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ABSTRACT We investigate the initial boundary value problem for the Gamma equation transformed
from the nonlinear Black-Scholes equation for pricing option to a quasilinear parabolic equation of second
derivative. Furthermore, two-side estimates for the exact solution are also provided. By using regularization
principle, the unconditionally monotone second order approximation finite-difference scheme on uniform
and nonuniform grids is generalized, in that the maximum principle is satisfied without depending on
relations of the coefficients and grid parameters. By using the difference maximum principle, we acquired
two-side estimates for difference solution for the arbitrary non-sign-constant input data. Finally, we also
provide a proof for a priori estimate. It can be confirmed that the two-side estimates for difference solution
are completely consistent with the differential problem. Otherwise, the maximal and minimal values of the
difference solution is independent from the diffusion and convection coefficients.

INDEX TERMS Gamma equation, Black-Scholes equation, financial engineering, stock price prediction,
numerical solution, numerical algorithm, maximum principle, two-side estimates, finite-difference scheme,
regularization principle.

I. INTRODUCTION
Over the last decades, not only financial engineers but also
mathematicians have paid special attention to the valua-
tion of derivative financial instruments. Indeed, since being
introduced by Fischer Black and Myron Scholes in 1973,
the Black-Scholes model based on partial differential equa-
tion has been widely employed in modern mathematical
finance and become a common-sense approach for pric-
ing options as well as many other financial securities [25].
This mathematical model was derived from the principle
that yielding profits from making portfolios of both short
and long positions in options as well as their underly-
ing stocks should not be possible, if option prices are
rightly priced in the market [15]. These scholars indicated
that a European option’s value on a stock, whose price
or the log return of underlying price is supposed to fol-
low a geometric Brownian motion with constant volatil-
ity and drift, is determined by a second-order parabolic
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equation concerning time and stock price. Nevertheless,
the assumptions of Black-Scholes equation based on per-
fectly liquid market are so idealistic in comparison with
the high illiquidity recently. There are many numerical
methods used for studying properties of typical non-linear
Black–Scholes equations [1]–[12], [14], [16], [17].

Not only in mathematical physics, but also in economics,
there is a need to solve partial differential equations contain-
ing lower derivatives. For example, in financial mathematics,
it is of interest to study the Gamma equation obtained by
a transformation of the nonlinear Black-Scholes equation to
a quasilinear parabolic equation [26], [27], [30], [42]. The
approximate solution of the Gamma equation is the main goal
of this study.

We consider the following quasilinear parabolic equation,
which is called the Gamma equation [26], [27]

∂u
∂t
=
∂2β (u)
∂x2

+
∂β (u)
∂x
+ c

∂u
∂x
, u = u (x, t) ,

0 < t 6 T , x ∈ R, c− const, (1)

u (−∞, t) = u (+∞, t) = 0, u (x, 0) = u0 (x) , (2)
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Problem (1)–(2) is obtained by transforming the nonlinear
Black-Scholes equation for V (S, τ )

Vτ + 0.5σ 2 (t, S,VSS) S2VSS + (c− q) SVS−cV = 0,

0 6 S <∞, 0 6 τ 6 T . (3)

The present paper will focus on some models related
to nonlinear Black-Scholes equations for European option
whose volatility relies upon various factors like the stock
price, the option price, the time as well as its derivatives due
to the presence of transaction cost. The option’s behaviour
would be disclosed by higher derivative of its price which
is mentioned as the Greeks in the financial literature. Not
only giving a good approximation for the pricing option,
reliable numerical methods are also essential for its deriva-
tives because of the relevance of the Greeks to quantitative
analysis.

For the case of European Call Options [27], i.e. value
V (S, τ ) is a solution of equation (3) with q = 0 and 0 6
S < ∞, 0 6 τ 6 T , the initial and the boundary conditions
of the problem (3) will be

V (S,T ) = max {0, S − E} , 0 6 S <∞, E > 0,

V (0, τ ) = 0, 0 6 τ 6 T ,

V (S, τ ) = S − Ee−c(T−τ), S →∞.

Note that σ−non-const depending on themodel, for example,
σ 2
= σ 2

JS (Jandacka-Sevcovic model [26]) or σ 2
= σ 2

F (Frey
model [21])

σ 2
JS = σ

2
0

(
1+ µ(SVSS)

1
3

)
, σ 2

F =
σ 2
0

1− ρSVSS
,

where µ = 3
(
C2M/ (2π)

)1/3
, σ0, M , C – const. By using

an independent variables x = ln (S/E), x ∈ R, t = T − τ ,
t ∈ (0,T ) and putting u (x, t) = SVSS in (3) for the two above
models, we acquire the problem (1)–(2). Then the function
β(u) and the initial condition u0(x) for the corresponding
models will also become

βJS =
σ 2
0

2

(
1+ µ(u)1/3

)
u, u0 (x) = δ (x) ,

βF =
σ 2
0

2
u

(1− ρu)2
, u0 (x) = δ (x) ,

where δ(x) is the Delta function.
In order to find the difference solution of problem (1)–(2),

we must restrict it to a finite spatial interval x ∈ (−L,L),
with L > 0 being a sufficiently large number. Since
S = Eex , we limit S ∈ (0,+∞) the interval by interval
S ∈

(
Ee−L ,EeL

)
. In practical calculations, we can choose

L ≈ 1.5 to contain important values of S. Thus, instead
of (2), we consider the Gamma equation (1) with Dirichlet
boundary conditions at x = ±L [26], i.e.,

u (−L, t) = u (L, t) = 0, u (x, 0) = u0 (x) . (4)

Because the Gamma equation has no exact solutions (ana-
lytical solutions), to assess efficiency of the proposed dif-
ference scheme and to maintain the equality of the Gamma

equation, wemust add a residual term f (x, t) to the right-hand
side of (1). Thus, we consider equation (1) in the form (13).

With no loss of generality, we construct a differential
scheme for quasi-linear parabolic equation with the ini-
tial condition of u0 (x). Depending on the specific model,
the initial condition will have different forms. In this work,
we have introduced two above models (Jandacka-Sevcovic
and Frey) and the initial condition has the form of a Delta
function. In order to get a suitable initial condition for
computation, we consider the regularization of u0 (x) =
δ (x), given by the function u0 = N ′ (d) /

(
σ0
√
π t∗

)
,

where 0 < t∗ � 1, N ′ (d) = e−d
2/2/
√
2π , d =(

x +
(
c−q− σ 2

0 /2
)
t∗
)
/
(
σ0
√
t∗
)
[27].

In order to solve the Black-Scholes equation, as well as
other nonlinear partial differential equations (PDEs), there
are some effective methods such as the finite difference meth-
ods, the Galerkin method [54], the Monte-Carlo method [55],
reduced basis methods [53], etc. Nowadays, with many
achievements of computing techniques, novel methods utiliz-
ing the machine learning technique such as the deep Galerkin
method [52] are effective for solving nonlinear PDEs. The
reduced basis methods and machine-learning-based methods
are especially effective in the case of grids containing a huge
number of nodes. For this case, methods such as the finite
difference methods and the Galerkin method usually require
a lot of memory resources. However, the finite difference
methods have an advantage: easy to process parallelly. This is
effective to be implemented on high-performance computing
systems. In this article, we only focus on finite difference
methods to develop new finite difference schemes and ana-
lyze their two-sided estimates.

The maximum principle has attracted a lot of attention in
the theory of difference schemes [39]. In particular, this prin-
ciple is used to study the stability and convergence of a dif-
ference solution on a uniform norm. Computational methods
satisfying the maximum principle are called to be monotone.
Monotone schemes play a vital role in experiments, because
the considered discrete problems are usually well-posed [24].
Furthermore they provide a numerical solution not being
oscillating even if solutions are non-smooth [37].

It must be noticed that we can acquire lower estimates of
the solutions of differential–difference problems or of two-
sided estimates problems. This is very important to investi-
gate theoretical properties of the approximate methods with
unbounded nonlinearities, in that it is necessary to prove that
numerical solution lays in a neighbourhood of the exact solu-
tion. In the case of linear problems, the estimates is to find the
range of values of the desired solution in terms of the problem
input data (the coefficients and right-hand side of the equation
as well as the initial and boundary conditions). In the case
of nonlinearity, the estimates provide an approach to confirm
the nonnegativity of the exact solution. This feature is very
important in physical problems, as well as to find conditions
of the input data to let the problem being parabolic or elliptic,
for example, investigating the Gamma equation in financial
mathematics to model pricing of options.
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Finding nontrivial solutions estimates of the initial–
boundary value problems based on a special method is
provided by Ladyzhenskaya [28] (see also the mono-
graph [29, p. 22]), whereby we can introduce a parameter-
dependent change of variables and then minimize or
maximize some functions depending on this parameter; the
resulting extremal values will provide the corresponding esti-
mates for the numerical solution. Naturally, it is neccessary
to acquire such estimates for the approximate solution. The
theory of finite-difference schemes [39, p. 229] includes the
technique, well developed for linear problems on the grid
satisfying the maximum principle, which provides two-sided
estimates for the approximate solution. The accuracy of the
acquired estimates of the solutions of finite-difference prob-
lems is not higher [19] than one of the corresponding esti-
mates of the solutions of differential problems [29, p. 22].
There is an interesting work [18], [20], in that two-sided esti-
mates for the finite element method is used for approximating
the Dirichlet boundary problem for the linear parabolic equa-
tion in the discrete and continuous cases.

On uniform grids [35], for the case of the one-dimensional
convection–diffusion equation, there is the simplest approx-
imations of first derivatives leading to upwind difference
schemes. Such schemes are unconditionally monotone. How-
ever, they have only the first order of approximation.
Moreover, the convective term can be approximated using
central difference schemes. In the case of the second order
approximation, the monotonicity property of the schemes
is satisfied based on constraints of the spatial grid step.
Unconditionally monotone second-order accurate difference
schemes for convection–diffusion problems on uniform grids
were constructed by applying the regularization principle
(see [39], [44]).

In problems of mathematical physics, it is very impor-
tant to increase the order of accuracy of approximate
methods without enlarging the standard stencil. In applied
multidimensional problems with singularities in domains
of complex geometry, mathematical simulation frequently
relies on nonuniform grids. Nevertheless, in the transition
from uniform to nonuniform grids, the order of the local
approximation error is usually reduced. For example, approx-
imating the second derivative on the usual three-point stencil
(see [39]) ensures only the first order of accuracy in the
uniform norm and in the grid norm of L2:

u′′ (xi)− ux̄x̂,i = O
(
hi+1 − hi + h̄2i

)
,

where ux̄x̂,i =
(
ux,i − ux̄,i

)
/h̄i, ux,i = (ui+1 − ui) /hi+1,

ux̄,i = (ui − ui−1) /hi, h̄i = 0.5 (hi+1 + hi), hi is the step
size of the non-uniform grid. The second order approximation
accuracy of the corresponding difference schemes on nonuni-
form grids can be proved only by applying a negative norm.

To increase the order approximation accuracy of a differ-
ence method, we must approximate the original differential
equation not at grid nodes, but rather at some intermediate
points of the computational domain. Specifically, it turns

out that the usual approximation of the second difference
derivative preserves the second order with respect to the point
x̄i = (xi−1 + xi + xi+1) /3 = xi + (hi+1 − hi) /3:

u′′ (x̄i)− ux̄x̂,i = O
(
h̄2i
)
.

This simple idea was further developed by A.A. Samarskii,
P.N. Vabishchevich, and P.P. Matus. For example, various
high-order approximation schemes for a second-order ordi-
nary differential equation and one-dimensional parabolic and
hyperbolic equations were constructed in [41]. On an arbi-
trary rectangular nonuniform grid, monotone conservative
schemes of second-order local approximation for the mul-
tidimensional Poisson equation were designed in [38], [40].
High-order accurate schemes for various equations of math-
ematical physics were constructed and investigated in [11].
The construction and study of high-order accurate monotone
difference schemes on arbitrary nonuniform grids for station-
ary and nonstationary convection–diffusion equations were
considered in [31], [43], [47], [51].

In the present paper, the Gamma equation is considered,
on the basis of the technique from [29], two-sided estimates
are obtained for its exact solution. The acquired results are
generalized to the construction of monotone finite-difference
schemes of second-order of local approximation on uniform
and non-uniform grids for a given equation. The construction
of such schemes is based on the appropriate choice of the
perturbed coefficient, similarly to [39]. Using the difference
maximum principle, two-sided and a priori estimates are
obtained in the C-norm for the difference solution. It is
interesting to note that the provided two-sided estimates of
the difference solution are completely consistent with the
estimates of exact solution of differential problem. Monotone
schemes are very effective for well-posed problem. They also
provide a numerical solution not being oscillating even if
solutions are non-smooth. Moreover, two-side estimates not
only provide a manner to prove the nonnegativity of the exact
solution, but it is also helpful to find out sufficient conditions
based on the input data if the nonlinear problem is parabolic.
Consequently, a priori estimate of the approximate solution
in the grid norm C depending on the initial and boundary
conditions only is proved.

II. MAXIMUM PRINCIPLE FOR DIFFERENCE SCHEMES
WITH VARIABLE SIGN INPUT DATA
Suppose that in the n-dimensional Euclidean space a finite
number of points of the grid is given and denoted by �h.
For each point x ∈ �h we connect one and only one stencil
M(x) - a subset of �h, holding this point. We call a set
M′(x) = M(x) \ x to be neighborhood of the point x.
Suppose that real-valued functions A(x), B(x, ξ ), F(x) are
given at x ∈ �h, ξ ∈ �h. For each point x ∈ �h, we consider
one and only one respective equation of the form [39]

A(x)y(x)=
∑

ξ∈M′(x)

B (x, ξ) y (ξ)+F (x) , x ∈ �h, (5)
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which is called to be the canonical form of the finite-
difference scheme [39, p. 226]. Must notice thatM′(x) could
be an empty set, for example, for Dirichlet boundary con-
dition. A system of linear algebraic equations obtained by
discretizing the boundary problem is often called difference
scheme. For the grid �h, we consider its arbitrary subset ωh
and we denote

ωh =
⋃
x∈ωh

M (x).

For example, let ωh be a set of the internal nodes to approxi-
mate the Poisson equation. In this case ωh = �h. According
to [36], [39], the point x is called to be a grid boundary node.
In the case of Dirichlet boundary condition is posed, we have

y(x) = µ(x), x ∈ γ,

where γ is a collection of boundary nodes. We must notice
that the grid may not hold boundary nodes in the case
of approximating boundary conditions of second/third kind,
i.e. all grid nodes will become internal nodes. In this case,
we suppose that the usual positivity conditions for the coeffi-
cients is fulfilled

A (x) > 0, B (x, ξ) > 0 for all ξ ∈M′ (x) , (6)

D (x) = A (x)−
∑

ξ∈M′(x)

B (x, ξ) > 0. (7)

The conditions will guarantee the unique solvability, mono-
tonicity and stability for the difference scheme (5) in the
uniform norm for small pertubation of input data. Now,
we formulate the basic results before establishing two-sided
estimates for the numerical solution at non-sign-definite input
data of the problem F(x).
Lemma 1 ( [34], [36]): Assume that conditions (6)–(7)

that the coefficients are positive are satisfied. Then the
maximum and minimum values of the solution of the
finite-difference scheme (5) belong to the range of the input
data

min
x∈�h

F (x)
D (x)

6 y (x) 6 max
x∈�h

F (x)
D (x)

, x ∈ �h. (8)

Corollary 1 ( [39, p. 231]): Assume that conditions of
the lemma are satisfied. Then in the grid analog of the
C-norm, the solution of finite-difference problem (5) satisfies
the estimate

‖y‖C = max
x∈�h
|y (x)| 6

∥∥∥∥FD
∥∥∥∥
C
. (9)

Similar to the scalar case we introduce the canonical form
of the vector-difference schemes

A (x) EY (x) =
∑

ξ∈M′(x)

B (x, ξ) EY (ξ)+ EF (x) , x ∈ �h.

(10)

Here the matrices A (x) =
{
aij (x)

}
m×m, B (x, ξ) ={

bij (x, ξ)
}
m×m and right-hand side vector EF (x) =

(f1 (x) , f2 (x) , . . . , fm (x))T are given, unknown vector grid
function EY (x) = (y1 (x) , y2 (x) , . . . , ym (x))T takes

real values. The point x is called to be a grid boundary node,
on condition that the Dirichlet condition is posed

EY (x) = Eµ (x) , x ∈ γ, (11)

where γ is a collection of the boundary nodes,
Eµ (x) = (µ1 (x) , µ2 (x) , . . . , µm (x))T .
Definition 1: Vector-difference scheme (10)–(11) is called

monotone if its solution satisfies the conditions:
• If EF (x) > 0, x ∈ �h and Eµ (x) > 0, x ∈ γ , then
EY (x) > 0, x ∈ �̄h, �̄h = �h ∪ γ ;

• If EF (x) 6 0, x ∈ �h and Eµ (x) 6 0, x ∈ γ , then
EY (x) 6 0, x ∈ �̄h.

We introduce matrices D(1) (x) =
{
d (1)ij (x)

}
m×m

and
D (x) = diag {d11 (x) , d22 (x) , . . . , dmm (x)}, which defined
as follows

D(1) (x) = A (x)−
∑

ξ∈M′(x)

B (x, ξ),

dii (x) =
m∑
j=1

d (1)ij (x), i = 1,m.

Matrix A (x) could be rewrite in the form A (x) = A(1) (x)−
A(2) (x), where

A(1) (x) = diag
{
a(1)11 (x) , a

(1)
22 (x) , . . . , a

(1)
mm (x)

}
,

a(1)ii (x) = aii (x) , i = 1,m,

A(2) (x) =
{
a(2)ij (x)

}
m×m

, a(2)ii (x) = 0,

a(2)ij (x) = −aij (x) , i 6= j, i, j = 1,m.

Then we write vector equation (10) in the form

A(1) (x) EY (x) =
∑

ξ∈M′(x)

B (x, ξ) EY (ξ)

+A(2) (x) EY (x)+ EF (x) , x ∈ �h.

We will assume that the positivity conditions for matrix
coefficients is satisfied (i.e. all elements of matrix are
positive [23])

A(1) (x) > 0, A(2) (x) > 0,

B (x, ξ) > 0, D (x) > 0 for all ξ ∈M′ (x) , (12)

and define ∥∥∥ EV ∥∥∥
C̄
= max

16j6m

(
max
x∈�̄h

∣∣vj (x)∣∣) ,
max
x∈�h
EV (x) = max

16j6m

(
max
x∈�h

vj (x)
)
,

min
x∈�h
EV (x) = min

16j6m

(
min
x∈�h

vj (x)
)
.

Lemma 2: ( [33], [36]) Suppose that the positivity con-
ditions for matrix coefficients (12) are fulfilled. Then
the maximal and minimal values of the solution of the
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vector-difference scheme (10)–(11) belong to value interval
of the input data

m1 6 yj (x) 6 m2, x ∈ �̄h, j = 1,m,

where

m1 = min
{
min
x∈γ
Eµ (x) , min

x∈�h

(
D−1 (x) EF (x)

)}
,

m2 = max
{
max
x∈γ
Eµ (x) ,max

x∈�h

(
D−1 (x) EF (x)

)}
.

Corollary 2 ( [33]): Let conditions of Lemma 2 be ful-
filled. Then vector-difference schemes (10)–(11) is monotone
and for her the following estimate holds∥∥∥EY∥∥∥

C̄
6 max

{
‖Eµ‖Cγ ,

∥∥∥D−1 EF∥∥∥
C

}
.

III. STATEMENT OF THE PROBLEM AND TWO-SIDED
ESTIMATE OF THE EXACT SOLUTION
Without loss of generality in a rectangle Q̄T = {(x, t) :
l1 6 x 6 l2, 0 6 t 6 T } we consider the following initial
boundary value problem for a quasilinear parabolic equation
(the so called Gamma equation), that is a generalization of
Jandacka and Sevcovic model in [26]

∂u
∂t
=
∂2β (u)
∂x2

+
∂β (u)
∂x
+ c

∂u
∂x
− q (x) u+ f (x, t) ,

u = u (x, t) , c = const, q (x) > 0, (13)

with boundary conditions

u (l1, t) = µ1 (t) , u (l2, t) = µ2 (t) , t > 0, (14)

and initial conditions

u (x, 0) = u0 (x) , l1 6 x 6 l2. (15)

Equation (13) can be written as

∂u
∂t
=

∂

∂x

(
k(u)

∂u
∂x

)
+ r (u)

∂u
∂x
− q (x) u+ f (x, t) , (16)

with coefficients

k (u) = β ′(u), r (u) = k (u)+ c. (17)

We assume that parabolicity condition of equation (16) on the
solution [22] is satisfied

0 < k1 6 k (u) 6 k2, ∀u ∈ D̄u, k1, k2 = const, (18)

where

D̄u =
{
u (x, t) : m1 6 u (x, t) 6 m2, (x, t) ∈ Q̄T

}
.

We assume in what follows that there exists a unique
solution of problem (13)–(15) and all coefficients in Eq. (16)
and the desired function have continuous bounded derivatives
of order that is required as the presentation proceeds. Let
t1 6 T and Qt1 = {(x, t) ∈ QT : t 6 t1}.

Using the technique from [29], we prove two-sided esti-
mates for the exact solution of problem (13)–(15).

Theorem 1: Let condition (18) be satisfied. Then for solu-
tion u(x, t) of problem (13)–(15) at any point (x, t1) ∈ Q̄T the
following two-sided estimates are valid:

m1 6 u (x, t1) 6 m2, (19)

where

m1 = sup
λ>λ0

min

{
0,min

Qt1
{µ1(t), µ2(t), u0(x)} eλ(t1−t),

min
Qt1

f (x, t)eλ(t1−t)

λ+ q(x)

}
,

m2 = inf
λ>λ0

max

{
0,max

Qt1
{µ1(t), µ2(t), u0(x)} eλ(t1−t),

max
Qt1

f (x, t)eλ(t1−t)

λ+ q(x)

}
,

λ0 = max
l16x6l2

[−q (x)] = − min
l16x6l2

q (x) .

IV. UNCONDITIONALLY MONOTONE FINITE-DIFFERENCE
SCHEME OF SECOND-ORDER APPROXIMATION ON
UNIFORM GRIDS
In this section we construct a new finite difference scheme on
uniform grid in space and in time for the problem (13)–(15).
Some important properties for the solution of this schemes are
studied, namely, order of approximation and monotonicity of
scheme, two-sided estimate and a priori estimate on C-norm
for difference solution.

A. DIFFERENCE SCHEME
Using the principle of regularization [39] on a regular uniform
grid in space and time ω̄ = ω̄h × ω̄τ , where

ω̄h =
{
xi = l1 + ih, i = 0,N , hN = l2 − l1

}
,

ω̄h = ωh ∪ {x0 = l1, xN = l2} ,

ω̄τ =
{
tn = nτ, n = 0,N0, τN0 = T

}
,

ω̄τ = ωτ ∪
{
tN0 = T

}
,

we approximate equation (13) with a difference scheme of the
form

yn+1i − yni
τ

=
κni (y)

h

(
ani+1 (y)

yn+1i+1 − y
n+1
i

h
−ani (y)

yn+1i − yn+1i−1

h

)

+ b+i (y) a
n
i+1 (y)

yn+1i+1 − y
n+1
i

h

+ b−i (y) a
n
i (y)

yn+1i − yn+1i−1

h
− qiy

n+1
i + f n+1i ,

i = 1, 2, . . . ,N − 1,

y0i = u0 (xi) , i = 1, 2, . . . ,N − 1,

yn+10 = µ1(tn+1), yn+1N = µ2(tn+1), (20)

where

κni (y) =
(
1+ Rni (y)

)−1
,
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Rni (y) = 0.5h
∣∣r (yni )∣∣/k (yni ) > 0,

b+i (y) = r+
(
yni
)/
k
(
yni
)
> 0,

b−i (y) = r−
(
yni
)/
k
(
yni
)
6 0,

r+
(
yni
)
= 0.5

(
r
(
yni
)
+
∣∣r (yni )∣∣) > 0,

r−
(
yni
)
= 0.5

(
r
(
yni
)
−
∣∣r (yni )∣∣) 6 0,

ani+1 (y) = 0.5
(
k
(
yni+1

)
+ k

(
yni
))
,

ani (y) = 0.5
(
k
(
yni−1

)
+ k

(
yni
))
.

B. APPROXIMATION ERROR
The difference scheme (20) has the following approximation
error

ψ = −ut + κ (u)
(
a (u) ûx̄

)
x

+ b+ (u) a(+1) (u) ûx + b− (u) a (u) ûx̄−qu+ f , (21)

where

v = vn = v (tn) , v̂ = vn+1 = v (tn+1) ,

vx = (vi+1 − vi) /h, vx̄ = (vi − vi−1) /h,

a(+1) (u) = ai+1 (u) , a (u) = ai (u) .

Taking into account

b+ (u) = r+ (u) /k (u) , b− (u) = r− (u) /k (u) ,

r+(u)+r−(u) = r (u) , r+ (u)− r− (u) = |r (u)| ,

ut =
∂u
∂t
+ O (τ ) ,(

a (u) ûx̄
)
x =

∂

∂x

(
k (u)

∂u
∂x

)
+ O

(
h2 + τ

)
,

a(+1) (u) ûx = k(u)
∂u
∂x
+0.5h

∂

∂x

(
k(u)

∂u
∂x

)
+O

(
h2+τ

)
,

a (u) ûx̄ = k (u)
∂u
∂x
− 0.5h

∂

∂x

(
k(u)

∂u
∂x

)
+O

(
h2+τ

)
,

we get

b+ (u) a(+1) (u) ûx + b− (u) a (u) ûx̄

= r (u)
∂u
∂x
+ R (u)

∂

∂x

(
k (u)

∂u
∂x

)
+ O

(
h2 + τ

)
.

It follows from (21) that

ψ =
(R (u))2

1+ R (u)
∂

∂x

(
k (u)

∂u
∂x

)
+ O

(
h2 + τ

)
=O

(
h2 + τ

)
.

Hence, order of spatial approximation of the difference
scheme (20) is two and for temporal approximation - one.

C. MONOTONICITY, TWO-SIDED AND A PRIORI
ESTIMATES
We write the difference scheme (20) in the canonical
form (5)

Ani y
n+1
i−1 − C

n
i y

n+1
i +B

n
i y
n+1
i+1 = −F

n
i , i = 1,N − 1, (22)

yn+10 = µn+11 , yn+1N = µn+12 , (23)

with coefficients defined as follows

Ani =
τ

h2
ani (y)

(
κni (y)− hb

−

i (y)
)
,

Bni =
τ

h2
ani+1 (y)

(
κni (y)+ hb

+

i (y)
)
,

Cn
i = 1+ τqi + Ani + B

n
i , Fni = yni + τ f

n+1
i ,

Dni = Cn
i − A

n
i − B

n
i = 1+ τqi, i = 1,N − 1.

The scheme (22)–(23) is monotone if the positivity conditions
of the coefficients (6)–(7) are satisfied [39], i.e. if

Ani > 0, Bni > 0, Dni = Cn
i − A

n
i − B

n
i > 0.

Let us prove that yni ∈ D̄u for all i, n. We take an auxiliary
grid function z(x, t) = zni = yni e

−λtn , λ 6= 0. The function
z(x, t) satisfies the finite-difference equation

Cn
(∗)iz

n+1
i An(∗)iz

n+1
i−1 + B

n
(∗)iz

n+1
i+1 + K

n
i z

n
i + F

n
(∗)i,

i = 1, 2, . . . ,N − 1,

where

An(∗)i = eλτAni , Bn(∗)i = eλτBni , K n
i = 1,

Cn
(∗)i = eλτ (1+ τqi)+ An(∗)i + B

n
(∗)i, Fn(∗)i = τ f

n+1
i e−λtn ,

We introduce the coefficients Dn(∗)i as follows:

Dn(∗)i = Cn
(∗)i − A

n
(∗)i − B

n
(∗)i − K

n
i = eλτ (1+ τqi)− 1 > 0

for all λτ > 0. Take an arbitrary tn ∈ ωτ . The following three
cases are possible for the function z(x, t).
1. maxωtn z(x, t) is nonpositive (i.e., z(x, t) 6 0,

(x, t) ∈ ωtn );
2. maxωtn z(x, t) is located on the base t = 0 or

on the boundary (i.e., the inequality z(x, t) 6
max
ωtn

e−λt {µ1(t), µ2(t), u0(x)}, (x, t) ∈ ωtn , holds);

3. A positive maximum is attained at some interior point(
x0, t0

)
: z(x, t) 6 z

(
x0, t0

)
= max

ωtn
z(x, t).

Obviously, for n = 0 we have y0i = u0,i ∈ D̄u for all i =
1,N − 1. Assume that, for any arbitrary n, the inclusion yni ∈
D̄u is also true. We need prove that yn+1i ∈ D̄u is true. From
this assumption we have An(∗)i > 0, Bn(∗)i > 0, Cn

(∗)i > 0.
According to Lemma 1 on the base of the estimate (8) for
arbitrary t = tn ∈ ωτ and all i = 0, 1, . . . ,N , we have

z(x, t) 6 z(x0, t0) 6
τ

eλτ
(
1+ τq

(
x0
))
− 1

f (x0, t0)e−λt
0

6 max
ωtn

τ f (x, t)e−λt

eλτ (1+ τq (x))− 1
, λ > 0.

Then, in all cases (1.)–(3.), the function z(x, t) satisfies the
estimate

z(x, t) 6 max
{
0,max

ωtn
e−λt {µ1(t), µ2(t), u0(x)} ,

max
ωtn

τ f (x, t)e−λt

eλτ (1+ τq)− 1

}
, t 6 tn.
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Next we consider the case where a positive maximum is
attained at some interior point (x, tn+1), then once again with
the help of Lemma 1 we obtain

z(x, tn+1) 6 max
{
0,max
ωtn+1

e−λt {µ1(t), µ2(t), u0(x)} ,

max
ωtn+1

τ f (x, t)e−λt

eλτ (1+ τq)− 1

}
,

which implies that

y(x, tn+1) 6 mn+12 , (24)

where

mn+12 = inf
λ>0

max
{
0,max
ωtn+1

eλ(tn+1−t) {µ1(t), µ2(t), u0(x)} ,

max
ωtn+1

τ f (x, t)eλ(tn+1−t)

eλτ (1+ τq)− 1

}
.

In a similar way, we obtain the lower bound

y(x, tn+1) > mn+11 , (25)

where

mn+11 = sup
λ>0

min
{
0, min
ωtn+1

eλ(tn+1−t) {µ1(t), µ2(t), u0(x)} ,

min
ωtn+1

τ f (x, t)eλ(tn+1−t)

eλτ (1+ τq)− 1

}
.

Since
τ

eλτ (1+ τq)− 1
6

1
λ+ q

for all λ, τ > 0,

we see that the estimates (19) and (24)–(25) imply the
inequalities

m1 6 mn+11 , mn+12 6 m2,

i.e., yn+1i ∈ [m1,m2], i = 1,N − 1. In this sense,
the finite-difference estimates inherit the properties of the
differential problem. Moreover, because positivity condi-
tions for the coefficients (6)–(7) are fulfilled, the difference
scheme (20) is monotone for all values of h and τ (i.e. the
difference scheme is unconditionally monotone).

Thus, we have proved the following theorem.
Theorem 2: Suppose that the conditions (18) are fulfilled.

Then the finite-difference scheme (20) is unconditionally
monotone (without constraints on the steps τ and h) and for
its solution y ∈ D̄u the above two-sided estimates (24)–(25)
hold at any point (x, t) ∈ ω.
On the base of the maximum principle in a standard

way [36] we acquire the a priori estimate in the C-norm:
Theorem 3: Let the condition (18) be fulfilled. Then for the

solution of the difference problem (20) the following a priori
estimate holds

‖y (tn+1)‖C̄ 6 max
{
‖u0‖C̄ , max

16k6n+1
{|µ1 (tk)| , |µ2 (tk)|}

}
+ tn+1 max

16k6n+1
‖f (tk)‖C .

FIGURE 1. Numerical solution at t = 1 with step h = π/31 ≈ 0.1 and
τ = 0.1.

Remark 1: It is interesting to note that the maximal and
minimal values of the difference solution do not depend on the
diffusion coefficient k(u) and the convection coefficient r(u).
Remark 2: For the case of c = q(x) = f (x, t) ≡ 0,

equation (16) can be written as

∂u
∂t
= e−x

∂

∂x

(
k̄ (x, u)

∂u
∂x

)
,

k̄ (x, u) = exk (u) , k (u) = β ′(u).

Then, as construction of monotone difference schemes for it,
we do not need to use the regularization principle.
Remark 3: The estimates obtained in (24)–(25) are fully

consistent with the estimates of exact solution of differential
problem (19).
Remark 4: For the case of the Frey model [21] β(u) =

u/(1 − ρu)2, ρ > 0 from (17) we obtain the coefficient k(u)
of the form k(u) = (1 + ρu)/(1 − ρu)3. Then, by virtue of
(18), equation (13) will be parabolic if k(u) > 0, ∀u ∈ D̄u,
i.e., if

−
1
ρ
< u (x, t) <

1
ρ
. (26)

With the help of the estimates (19) we can choice such input
data that conditions (26) are satisfied. Then for solution
of the difference scheme (20), which approximates prob-
lem (13)–(15), conditions (26) are also fulfilled, because by
Theorem 2 we always have m1 6 mn+11 , mn+12 6 m2.
Remark 5: We consider the particular case of Gamma

equation with homogeneous boundary conditions

∂u
∂t
=

∂

∂x

(
1+ u

(1− u)3
∂u
∂x

)
,

ρ = 1, 0 < x < π, 0 < t ≤ 1,

u (x, 0) = sin x, u (0, t) = u (π, t) = 0. (27)

As the coefficient k (u) = (1+ u) /(1− u)3 is not defined
at u = 1, then it is not defined for the initial function
u0 (x) = sin x at x = x∗ = π/2. So we build uniform
grid with step h = π/ (2N + 1) in order to xi 6= x∗. The
approximate solution of the problem (27) at t = 1, obtained
by the difference scheme (20), is shown on Fig. 1.
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The best numerical results are obtained if the extremal
point is not a node of grid. The numerical solution is not
defined, if x = x∗ is a node of the grid. The solution presented
on Fig. 1 is not mathematically correct because the solution
of (27) is not defined for such choice of the initial data.
Therefore it is important to construct grid domain so that an
extremal point is a grid node.

V. MONOTONE FINITE-DIFFERENCE SCHEME OF
SECOND-ORDER APPROXIMATION ON
NON-UNIFORM SPATIAL GRIDS
In this section, a new monotone difference schemes for the
convection–diffusion problem for Gamma equation (13)–(15)
will be constructed and analysed on non-uniform grids in
space. The construction of such schemes is based on the
appropriate choice of the perturbed coefficient (regularization
principle), similar to [31], [39]. Using the difference maxi-
mum principle, two-sided estimate and a priori estimates in
the C-normal are obtained for the solution of the difference
scheme that approximates the above equation.

A. DIFFERENCE SCHEME
We introduce an arbitrary non-uniform spatial grid

ˆ̄ω = ω̂h ∪ γh,

ω̂ = {xi = xi−1 + hi, i = 1, 2, . . . ,N − 1} ,

γh = {x0 = l1, xN = l2} ,

and uniform grid by time variable

ω̄τ = {tn = nτ, n = 0, 1, . . . ,N0, τN0 = T } = ωτ ∪ {T } .

Taking into account the identity(
ku′
)′
= 0, 5

(
(ku)′′ + ku′′ − k ′′u

)
, (28)

and using standard notation [39]

h+ = hi+1, h = hi, h̄ = (h+ + h) /2,

h̃ = (h+ − h)
/
3, v = vi = v (xi) ,

v± = vi±1 = v (xi±1) , vx = (v+ − v)
/
h+,

vx̄ = (v− v−)
/
h, vx̄x̂ = (vx − vx̄)

/
h̄,

t = tn, t̂ = tn+1, v = vn = v (tn) ,

v̂ = vn+1 = v (tn+1) ,

we construct a new difference scheme for a quasilinear
parabolic equation (16) on a non-uniform grid ω = ω̂h × ωτ

yt(β1β2) = κ (y)A1ŷ+ b
+ (y) a+ (y) ŷx +

+ b− (y) a (y) ŷx̄ − d̄ ŷ(β5β6) + ϕ,

yn+10 = µ1 (tn+1) , yn+1N = µ2 (tn+1) ,

y0i = u0 (xi) , (29)

where

v(βkβk+1) = βkv+ + (1− βk − βk+1) v+ βk+1v−,

A1ŷ = 0.5
[(
k (y) ŷ

)
x̄x̂+k(β1β2) (y) ŷx̄x̂−kx̄x̂ (y) ŷ(β3β4)

]
,

β1 = 0.5
(∣∣∣h̃∣∣∣+ h̃)/h+, β2 = 0.5

(∣∣∣h̃∣∣∣− h̃)/h,
β3 = 0.5

(
h̃kx̄x̂ −

∣∣∣h̃kx̄x̂ ∣∣∣)/(h+kx̄x̂),
β4 = −0.5

(
h̃kx̄x̂ +

∣∣∣h̃kx̄x̂ ∣∣∣)/(hkx̄x̂),
β5 = 0.5

(
h̃−

∣∣∣h̃∣∣∣)/h+, β6 = −0.5
(
h̃+

∣∣∣h̃∣∣∣)/h,
b± (y) =

1
3

(
r± (y−)
k (y−)

+
r± (y)
k (y)

+
r± (y+)
k (y+)

)
,

r± (y) = 0.5 (r (y)± |r (y)|) , κ (y) =
1

1+ R (y)
,

R (y) =
h+ + 2h

6
b+ (y)−

2h+ + h
6

b− (y) ≥ 0,

a (y) = 0.5 (k (y)+ k (y−)) ,

a+ (y) = 0.5 (k (y+)+ k (y)) ,

d̄ = q (x̄) , ϕ = f
(
x̄, t̂
)
, x̄ = x + h̃.

B. APPROXIMATION ERROR
Let us prove that the scheme (29) approximates the prob-
lem (13)–(15) with the second order with respect to the
non-calculated point x̄i = xi + h̃i (in the case of a uniform
grid x̄i = xi). To do this, we focus on the relationship [40]

vx̄x̂ − v
′′ (x̄) = O

(
h̄2
)
, (30)

v(βkβk+1) − v (x̄) = O
(
h̄2
)
, k = 1, 3, 5, (31)

when the condition of variable in space weight factors is
fulfilled βk , βk+1

βkh+ − βk+1h =
h+ − h

3
= h̃, k = 1, 3.

By virtue of (30)(
k (u) û

)
x̄x̂ −

∂2 (k (u) u)
(
x̄, t̂
)

∂x2
= O

(
h̄2 + τ

)
,

kx̄x̂ (u)−
∂2k (x̄)
∂x2

= O
(
h̄2
)
. (32)

In view of (31) we obtain

k(β1β2) (u)− k (x̄) = O
(
h̄2
)
, (33)

ut(β1β2) −
∂u
(
x̄, t̂
)

∂t
= O

(
h̄2 + τ

)
. (34)

From (30)–(33) it follows that

A1û−
∂

∂x

(
k (u)

∂u
∂x

) (
x̄, t̂
)
= O

(
h̄2 + τ

)
. (35)

Using the Taylor series expansion

ux = u′ (x̄)+
h+ + 2h

6
u′′ (x̄)+ O

(
h̄2
)
,

ux̄ = u′ (x̄)−
2h+ + h

6
u′′ (x̄)+ O

(
h̄2
)
,

a+ (u) = k (x̄)+
h+ + 2h

6
k ′ (x̄)+ O

(
h̄2
)
,

a (u) = k (x̄)−
2h+ + h

6
k ′ (x̄)+ O

(
h̄2
)
,
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we conclude that

a+ (u) ux =
(
ku′
)
(x̄)+

h+ + 2h
6

(
ku′
)′
(x̄)+ O

(
h̄2
)
,

a (u) ux̄ =
(
ku′
)
(x̄)−

2h+ + h
6

(
ku′
)′
(x̄)+ O

(
h̄2
)
.

Since

r+ (u)+ r− (u) = r (u) ,

b+ (u)+ b− (u) =
1
3

( r
k
(u−)+

r
k
(u)+

r
k
(u+)

)
=

r
k
(x̄)+ O

(
h̄2
)
,

then

b+ (u) a+ (u) ux + b− (u) a (u) ux̄

=
(
ru′
)
(x̄)+ R (u)

(
ku′
)′
(x̄)+ O

(
h̄2
)
. (36)

Using (36) we get

b+ (u) a+ (u) ûx + b− (u) a (u) ûx̄

=

(
r (u)

∂u
∂x

) (
x̄, t̂
)
+ R (u)

∂

∂x

(
k (u)

∂u
∂x

) (
x̄, t̂
)

+O
(
h̄2 + τ

)
. (37)

Finally, from (34)–(35), (37) we find out that the approxima-
tion error is of second order in space

ψ
(
x̄, t̂
)
= −ut(β1β2) + κ (u)A1û+ b

+ (u) a+ (u) ûx
+ b− (u) a (u) ûx̄ − d̄ û(β5β6) + ϕ

=
R2 (u)

1+ R (u)
∂

∂x

(
k (u)

∂u
∂x

) (
x̄, t̂
)
+ O

(
h̄2 + τ

)
= O

(
h̄2 + τ

)
.

Hence, order of spatial approximation of the difference
scheme (29) is two and order of temporal approximation is
one.

C. MONOTONICITY, TWO-SIDED AND A PRIORI
ESTIMATES
We write the difference scheme (29) in the canonical form
(22)–(23) with coefficients defined as follows

Ani = −β2i + 0.5κni τ
[(
k(β1β2)

(
yn
)
+ k

(
yni−1

))
/ (h̄ihi)

−β4ikx̄x̂,i
(
yn
)]
− τb−i

(
yn
)
ani /hi − τ d̄iβ6i,

Bni = −β1i + 0.5κni τ
[(
k(β1β2)

(
yn
)
+ k

(
yni+1

))
/ (h̄ihi+1)

−β3ikx̄x̂,i
(
yn
)]
+ τb+i

(
yn
)
ani+1/hi+1 − τ d̄iβ5i,

Cn
i = 1+ τ d̄i + Ani + B

n
i , Fni = yn(β1β2) + τϕ

n+1
i ,

ϕn+1i = f (x̄i, tn+1) , d̄i = q (x̄i) , x̄i = xi + h̃i.

Let the following inequality be fulfilled:

τ >

(
1+ 0.5h̄c0

) ∥∥h2+−h2∥∥C
6k1

,

h̄ = max
16i6N

hi, c0 = max
u∈D̄u

|r(u)|
k(u)

, (38)

Theorem 4: Let the conditions (38) be met. Then
the finite-difference scheme (29) is monotone, its solu-
tion belongs to the value interval of exact solution
y ∈ D̄u and the following two-sided estimates hold at any
point (x, tn) ∈ ω

mn1 6 y(x, tn) 6 mn2, (39)

where

mn1 = sup
λ>0

min
{
0,min

ωtn
eλ(tn−t) {µ1(t), µ2(t), u0(x)} ,

min
ωtn

τ f (x, t)eλ(tn−t)

eλτ (1+ τq)− 1

}
,

mn2 = inf
λ>0

max
{
0,max

ωtn
eλ(tn−t) {µ1(t), µ2(t), u0(x)} ,

max
ωtn

τ f (x, t)eλ(tn−t)

eλτ (1+ τq)− 1

}
.

Proof: To prove the upper bound (39), we consider an
auxiliary function z = z (x, tn) = y (x, tn) e−λtn , where λ > 0
is a parameter. Let

(
x0, t0

)
be the maximum point of z in

the grid domain ωtτ and z0 = z
(
x0, t0

)
. There are only the

following possibilities:
1. The maximum z0 is non-positive;
2. The point

(
x0, t0

)
is on the boundary of the grid

domain ωtτ ;
3. The maximum z0 is positive, and the point

(
x0, t0

)
is the

interior point of the grid domain ωtτ .
In case (3.) at the maximum point

(
x0, t0

)
the following

relations are fulfilled:

Cn
(∗)iz

n+1
i = An(∗)iz

n+1
i−1 + B

n
(∗)iz

n+1
i+1 + K

n
i z

n
(β1,β2)i + F

n
(∗)i,

i = 1, 2, . . . ,N − 1,

where

An(∗)i = eλτAni , Bn(∗)i = eλτBni , K n
i = 1,

Cn
(∗)i = eλτ (1+ τqi)+ An(∗)i + B

n
(∗)i, Fn(∗)i = τ f

n+1
i e−λtn ,

Dn(∗)i = Cn
(∗)i − A

n
(∗)i − B

n
(∗)i − K

n
i = eλτ (1+ τqi)− 1 > 0

for all λτ > 0.
Nowwe need to find a condition so that yni ∈ D̄u for all i, n.

If n = 0, it is obvious that y0i = u0 (xi) ∈ D̄u. Assume that,
for any arbitrary n, yni ∈ D̄u is also true for all i. From this
assumption for the case of h̃ > 0, kx̄x̂ > 0 (we do not consider
trivial cases of h̃ = 0 and kx̄x̂ = 0) we get the concrete values
of the weights

β1 = h̃/h+ > 0, β2 = β3 = β5 = 0,

β4 = β6 = −h̃/h < 0.

The expressions k(β1β2) (y),−β4kx̄x̂ (y),−τ d̄β6 are converted
to the form

k(β1β2) (y) =
h̃
h+

k (y+)+

(
1−

h̃
h+

)
k (y)

=
h̃
h+

k (y+)+
2h+ + h
3h+

k (y) > 0,
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−β4kx̄x̂ (y) =
h̃
h
kx̄x̂ (y) > 0, −τ d̄β6 = τ d̄

h̃
h
≥ 0.

It follows that A > 0. Discarding the positive term in the
expression for the coefficient B with b+i (y

n), we obtain

B > −
h̃
h+
+ 0.5τ

κ
((

1+ h̃
h+

)
k (y+)+

(
1− h̃

h+

)
k (y)

)
h̄h+

.

Since
∣∣∣h̃/h+∣∣∣ < 1, then

(
1+ h̃/h+

)
k+ +

(
1− h̃/h+

)
k ≥

2k1. On the other hand, we have

min
u∈D̄u

κ = min
u∈D̄u

(1+ R)−1 =

(
1+ max

u∈D̄u
R

)−1
,

max
u∈D̄u

R = max
u∈D̄u

[
b+ (u) (h+ + 2h) /6− b− (u) (2h+ + h) /6

]
≤ 0.5h̄c0,

h̄ = max
1≤i≤N

hi, c0 = max
u∈D̄u

|r (u (xi, tn))|
k (u (xi, tn))

.

It follows that

B > −
h̃
h+
+ τ

(
1+ 0.5h̄c0

)−1k1
h̄h+

.

From the last inequality we conclude that Bni > 0 at τ ≥(
1+ 0.5h̄c0

) ∣∣h2i+1 − h2i ∣∣ / (6k1). It is similar, we can find out
conditions for other cases.

Therefore, the inequality (38) also ansures that the positiv-
ity of the coefficients (6)–(7) is fulfilled (i.e. the difference
scheme (29) is monotone). According to Lemma 1 on the
base of the estimate (8) for arbitrary t = tn ∈ ωτ and all
i = 0, 1, . . . ,N , we have

zn+1i 6 max
ωtn+1

τ f (x, t) e−λt

eλτ (1+ τq)− 1
.

Therefore, in all above cases the function z will satisfy the
following estimate

z(x, tn+1) 6 max
{
0,max
ωtn+1

e−λt {µ1(t), µ2(t), u0(x)} ,

max
ωtn+1

τ f (x, t)e−λt

eλτ (1+ τq)− 1

}
and for the original function y, we acquire the upper
bound (39). Analogous arguments for the minimum point
hold the lower estimate (39). As

τ

eλτ (1+ τq)− 1
6

1
λ+ q

for all λ, τ > 0,

we see that the estimates (19) and (39) imply the inequalities

m1 6 mn1, mn2 6 m2,

i.e., yn+1i ∈ [m1,m2], i = 1,N − 1. The proof is completed
by induction.
Remark 6: Inequalities

m1 6 mn1, mn2 6 m2,

show that difference estimates are consistent with the esti-
mates for the solution of the differential problem.

Basing on the maximum principle in a standard way [36],
we can acquire the a priori estimate in the C-norm:
Theorem 5: Let the condition (38) be fulfilled. Then for the

solution of the difference problem (29) the following a priori
estimate holds∥∥yn∥∥C̄ ≤ max

{
max
t∈ω̄τ
{|µ1 (t)| , |µ2 (t)|} , ‖u0‖C̄

}
+T max

t∈ω̄τ
‖f (t)‖C , n = 0,N0. (40)

Proof: According to Corollary 1, we can conclude
that

∥∥yn+1∥∥C̄ ≤ max
{∣∣∣µn+11

∣∣∣ , ∣∣∣µn+12

∣∣∣ , ∥∥∥FnDn ∥∥∥C}. Since the
variable weighting factors β1, β2 ≥ 0 are non-negative, then∥∥∥∥FnDn

∥∥∥∥
C
≤

∥∥∥∥∥ y
n
(β1β2)

1+ τ d̄

∥∥∥∥∥
C

+ τ

∥∥∥∥ ϕn+1

1+ τ d̄

∥∥∥∥
C

≤

∥∥∥yn(β1β2)∥∥∥C̄ + τ∥∥∥ϕn+1∥∥∥C ≤ ∥∥yn∥∥C̄ + τ∥∥∥ϕn+1∥∥∥C .
Substituting this estimate in the last inequality, we find the
chain of relations∥∥∥yn+1∥∥∥

C̄
≤ max

{∣∣∣µn+11

∣∣∣ , ∣∣∣µn+12

∣∣∣ , ∥∥yn∥∥C̄ + τ∥∥∥ϕn+1∥∥∥C}
≤ max

{∣∣∣µn+11

∣∣∣ , ∣∣∣µn+12

∣∣∣ ,max
{∣∣µn1∣∣ , ∣∣µn2∣∣}

+ τ

∥∥∥ϕn+1∥∥∥
C
,

∥∥∥yn−1∥∥∥
C̄
+ τ

(∥∥ϕn∥∥C
+

∥∥∥ϕn+1∥∥∥
C

)}
≤ . . .

≤ max

{
max

1≤k≤n+1

{∣∣∣µk1∣∣∣ , ∣∣∣µk2∣∣∣}+ n∑
k=0

τ

∥∥∥ϕk+1∥∥∥
C
,

∥∥∥y0∥∥∥
C̄
+

n∑
k=0

τ

∥∥∥ϕk+1∥∥∥
C

}
. (41)

Given that

max
1≤k≤n+1

{∣∣∣µk1∣∣∣ , ∣∣∣µk2∣∣∣} ≤ max
t∈ω̄τ
{|µ1 (t)| , |µ2 (t)|} ,

n∑
k=0

τ

∥∥∥ϕk+1∥∥∥
C
≤ tn+1max

t∈ω̄τ
‖f (t)‖C ,

from (41) we obtain the required relation (40).

D. NUMERICAL TEST
We consider the problem (13)–(17) with a given input data
l1 = 0, l2 = π , T = 1, k (u) = u2, r (u) = u, q (x) = 1+ x2

and the exact solution u (x, t) = et (sin x + 1). The starting
non-uniform spatial nodes are shown in Table 1. To increase
the number of the nodes, we use the following law

x2i = (0, 375+ r) xi+1 + (0, 625− r) xi,

where r ∈ [0; 0, 25) – is a random variable following the
normal distribution.

For illustration of the efficiency of the new algorithms on
non-uniform grids the error of the method in maximum form

‖z‖C = ‖y− u‖C = max
(x,t)∈ω

|y (x, t)− u (x, t)| ,
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TABLE 1. Starting non-uniform spatial nodes (N = 10).

TABLE 2. Numerical results on non-uniform spatial grids for problem
(13)–(17).

of difference scheme (29) approximating the given problem
are shown in Table 2.

The numerical experiments illustrate the increasing of the
accuracy of the new scheme and for scheme (29) the order of
accuracy O

(
h2 + τ

)
is reached on coarse grids.

VI. ANOTHER APPROACH FOR CONSTRUCTION OF
MONOTONE SECOND-ORDER FINITE-DIFFERENCE
SCHEMES ON NON-UNIFORM GRIDS
To simplify evaluation, we consider the linear Gamma equa-
tion with the convective transport being non-divergent [44]

Lu =
(
k (x) u′

)′
+ r (x) u′ − d (x) u = −f (x) ,

k (x) ≥ k1 > 0, d (x) ≥ d1 > 0, l1 < x < l2,

u (l1) = µ1, u (l2) = µ2. (42)

We can construct similar schemes by using the identi-
ties (28) and ku′ = 0.5

(
(ku)′ + ku′ − k ′u

)
. Suppose that

b (x) = r (x) /k (x) and L1v = v′′ + bv′ we rewrite the
equation (42) in the form

Lu = 0.5L1 (ku)+ 0.5kL1u− 0.5uL1k−du = −f

We change the differential operator L1 on the grid ω̂h by the
following second order difference operator L1h:

L1hv = κvx̄x̂ + b+vx + b−vx̄ = L1v (x̄)+ O
(
h̄2
)
, (43)

On the grid ω̂h we change the differential operator L by Lh

Lhu = 0.5L1h (ku)+ 0.5k(β1β2)L1hu

− 0.5u(β̄3β̄4)L1hk − d̄u(β5β6), (44)

where

b+ =
r+

k
(x̄) ≥ 0, b− =

r−

k
(x̄) ≤ 0,

r± = 0.5 (r ± |r|) , κ =
1

1+ R
,

R =
h+ + 2h

6
b+ −

2h+ + h
6

b− ≥ 0, d̄ = d (x̄) .

The variable in space weights β̄3, β̄4, β5, β6 are defined by
fulfilment of the condition (32) in the following way

β̄3 = 0.5
(
h̃L1hk −

∣∣∣h̃L1hk∣∣∣) / (h+L1hk) ,
β̄4 = −0.5

(
h̃L1hk +

∣∣∣h̃L1hk∣∣∣) / (hL1hk) ,
β5 = 0.5

(
h̃−

∣∣∣h̃∣∣∣) /h+, β6 = −0.5
(
h̃+

∣∣∣h̃∣∣∣) /h.

Therefore, the difference scheme

Lhy = −ϕ, ϕ = f (x̄) , y0 = µ1, yN = µ2, (45)

can be used for approximating differential problem (42) on
arbitrary non-uniform grid with the second order approx-
imation. For uniform grid R = 0.5h |r| /k , the differ-
ence scheme (45) will degenerate to be the well-known
monotone scheme of second-order approximation [39]. The
difference scheme (45) can be rewritten as the following
canonical form (5)

Aiyi−1 − Ciyi + Biyi+1 = −Fi, i = 1, 2, . . . ,N − 1,

y0 = µ1, yN = µ2.

with coefficients

Ai = 0.5
[(
k(β1β2) + ki−1

) (
κi − b−h̄i

)
/ (h̄ihi)

− β̄4iL1h,ik
]
− β6id̄i,

Bi = 0.5
[(
k(β1β2) + ki+1

) (
κi + b+h̄i

)
/ (h̄ihi+1)

− β̄3iL1h,ik
]
− β5id̄i,

Ci = d̄i + Ai + Bi, Fi = f (x̄i) . (46)

It is obvious that Ai > 0,Bi > 0,Di = d̄i > 0.
Hence, for arbitrary non-uniform grid refinement, the coeffi-
cients (46) of the difference scheme (45) will fulfill the condi-
tions (6)–(7) (unconditional monotonicity). By Lemma 1 we
acquire two-sided estimates for the difference scheme solu-
tion (45) for i = 0,N

yi ≥ min
{
µ1, µ2, min

1≤i≤N−1

(
f̄i/d̄i

)}
,

yi ≤ max
{
µ1, µ2, max

1≤i≤N−1

(
f̄i/d̄i

)}
.

Moreover, according to Corollary 1, the difference
scheme (45) is stable by right-hand side and by the boundary
conditions. For the solution, we have the following a priori
estimate

‖y‖C̄ ≤ max
{
|µ1| , |µ2| ,

∥∥f̄i/d̄i∥∥C} . (47)

Substituting y = z+u in the equation (45), we get the problem
for the method error

Lhz = −ψ, ψ = Lhu+ ϕ, z|γh = 0. (48)

It is obvious that ψ = O
(
h̄2
)
, h̄ = max

1≤i≤N
hi. Because

for the problem (48) all conditions (6)–(7) of the maxi-
mum principle are fulfilled, from (47) we can find out that
‖z‖C̄ ≤ ‖ψ‖C ≤ ch̄

2, i.e. the difference scheme (45) will
converge to the exact solution with the order convergence
being two.

It is similar, we can use formulas (33), (34), (43), (44)
to construct the usual six-point stencil of monotone second-
order approximation difference scheme for the Gamma equa-
tion (13)–(15) on the non-uniform gridω = ω̂h × ωτ with the
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support of the change g (x, u) = r (x) /k (u) and the operator
3v = v′′ + gv′, v = v (u)

yt(β1β2) = 0.5
[
3h

(
k (y) ŷ

)
+ k(β1β2) (y)3hŷ

− ŷ(
β̃3β̃4

)3hk (y)
]

− d̄ ŷ(β5β6) + ϕ, y
0
i = u0 (xi) ,

yn+10 = µ1 (tn+1) , yn+1N = µ2 (tn+1) , (49)

where

3hv = κ̄vx̄x̂+g
+vx + g−vx̄ , 3hv̂= κ̄ v̂x̄x̂ + g

+v̂x + g−v̂x̄ ,

β̃3 = 0.5
(
h̃3hk −

∣∣∣h̃3hk
∣∣∣) / (h+3hk) ,

β̃4 = −0.5
(
h̃3hk +

∣∣∣h̃3hk
∣∣∣) / (h3hk) ,

g+ = r̄+ (y) k̄ (y) ≥ 0, g− = r̄− (u) k̄ (y) ≤ 0,

r̄± = 0.5 (r̄ ± |r̄|) ,

k̄ (y) =
[
1
/
k (y−)+ 1

/
k (y)+ 1

/
k (y+)

]/
3,

κ̄ =
(
1+ R̄

)−1
, R̄ =

h+ + 2h
6

g+ −
2h+ + h

6
g− ≥ 0,

d̄ = q (x̄) , ϕ = f
(
x̄, t̂
)
, x̄ = x + h̃.

It is easy to show, that the difference scheme (49) approx-
imates the original differential problem with second order
on arbitrary non-uniform spatial grid, and the inequality (38)
guarantees the fulfilment of the positivity condition for the
coefficients (6)–(7) (i.e., the difference scheme (49) is mono-
tone), and for a difference solution the two-sided estimates of
the form (39) are valid.

VII. IMPLICATIONS
A great attention of many scholars to mathematical models
utilised for pricing complex financial instruments, in recent
years, has suggested the interesting research area of finan-
cial mathematics in which Black-Scholes model (BS) is a
prominent example. Indeed, there is a large number of studies
on this equation in the solution and application context with
the employment of diverse numerical schemes like explicit
difference schemes [13], finite difference scheme [45], mul-
tivariate padé approximation scheme [46] and Cauchy Euler
method [32]. Nevertheless, applications of monotone finite
difference scheme of second-order approximation for pricing
models in finance are still very few. Therefore, to fill this
research gap in mathematical financial, this paper adopts
this kind of scheme for Gramma equation which is trans-
formed from the non-linear BS equation for option price
in an effort to derive the approximation solution of the
nonlinear parabolic equations (for the second derivative of
the option price). Specifically, in the problems of unlimited
nonlinearity (or nonlinearity of unlimited growth), the basic
properties of the differential problem may not be preserved
when converting from a problem for a differential equa-
tion to the corresponding one for a difference equation. For
instance, the approximation solution’s values may not belong
in a certain neighborhood of the exact solution’s values.

Hence, two-side estimates for difference solution need to
be proved to attain the approximation solution that belongs
to some neighborhood of the exact solution (i.e. difference
solution y ∈ D̄u, then condition (18) is satisfied, and it follows
that equation (16) is uniformly parabolic). Based on the tech-
nique of O.A Ladyzhenskava, the findings of this paper show
that a two-side estimate for the difference solution, which is
completely consistent with a similar solution estimate of the
differential problem, was obtained. The empirical results are
expected to be generalised to construct monotone finite dif-
ference schemes for two-dimensional quasilinear parabolic
BS equations. These issues will be clarified in future work.
In addition, this application of this method to solve BS pricing
models can be reproduced for other mathematical models
in finance such as Kolmogorov equations, Vasicek pricing
equations.

VIII. BLACK-SCHOLES EQUATION FROM THE
PERSPECTIVE OF ELECTRICAL AND ELECTRONICS
ENGINEERING
The proposed difference schemes can be used for solving
the Black-Scholes equation (by supporting the Gamma equa-
tion). The Black-Scholes equation plays an important role
not only in financial engineering but also in electrical and
electronics engineering. In this section, we discuss on two
well-known equations that have many important applications
in electrical and electronics engineering: the heat equation
and the Schrodinger equation. They can be transformed
into the Black-Scholes equation. The equations are widely
used in studying quantum computing, light-emitting diodes,
microprocessor, radiological imaging [48], microscopy imag-
ing [49], image restoration (e.g., based on Perona-Malik
model [50]), etc.

A. TRANSFORMATION OF THE HEAT EQUATION TO THE
BLACK-SCHOLES EQUATION
Let consider the following heat equation:

∂u
∂t
=
∂2u
∂x2

, x ∈ (−∞,+∞) , 0 ≤ t ≤
σ 2

2
T ,

u (x, 0) = e−αxv (x, 0) = e−αx f
(
ex
)
, x ∈ (−∞,+∞) .

Supposing

α =
σ 2
− 2r
2σ 2 , β = −

(
σ 2
+ 2r
2σ 2

)2

,

and we consider that

v (x, t) = eαx+βtu (x, t) := φu.

Computing the partial derivatives:

∂v
∂t
= βφu+ φ

∂u
∂t
,

∂v
∂x
= αφu+ φ

∂u
∂x
,

∂2v
∂x2
= α2φu+ 2αφ∂

u
∂x
+ φ

∂2u
∂x2

.
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Hence, we acquired the following Black-Scholes equation:

∂v
∂t
=
∂2v
∂x2
+

(
2r
σ 2 − 1

)
∂v
∂x
−

2r
σ 2 v,

x ∈ (−∞,+∞) , t ∈
[
0,
σ 2

2
T
]
,

v (x, 0) = V
(
ex ,T

)
= f

(
ex
)
, x ∈ (−∞,+∞) .

B. TRANSFORMATION OF THE SCHRODINGER EQUATION
TO THE BLACK-SCHOLES EQUATION
We consider the following Schrodinger equation:

ih̄
∂

∂t
ψ (x, t) = Ĥψ (x, t) ,

where

Ĥ = −
h̄2

2m
∂2

∂x2
+ V (x, t) ,

i – the imaginary unit, h̄ = h
2π , h – the Planck const, V (x, t)

– a potential of an electric field. We only consider the free
Schrodinger equation, i.e., V (x, t) = 0. Then, we set:

τ := it, h̄ := 1, m :=
1
σ 2 , x := ln S,

ψ (x, t) := e
−

(
1
σ2

(
σ2
2 −r

)
x+ 1

2σ2

(
σ2
2 +r

)2
t
)
C (x, t) .

Then we acquired the Black-Scholes equation as follows:

∂C (S, τ )
∂τ

= −
σ

2
S2
∂2C (S, τ )
∂S2

− rS
∂C (S, τ )
∂S

+ rC (S, τ ) .

As we can see that the Black-Scholes equation, as well as the
Gamma equation, has a close relation to equations of mathe-
matical physics such as the heat equation and the Schrodinger
equation. In other words, the proposed difference schemes
can be applied for solving problems of the field of electrical
and electronics engineering.

IX. CONCLUSION
Based on regularization principle, we developed monotone
finite-difference schemes with second-order of local approx-
imation on both uniform and nonuniform grids for the initial
boundary value problem for the Gamma equation. Moreover,
two-side estimates of the difference solution are presented.
Such estimates not only provide a manner to prove the
non-negativity of the exact solution, but it is also helpful
to find out sufficient conditions based on the input data if
the nonlinear problem is parabolic. Consequently, a priori
estimate of the approximate solution in the grid norm C
depending on the initial and boundary conditions only is
proved.
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