analytical system.

1) Adverse environmental conditions: Animal recordings
are obtained directly from their habitats and fields
and, as such, are subject to environmental conditions.
For instance, it is very common that wind, rain or
sounds of aircraft will be also recorded. Several works
point out that this can hamper classification accu-
racy. Consequently there is a need for the develop-
ment of effective pre-processing, feature extraction
and classification methods that are robust to such
interference.

2) Automatic selection of detectors: In general bioacous-
tics algorithms need to work in diverse and changing
natural environments. Future bioacoustics analysis sys-
tems should be capable of automatically tuning based
on these changes. This will also require data mining
algorithms that are robust enough to detect changes
and adapt the models accordingly. For example, deep
learning and meta-algorithms need to be developed to
automate detector selection for different weather con-
ditions [122].

3) Acoustic index optimization: The space of alternative
acoustic indices should be more widely examined,
including their use as features in machine learning
algorithms.When indices are calculated independently,
biased sampling is another option to be explored [61].
Moreover, most current indices, even though they have
wide applicability, also need to be specifically made
applicable for a given context. In other words, new
indices are needed that integrate the characteristics of
the surrounding environment where the audio was cap-
tured or prior knowledge of the species found in that
environment.

4) Call interference: Most classification methods that
are applied for recognizing bird species are based on
how precisely they can differentiate between different
acoustic signals. Interference between different bird
calls can make this difficult and can severely affect the
accuracy of automatic recognition methods. Hence it is
still a major challenge in the domain of bioacoustics.

5) Multiple species recognition: In a recording there may
be several species present apart from noise. But classi-
ficationmethods typically assume that only one species
is present in a segment of a recording [43]. The domain
of multiple species detection should be explored by
developing scalable models that can detect a set of all
species present in a recording simultaneously.

6) Scalable, streaming data analysis:There is much scope
for improvement in algorithms for efficient species
detection from large scale multiple datasets. Current
techniques are mostly tested with small datasets at
a time, yet given the large scale deployment of the
recorders processing algorithms should be scalable.
Techniques for analysing multiple correlated data
streams (from spatially-related recordings) are also an
open area of research.

X. CONCLUSION
Modern bioacoustics has a nearly 70-year history, and has
grown considerably in recent decades with advances in pro-
cessing techniques and hardware. Most current bioacous-
tics research focuses on the application areas of biodiversity
assessment using statistical techniques and acoustic indices,
density estimation, using statistical analysis of detected calls,
and species identification, using a variety of machine learning
techniques. Growth in the use of acoustic monitoring has
led to commensurate growth in the amount of raw audio
needing to be analysed, necessitating the use of distributed
computing tools, although the application of these tools in the
bioacoustics domain is somewhat in its infancy. This review
has identified a number of targets for future bioacoustics
research.
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