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ABSTRACT To support the big-data processing needs of large-scale deployments of smart devices, there
is significant interest in moving from cloud-computing to multi-agent (fog-computing) models, given these
algorithms scalability and self-healing properties with respect to nodes and link failures. However, these
algorithms are often based on the average consensus primitive, which is, unfortunately, vulnerable to data
injection attacks. Recognizing this challenge, this work proposes three novel methods for detecting and
localizing adversarial nodes using neural network (NN) models. The methods proposed are based on fully
distributed algorithms, wherein each node locally updates its local states by exchanging information with
its neighbors without supervision. Compared to the state-of-the-art, the proposed approach leverages the
automatic learning characteristics of NN to reduce the dependence on pre-designed models and human
expertise in complex internal attack scenarios. Simulation results show that the NN-based methods can
significantly improve the attacker detection and localization performance.

INDEX TERMS Gossip algorithm, average consensus, neural network (NN), insider attack, detection and

localization.

I. INTRODUCTION

Nowadays, distributive resource allocation is expanding its
footprint and attracting worldwide research and development
efforts [1]-[4]. Typical examples of cloud computing [5], [6]
applied to the Internet of Things (IoT) are 5G bandwidth
management [7], [8] and wireless network utility maximiza-
tion [9], [10], and federated learning [11], [12]. However,
to achieve better responsiveness and scalability, multi-agent
algorithms are considered a preferable alternative to cloud-
based solutions for a range of applications such as real-time
control, resource management, [13], [14], and also resource
allocation problems [15]-[17]. When they aim at a coordi-
nated response, the majority of these algorithms incorporate
a peer-to-peer consensus primitive, that leads to a consistent
globally optimum decision [18]-[20]. In consensus protocols,

The associate editor coordinating the review of this manuscript and

approving it for publication was Thanh Ngoc Dinh

VOLUME 8, 2020

interacting nodes are randomly selected and locally execute
computations with a node-to-node message passing proto-
col. Specifically, each node independently runs a consen-
sus protocol in an iterative manner, where at each iteration
it exchanges local information with its neighbors and then
updates its local states. Such algorithms are inherently robust
against intermittent communication and provide a certain
degree of privacy for the participating agents compared to
cloud-based centralized solutions. Despite such appealing
features, decentralized algorithms are inherently vulnerable
to insider data injection attacks, since each node implements
the computation and message passing protocol iterations
without any supervision [21], [22].

Generally speaking, the way malicious agents can be
detected depends on the specific attack strategy. Attack-
ers may simply jam the distributed algorithm by inject-
ing random data that impede the convergence [23], while
in Sybil-type attacks they simultaneously assume multiple
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unique IDs, overwhelming the rest of the system and steer-
ing it towards specific objectives [24], [25]. This behavior
at the application or at the physical communication layer
depart significantly from the norm. In an insider attack, how-
ever, nodes can collude to force the system to converge to
their target outcome following strategies that are harder to
discriminate [22], [26], [27].

This is the kind of attack model we focus on in this paper,
in which attackers nodes are coordinated and act as stubborn
agents [28] sending messages to their peers that contain a
constant bias [21], [22], [27], [29], [30]. As indicated! in
[22], [27], under such coordinated attack the network always
converges to a final state equal to the bias.

In the literature, a popular approach for the detection of
the nodes anomalous behavior is to have each node compute a
neighbor dependent score using the messages received during
the protocol execution. For instance, in [23], the authors
leveraged the insight that the presence of attackers may slow
down the network convergence to design a score that signals
a possible attack. In [32], the authors designed a compar-
ative score, searching for a node message patterns that are
dissimilar relative to the messages of other neighbors. In [33]
the authors showed analytically and experimentally that it is
possible to determine if messages come from the same source
at the physical layer, providing a solution for the detection of
Sybil-type attacks. In [22], [27] the authors proposed several
strategies based on carefully crafted metrics for detecting and
localizing attackers. While these methods have reasonable
performance, the score design is somewhat ad-hoc and other
characteristics of the peer-to-peer interactions may reveal
the attack more efficiently and accurately. Our idea is to
leverage deep-learning to detect attacks in multi-agent algo-
rithms. In the area of network security, and network intrusion
detection in particular, neural networks (NNs) have been
extremely popular tools for classifying anomalous behavior.
For example, in [34], use NN for external intrusion detec-
tion. Similarly, [35] used a NN classifier in a hierarchi-
cal network intrusion detection system, pre-processing the
data to produce a statistical score as the input of the NN.
In [36], a NN-based predictor, fusing past and present neigh-
bors states, was proposed to identify malicious nodes in a
wireless sensor network. The authors in [37] utilized NNs
to detect malicious website visitors and defend against the
distributed denials of service (DDoS) attacks. In [38], deep
learning algorithms including NN are utilized to detect the
internet intrusion for vehicles, while their focus is based on
detecting different types of cyber-attack. The work in [39]
utilized NN to detect insider attacker. However, they sim-
ply explored neighbors’ information from their steady states
and thus the performance gain is restricted. While the few
examples above are insufficient to survey the literature on NN
approaches for network intrusion detection, to the best of our
knowledge the application of NN classifiers to detect attacks

IThe convergence properties of average consensus gossiping with stub-
born agents were studied in [31].
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to multi-agent algorithms is new. The purpose of this work is
to fill in this gap, by providing evidence of the potential of
NN in this context.

While our NN model and our training philosophy can be
applied to a wide set of multi-agent algorithms and attack
scenarios, we focus on testing the approach on a case that
has been thoroughly studied in [22], [27], to facilitate the
comparison. The learning mechanism in this work is super-
vised such that NNs are trained in an offline manner with
labeled data collecting from the normal nodes. Specifically,
our strategy applies NN to three type of features extracted
from the training data. The first two features are analogous to
the ones used in [22], [27]: we call our classifiers a NN-based
time difference (TDNN) strategy (a simple version was first
introduced in [39]), a NN-based spatial difference (SDNN)
strategy. We add to that a hybrid model that combines the
discrete Fourier transform (DFT) of the sequence of messages
received by a neighbor, and call this method the NN-based
frequency difference (FDNN) strategy. These three methods
run in a fully distributed manner wherein each normal node
detects and localizes attackers independently. As our numer-
ical results in Section IV confirm, compared with the statis-
tical score-based methods, the proposed NN-based methods:
1) can automatically learn from the training data and reduce
the dependence on pre-designed models and human exper-
tise; 2) can adaptively scale the output metrics such that the
decision thresholds for detection and localization tasks can
be conveniently set between 0 and 1; 3) can significantly
improve the performance for attacker detection and local-
ization as NN has the ability to fully explore information
underlying the data; 4) are more robust in the case that the
statistics of the real environment is mismatched with the prior
information which we have used to design the score-based
method or train the NN. Of course, possible disadvantages
are that they incur in training cost, and that these approaches
are not suitable for zero-day attacks.

The paper is organized as follows. In the Section II,
the attacker model based on the average consensus algorithm
and two score-based strategies for detecting and localizing
the internal attack are described. In Section III, we propose
the generalized NN architecture for the detection/localization
tasks and introduce three detection and localization methods

Algorithm 1 The Randomized Average Consensus Protocol

Input: initial states: xlk 0) = yl.k VieV.
forr=1,2,---,T
o Uniformly wake up a random node i € V
e Node i select a node j € N; with probability P;;
e Update the states of node i and node j

X+ D =xf(t+ 1) = (& (1) + x5 (1)/2 (1)

e The other nodes keep their original states
Yy # i, j, xK(t 4+ 1) = xF@0)
end for
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based on NNs. Simulation results are illustrated in Section I'V.
We conclude and further discuss with simulation results in
Section V.

Il. SYSTEM MODEL BASED ON AVERAGE

CONSENSUS

We model the network as an undirected graph G = (V, £),
where V = {v1, - - - , vy} represents the set of all nodes with
[V| = N.The setof edges £ € V x V, where (v;,vj) € €
represents the communication link in the network. v; and
v; can directly communicate with each other if there is a
communication link (v;, v;) between them. The neighbor set
of anode i is defined as:

./\/;'Z{VjEVZ(Vi,Vj)Eg}, Vie{l,2,---,N}. (2)

Normally, all the nodes in the network follow a randomized
gossip protocol. That is, the node i interacts with its direct
neighbor j € A; to update its local state information. Without
loss of generality, we assume that this consensus algorithm
runs a total of K instances independently. In each instance,
we let x{‘ 0) = yl.k represents the initial state of a normal node
i, yik is a stationary discrete random variable. The average
consensus protocol is described by the recursion:

i+ ) =Aoxk@), r=1,2,...,T. (3)

where the random vector x*(r) = (xf(t), ... ,xllf,(t))T e RN
represents the states of all the nodes at the tth iteration,
A*(t) e RV is the weight matrix at instance k and time ¢.
To simplify notations, we shall drop the superscript k on A(¢)
from now on. The asynchronous average consensus protocol
we consider (in the absence of attackers) is summarized in
Algorithm 1. In the tth time slot, a node i select a node j at
random, and both update their respective states to be equal to
the average. The weight matrix is:

(ei—ej)e;—e)'

Ajn)y=1— 4)
2
wheree; = [0,---,0,1,0, --- ,0]"T isan N x 1 unit vector
with the ith element equal to 1. By defining [P]; = P;; and
Y = diag([Zy, - -, Xn]) as a diagonal matrix with ¥; =
Zj]\/: 1(Pjj + Pj;), the expected weight matrix is:
A=E[A@)] =1 ! ):+P+PT )
B - 2N 2N

It can be verified that A is non-negative, symmetric and
doubly stochastic. The expected states can be expressed
as

Elx*(0)x*(0)] = AE [x*(t — DIx*(0)] = A'xk(0),

Fact 1 [40]: Suppose the network is connected in expec-
tation, i.e., if A\y(A) < 1. The state of node i € V converges
to the average of network initial states

lim x*(1) = 17xF0)/N. (6)
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FIGURE 1. An attacked-communication network.

A. THE ATTACK MODEL

In our model, attackers are defined as nodes whose states
cannot be changed by the others. As illustrated in Fig. 1,
we divide the nodes into a normal nodes set ), and an attacker
nodes set Vg, i.e.,V =V, U Viand N = |V,| + |Vs|. If node
Jj is an attacker, its update will follow a modified rule:

Xt + 1) =o" +mi0) @)

where of represents the desired value of the attackers in
kth instance, and mjk (#) is an artificial noise generated by
the attackers to confuse the network. In order to disguise
the behavior of the attackers as normal nodes, the artificial
noise decays exponentially with time, emulating the con-
verge trends expected in the algorithm. To describe the attack
model, let us partition the full state vector as:

@y = (o7 FoT)’ ®)

where s¥(t) € Rl and r¥(r) € RIV'! are the state vectors
of attackers and normal nodes respectively. To model the
fact that an attacker’s state cannot be changed by the others,
the weight matrix follows that A;;(t) = 1ifi = j € V, and
Aj(t) = 0if i € Vy,j € V. As such, the expected weight
matrix A admits the block structure:

— I 0
4= <1—; 5> ’ ®
where B € RV IxVsl D e RVIXVrl gre the sub-matrices
between attacker and normal nodes, and between normal and
normal nodes, respectively. In this scenario, the attackers,
if undetected, will succeed in steering the final states:
Fact 2 [27]: Under the attack model, the state of node

i € Vin each k instance converges to the desired value o,
i.e.,

lim x*() = o 1. (10)
—00

We remark that (7) describes a coordinated attack model
where the desired value of attackers are the same. As pointed
out by [27], this is a challenging scenario as the attackers’
identities are not easily revealed. Fig.3 in [27] has shown the
evolution of all node states in an example of the average con-
sensus algorithm when one attacker is present. Fact 2 proved
that the average consensus algorithm will converge when the
insider attacker is present in the network.
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Detection task

&QGN/

Localization task
{ > € attacker localized \
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~ | <& no attacker.

Eg \Qﬁ

FIGURE 2. An illustration of the detection and localization tasks in [27].

0t =
J < € not an attacker.

B. ATTACKER DETECTION AND LOCALIZATION

The detection and localization tasks in this paper are con-
sidered under the same hypotheses as those in our previous
work [27]. The first task is to detect if there is attacker(s)
in the network. This network detection task runs in a fully
decentralized fashion at each normal node i € V,, i.e.,

Ho : Vs = @, There is no attacker in the network,
Hi : Vs # 0, Attacker is present in the network. (11)

Under H;, the second task is to observe whether there are
attackers in the neighborhood of node i. The neighborhood
detection task is defined as follows:

7-[6 : N; NV = @, No neighbor is an attacker,
7-[’1 : Ni NV # (B, At least an attacker neighbor. (12)

When ’H’i is detected at node i, the third task is to locate
the attacker from the neighbors. We define the neighborhood
localization task as follows:

”Hg . j & Vs, Node j is not an attacker,

'H'{ : j € Vs, Node jis an attacker., Vje N;. (13)

If Hllj is true, we say that the attacker is localized. Then
node i will disconnect from the attacker in the future
communication.

An illustration of the detection and localization tasks is
shown in Fig. 2. We denote xi.‘ as the state vector collected
by node i in kth instance where x¥ is the state of node j € N,
which can be directly obtained by node i. The detection and
localization tasks are described below:

xé‘ = [xf,x’f,-~-,x]{‘,~-~ xllj\/i‘]-r VjeN. (14)
. M . H]
d = DTG, - xK) = 5, 6 =LT(x}, - ,x{) 2 e.

7-{’ HY
where £ = [Zl, el N 17 is the metric vector of neighbors

for the purpose of locahzatlon K is the total instances of the
average consensus algorithms observed, § > 0 and € > 0 are
some pre-designed thresholds.

Remark 1: DT(e) and LT(e) are detection statistical deci-
sion functions judiciously designed for detection and local-
ization tasks. A node i € V, through these decision functions
to calculate the criterion indexes to discern malicious nodes.

Next we review the score based strategies for detection and
localization tasks proposed in [22], [27].
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C. SCORE-BASED STRATEGIES FOR INTERNAL ATTACKS

1) TEMPORAL DIFFERENCE STRATEGY

The first score-based strategy in [22], [27] is called the tempo-
ral difference method (TDM). Assume that we already have
some prior information about the mean of the attacked value
and the mean of the intial states of the normal nodes. Usually,
ExfO)) =a #7 = E[x]k (0], the expected initial value of
an attacker s € V; is different from the normal node j € V.
When ¢ — oo the network converges to IE[xf (00)]. Then each
normal node i € V,, in a decentralized fashion, evaluates the

following score’:

B = g LiaaGf (D —xfO), jeN. (1)

Herein, xk(T) xk(O) are respectively the last and the first
observed state Value for node j in the neighborhood of node i.
To identify whether there is an attacker on the network,
the following detection criteria is used:

_ M
—E| s 5, (16)

Hi
where E,- = (1/|M|)Zj€/\[i &ij, & > 0 is a pre-designed

threshold. The intuition underlying (16) is_ that E[D"l] =0
when the attacker is not present while E[p‘l] # 0 otherwise.

[ . 1
D = [z e |65

For localization task, the H’lj and ’Hg events are distin-
guished by checking the criteria:

ij #
Ly = 1§ = e,
"

VieN;. (17)

where €; > 0 is a pre-designed threshold.

2) SPATIAL DIFFERENCE STRATEGY

The second strategy, proposed in [27], is the spatial difference
method (SDM). Note the expected state in each ¢ satisfies
E[xk(t) — xk(t)|’H0 = 0 when there are no attackers in
the network while E[xk(t) — xk(t)IHﬂ £ 0,j € N; when
attacker is present in the network For the detection task,
the criterion is:

o =" (ho - o). (18)

t=0

D) = INI Z( Zwl,) ; . (19)

1

~

where xk(t) = (1/|NViD Z]EN xk(t) is the average value of
node i’ neighbors at time # in the kth instance. Notice that gp
is the difference between the value of a neighboring node Jj
and the average value )_cf (), and then sum up this difference
from all the observed consensus iterations. In the above, &;;
is a pre-designed threshold.

2In practice, each agent evaluates A; (t) = xk t+1)— xk () at time tick ¢
and sum it over all the time ticks to obtaln SU
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For localization task, we consider the following criteria:

T
gh=> " () —xf (1) — ¢}, (20)
t=0
K ini
.. 1 5 2 0
L= (§Z¢5> < e 1)
k=1 HY

where (pfi is calculated by node i according to the equation
(18). The metric g?)lkj is designed to compare a neighbor node
Jj to the node i itself. Similarly, €7 are some pre-designed
threshold for localizing attackers.

IIl. NEURAL NETWORKS AIDED DETECTION

AND LOCALIZATION

As shown in [27], a well-constructed detection and local-
ization functions is crucial to the detection performance in
data injection attacks. However, we observe that in the above
score-based strategies, D, Lij, Dé and L;’ are roughly linear
functions which fuse the state vector obtained by node i into
a scalar score for classification. A natural question that arises
is whether there exists nonlinear function that yields better
statistics for the classification problem at hand. This is a nat-
ural application of NN which concatenates layers of neurons
to approximate complicated functions. Next, we consider the
detection and localization process as a classification problem
with the state vector of node i. Specifically, our learning
mechanism here is supervised. In particular, we assume that
the training center has perceived some side information about
the mean of the attacker value and the mean of the normal
nodes’ initial states. Thus, it can mimic the attacked algorithm
in an offline manner and collect the neighbors’ data from the
normal node which is conducting detection and localization
tasks. In this process, since we have known which one is the
attacker, the training data is therefore labeled. Once we have
trained the NN, it could be deployed on each normal node in
the network.

Let M = max; |V;| be the input dimension of these NNs.
In what follows, we describe the general NN architecture
for the detection/localization tasks, as well as their training
mechanisms. Then, we describe three types of novel features
to be used for training the NNs — including the tempo-
ral difference NN (TDNN), spatial difference NN (SDNN),
and a Fourier transform-based NN (FDNN). For simplic-
ity, we assume that the graph degrees are regular such that
M = |N;| for all i and relegate the discussions with irregular
degree-graphs to Section III-E.

A. DETECTION AND LOCALIZATION TASKS VIA NN
For the detection task, the NN used for the detection is
illustrated in Fig. 3 and described below:

ad'=fWha"='+b", h=1,....n—-1; (22
H

di =8, (23)
M

di — g(Wnan—l +bn),
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FIGURE 3. NNs method at node i: (Left) NN for detection task, (Right) NN
for localization task.

where aY is the input feature vecctor, Wh e RLixLi-1 g
weight matrix between hidden layer 4 and hidden layer 4 — 1.
b" is a bias vector, and Ly is the number of neurons in the
hidden layer A. f is the activation function and g is a sigmoid
function. @, h > 0 represents the state of the Ath hidden
layer, and d’ € R is the expected output of node i. Lastly,
6 € [0, 1] is a prescribed threshold for detection task.

For the localization task, a similar NN is used. We assume
that an attacker is detected in the neighborhood of node i,
ie., H’i is true. The localization network is:

o =fWM T+, h=1,....n—1; (24
, H]
0 — g(Unon—l +e"), E} 2 €, (25)

wher 09 is the input feature, U h, 0" 1 and ¢" are the weight

matrix, hidden layer state and bias vector, respectively. In this
task, we train the NN using a one-hot encoding for the output.
For example, when the neighbor j € A is an attacker,
the NN should be trained to produce the output £’ = e;. Here,
£ cRM ande € [0,1]is a pre-described threshold for the
localization task. A normal node i will only run this task if
H’i is true.

Given the labeled training set, the parameters W" and
b", Vh are randomly initialized and then optimized through
minimization of regression error over the training set via the
back propagation method [41]. For the localization models,
the parameters U h and ¢, Vh are initialized and updated in a
similar fashion.

B. TEMPORAL DIFFERENCE STRATEGY

BASED ON NN (TDNN)

Recall that in TDM, the temporal difference values of the
neighborhood are evaluated at each normal node. Based on
the metric &; in (15), we propose a TDNN method that,
similar to the TDM method, uses the following input feature:

A =0"=¢& =152, Eml', (26)

which can be obtained by node i. Compared to the TDM
method, we highlight that the TDNN method uses nonlinear
functions (22), (24) leading to higher expressive power.
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C. SPATIAL DIFFERENCE STRATEGY BASED

ON NN (SDNN)

With the TDNN method, we detect and localize attackers
by observing neighbors’ information in the initial state and
the steady state. A natural extension is to include transient
states in the detection task. In fact, a similar strategy has been
explored in the SDM method [27] and it is natural to use
transient state information as a NN input feature.

For the detection task, as the neighbors’ states of node i will
be affected by attackers when 0 < # < oo, and the malicious
node will directly steer the normal nodes to deviate from their
true average. The node state in the network only changes

slightly over time. We consider the following metric:
kepy o |k k ; .
SK(1) = ’xj O-xke-D|, jeN. @7
| X T
Xij = = Z 255(1)» jeN. (28)

k=1 t=1

The input feature for the detection model is

& =X, =X, Xi1, -, Xim]" . (29)

For the localization task, we identify when attackers appear
directly in the neighborhood of node i. We have E[xf (t) —

XEOIH]) # Bl — xk@HJ]. This motivates us to
consider the following metric:

Ii(t) =

xf (1) = xf (1)

. JEN, (30)

1 K T
Y = EZZ[{}O), jEN;, 3D

k=1 t=0

where Il.]j‘. (1) is the absolute difference between node i and its
neighbor node j. We use the following input feature:

=Y, =1[Yy, Yo, -, Yyl (32)
D. A HYBRID METHOD BASED ON DFT AND NN
Given a length T time series observations obtained for each
neighbor of a normal node, both TDNN and SDNN meth-
ods accomplish the detection/localization tasks using a one-
dimensional summary of the time series. Doing so may fail
to capture some of the important transient properties of the
sequences of messages that are exchanged. On the other
hand, as T > 1, using the complete time series as input
can be computational prohibitive. To remedy this problem,
we consider input features that are computed mapping the
signals in frequency domain, and sampling at a few frequency
indices.

Consider anormal node i € V, and his/her neighborj € N;.
We define the following metric for the detection task.

Dylf 1= % X5, [SL S50 jeNi, (33)

3Each normal node i evaluates Sl{‘i(t) =3 ‘x;‘ ) — x;‘ (t— l)‘ at time tick ¢
and sum it over all the time ticks to obtain Xij- '
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where Sf (1) was defined in (27),f € F ={0,..., T — 1} is
the frequency index, and i = v/—1 is the imaginary number.

We employ the following input feature matrix for the
Fourier Transform based NN (FDNN) detection model run-
ning at node i:

" =D; =[] D} ---D}1" (34)

where Dj; = [D;;[0], Dj[1], - - - , Dy[F — 117, € N; with
F < T — 1. Note that the input dimension is now MF as
depicted in Fig. 3 (left). It is worth noting that the input feature
used by the SDNN method is a special case of FDNN with
F = 1. Compared to the SDNN method, the FDNN method
employs a richer input feature for the NN model.

Similarly for the localization task, we employ the DFT to
transform the time series to generate the input feature. We let

Lylf1i= % T |[Soxfwe 2|,

and define L; = [L;[O0], Ly[1], -+, Lj[F — 111" such that
each node has F frequency parameters. The input feature is
defined as

jeN. (35)

o =L;=[L L)L) (36)

Similar to the detection task, we note that the localization
model has an input dimension equal to MF. To summarize
the above three NN methods, we remark here that the main
differences among these three NN methods are 1) the fea-
tures of neighboring data they use are different, i.e., TDNN
only uses the data from initial states and steady states while
SDNN and FDNN both use the data from initial states, steady
states and transient states; 2) the pre-processing of the data is
different, i.e., FDNN explores the frequency domain of the
data while TDNN and SDNN consider the time domain of
the data sequence; 3) the number of NN inputs is different,
which has been specified in equations (26), (29), (32), (34)
and (36). Besdies, it is worth noting that the advantage of
NN is to approximate a nonlinear function that yields better
statistics for the classification problem at hand. However,
it becomes difficult for us to directly analyze the probability
of detection and false alarm since NNs are dealing with a
nonlinear function without a closed form.

E. THE NN MODEL FOR DIFFERENT

DEGREE-|N;| NODES

We conclude this section by tailoring our M-input NNs to fit
into the scenario when the normal nodes have an heteroge-
neous number of neighbors. Two scenarios are considered:

1) SCENARIO 1

When |N;| > M, the |NV;| neighbors will be divided into
[|N;|/M7 potentially overlapping groups. In the detection
and localization tasks, each group contains exactly M nodes
when using the TDNN, SDNN and FDNN methods. Each
group can be treated as a standard neighbor set of the observe
node and the two tasks can be implemented with the unified
NN model.
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2) SCENARIO 2
When |NV;| < M, we fill the deficient value in the input vector
with a reference value to fit a Degree-| ;| node. For instance,
with the TDNN method, the input feature of the NN can be
expressed by & = [&1, -+, &N ity - - -, il | where & is
(R ——

M—|Ni|
the temporal difference value of node i. Moreover, we can
fill &;; in any position of the inputs in both the two tasks. For
SDNN method, Xj; is used to fill the deficient value to adapt
different degree-|V;| in the detection task. Similarly, we uti-
lize a special value to fill the inputs vector of localization task.
Y, =[Yi;- - Yins Y5 Y*1T when |N;| < M. Where

ﬁf_/
M—|Nj|

Y/ is the reference point, i.e., Y* = min{Y;;|j € N;} for all
samples with the same K in the simulation.

Similar to the TDNN and SDNN methods, we con-
sider two unified models of the FDNN method for
detection and localization tasks, respectively. We uti-
lize two special vectors to fill the input vectors for
two tasks, D; = [Dj;---;Din;; Digy -+ Dyl L =

—_——

M—|Ni|
[Lii; -+ s Lings Ligs - -+ 5 Lij] when |[N;| < M. With a slight
S —
M—|Ni|
abuse of notation, the D;; and L;; are calculated independently
by node i. The simulation results fit different degree-| ;|

node are presented in Section IV-C.

IV. NUMERICAL RESULTS

In this section, we compare the TDNN, SDNN and FDNN
algorithms detection and localization performance with those
of the TDM and SDM from [22], [27]. We simulate the case
of a simple Manhattan network also considered in [22], [27]
(c.f. Fig. 4) with N = 9 and one attacker. The randomized
average consensus protocol (cf. Algorithm 1) is run with
P = 1/|Nil, and is terminated with T = 500. In the
simulations, we set af ~ A(0, 1), yl.k ~ U[-0.5, 1.5]
and m}‘(z) ~ U[- (kz(Z))t (AZ(K))I]. We let the network
run decentralized consensus algorithm for K instances, each
time starting from a new initial state. Generally speaking,
the detection and localization performance will improve as
K increases as we have revealed in our previous works [22],
[27], [39]. Since different methods exhibit different detection
and localization performance, we have to choose different
K so that herein different methods can keep the same level

FIGURE 4. The Manhattan network topology.
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of probability of detection and probability of false alarm to
produce comparable ROC curves. For the detection, each
normal node collects data from those K sets of iterations,
and fuses them to compute the features/scores used for the
detection and localization, as explained in Sections II and III.

We consider each of these NNs with three hidden layers,
and the neurons in each hidden layer are 60, 40 and 20
respectively. To provide the training data for the NNs, we run
4000 samples of the scenario with one attacker in the network
and 4000 samples of the scenario without attacker in the
network. Notice that for each sample, data for K trails are
collected to fuse at the detect node. We label the sample with
‘0’ if the network has no attackers and ‘1’ if any attacker is
present in the network. Similarly, the testing data is formed
by 2000 samples of ‘1’ and 2000 samples of ‘0’. Thus,
the size of training and testing data in our simulations are
set to be 8000 and 4000, respectively. As for the localization
task, we encode the indexes of neighbors by one-hot coding
where the neighboring attacker is labeled by ‘1’ and normal
neighbors are labeled by ‘0’. The training samples for the
localization are collected under the condition that we have
confirmed that one attacker is present in the network and thus
our purpose is to identify which one within the neighborhood
is the attacker. In order to ensure the fairness of the test results,
we randomly select the position of the attacker in the input
vector of NNs. The size for the training and testing data for
localization are set to be 4000 and 2000, respectively.

For all the FDNN methods, we have set 7 = {0, 1, 2}
for the detection task and F = {1, 2, 3} for the localization
task. In this first set of simulations, we have the training
data and test the data coming from the same attackers. The
simulations in Section I'V-D, are done to explore the efficacy
of NNs in classifying attacks not seen in the training data.
This is important because, in practice, there will be little prior
information about the mean of the initial states of the attackers
(i.e. the value of o¥). Hence, it is important for us to test the
NN in scenarios that are statistically mismatched with the
training data.

In this work, the detection and localization models are
actually classifiers for which neural networks produce contin-
uous quantities to predict class membership through different
thresholds; see Fig. 2 for an illustration. To evaluate the
performance for these classifiers, we follow [22], [27] to
define the probabilities:

Pl o= POH = Hi M), Py = PO = Hi M),

Py = PR = H] M), Pl = POHT = 1] 1)),
where Pf1 d (lef) and P}'d (Pff) are the probability of detection
(false alarm) for the neighborhood detection and localiza-

tion tasks, respectively. More specifically, we calculate those
probabilities by

; R
P 2 Ln __ gin __
Pnd - Dp n=1 I(d - d - 1)5 (37)

j 1 Dy in in
P;fzp—nznzlz(d =0Ad" =1), (38)
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. 1 Ln i,l’L Ai,l‘l
Pl = o anll(ej =0AL"=1). (40)

Herein, D, (D,) is the positive (negative) samples in the
ground-truth of the detection task, /(-) is an indicator func-
tion. d"" and d"" are the ground-truth class label and the pre-
dicted class label, respectively. A similar fashion is applied to
the localization task.

Based on these probabilities, the receiver operating char-
acteristic (ROC) is adopted as a performance measurement
for evaluating the NN detection and localization ability of
different methods. ROC is an important evaluation metric,
in which the probability of successful detection or localiza-
tion is plotted on the Y-axis and the probability of false alarm
for detection or localization is plotted on the X-axis. This
measurement is widely used in statistical hypothesis testing,
and also for neural network when it is used as a classifier.
It is obvious that the best possible prediction method would
yield a point in the upper left corner at the coordinate (0, 1)
of the ROC space, representing 100% sensitivity (no false
negatives) and 100% specificity (no false positives). Hence,
curves which approach upper left corner outperforms those
far from it.

A. DETECTION AND LOCALIZATION FOR

ONE ATTACKER

In this subsection, we consider the neighborhood detection
and localization process. We consider only one attacker
present in the Manhattan network in Figure 4. Without loss
of generality, we assume that node 1 is the attacker given that
the network topology is symmetrical. Our training data comes
from the node which is next to the attacker.

The neighborhood detection performance and localization
performance of TDNN are shown in Fig. 5, where we set
the score-based TDM method in [22], [27] as a benchmark.
The detection performance is depicted in Fig. 5 (left), while
the localization performance is depicted in Fig. 5 (right),
where we assume that the neighborhood detection test was
completed without errors (by an ‘Oracle’) . From Fig. 5, it is
obvious that both the detection and localization performances
improve as K increases. The TDNN method improves sig-
nificantly over the TDM method, having good performance
when K > 25.

In Fig. 6, we plot the ROC curves of the SDNN method
with K = 5, where the SDM method in [27] is chosen as a
benchmark. From the plots we see that even when K = 5,
the spatial methods (SDM and SDNN) already provide very
good ROCs in detection and localization, and thus outperform
the temporal method (e.g., TDM and TDNN). This implies
that considering the transient states of the dynamical pro-
cess do provide us more information to identify the attacker.
Moreover, we found that both the detection and localization
performances for SDNN outperform those for SDM. Hence,
the NN improve the detection and localization performance.
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FIGURE 7. The performance for FDNN, SDNN, TDNN, SDM and TDM: (Left)
ROCs for neighborhood detection, (Right) ROCs for neighborhood
localization of attacker. Dotted lines show the performance for SDNN and
FDNNinK =1.

In Fig. 7, we plot the ROC curves of FDNN method with
K = 5, where we set the SDNN, TDNN, SDM and TDM
methods as benchmarks. From the plots we see that when
K = 5, it is obvious that the spatial methods based on
NNs (FDNN and SDNN) provide very good performance in
detection and localization. The SDM method performs better
than TDM and TDNN, since TDM and TDNN only involve
initial and steady states. Moreover, we also plot the ROCs of
FDNN and SDNN methods with K = 1 (the dotted lines)
for a further comparison since they both involve transient
states and NNs. It shows that both the FDNN and SDNN
methods in K = 1 perform well in the two tasks. Actually,
they even outperform the SDM, TDNN and TDM methods
for K = 5. It is interesting to notice that FDNN exhibits
better performance than SDNN confirming the intuition that
the DFT is more informative than the average.

In Fig. 8, we try to investigate the optimal thresholds §
and € defined in (22) and (24) respectively, for the SDNN
and FDNN models when K = 1. Our purpose is to let
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FIGURE 8. Probability of correct localization of all nodes for K = 1: (Left)
SDNN, (Right) FDNN.

nodes which are next to the attacker not only to detect and
localize the attackers, but also classify correctly nodes that
are normal ensuring that nodes that are not next to an attacker,
i.e. those with only normal neighbors, will not falsely detect a
neighborhood attacker. We then plot the ‘““all-correct™ prob-
ability that all neighbors are classified correctly. The plots
show that for SDNN the thresholds (5,¢) = (0.68, 0.22)
provides an “all-correct” probability of 78%, and for FDNN
the thresholds (8, €) = (0.23, 0.27) yields an “all-correct™
rate of 88%.

B. DETECTION AND LOCALIZATION FOR

MULTIPLE ATTACKERS

In this subsection, we consider the case of multiple attackers.
The simulation parameters are the same as those in sub-
section IV-A and TDNN, SDNN and FDNN methods are
adopted to detect and localize attackers with different scales.
Specially, «f is the initial state shared by all cooperative
attackers, and each attacker has a random and independent
noise m]k Suppose that we have in total d attackers in the
network and the detecting node has ¢ attackers in its neigh-
borhood. Thus, the legend with ‘d attackers and c neighbors’
in the figures means that the network contains d attackers and
the detecting node has c attacker as its neighbors.

In Fig. 9, we show the detection and localization perfor-
mance of TDNN with K = 25 in the case of multiple col-
lusive attackers. It shows that the number of the neighboring
attacker (c) has a direct impact on the TDNN detection perfor-
mance. However, when we fix ¢, the total number of attackers
(d) has a slight impact on the TDNN detection performance.
This implies that the neighboring attacker dominates the
detection process. For the localization task, as shown in Fig. 9
(right), normal nodes exhibit similar performance in different
attack scenarios. One reason is that TDNN uses only the
initial and terminal states, the localization performance is
independent of the number of attackers and the neighboring
attackers.

Fig. 10 illustrates the ROC curves of SDNN for detection
and localization of multiple attackers. As seen in Fig. 10
(left), SDNN has excellent detection performance in the
case of multiple attackers for K = 5. In Fig. 10 (right),
the localization performance of SDNN degrades with both the
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FIGURE 11. ROCs for multiple attackers of FDNN with K = 5, where d is
the number of attackers in the network and c is the number of attackers
in the detecting node’s neighborhood.

number of attackers and the number of neighboring attackers.
It cannot work well whend = 5,¢c =3 andd = 7,¢c = 3.
One possible reason is that when there are more neighboring
attackers, the influence of an individual attacker becomes less
pronounced.

The ROC curves of FDNN for detection and localization
of multiple attackers are shown in Fig. 11. One can observer
in Fig. 11 (left) that the detection performance of FDNN
is similar to that of SDNN shown in Fig. 10 (left). On the
other hand, Fig. 11 (right) shows that, unlike SDNN, FDNN
performs very well in the attacker localization task, especially
for the scenariod =5,c=3andd =7,¢c = 3.

Furthermore, looking comparatively at the performance of
FDNN, SDNN and TDNN plotted in Fig. 12 we notice that
FDNN works relatively well in both the attacker detection
and localization tasks with K = 1 and does not experience
the same degradation of localization performance of SDNN
as the number of neighboring attackers increases. We observe
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FIGURE 12. The performance for FDNN, SDNN and TDNN in the presence
of multiple attackers, where d is the number of attackers in the network
and c is the number of attackers in the detecting node’s

neighborhood.

that the performance of TDNN is limited due to the ignorance
of transient state information. Generally speaking, FDNN
performs the best, followed by SDNN and TDNN, which is
consistent with previous results in one attacker network.

C. TAILORING THE NEURAL NETWORK TO FIT A
DEGREE-|N;| NODE

In this subsection, we will describe how to tailor an M -inputs
NN to fit a degree-d node. We denote the number of mis-
matched inputs that do not matching the unified model is
p =M — d. In this setting, we have set M =4 andd = 2,3
or 4. We take the Manhattan network topology as the target
example, and the scenario of d = 1,¢ = 1 is applied
to verify our proposed method. To set up the simulation,
we choose the normal node 2 in the Manhattan network as
the testing node, and thus the neighbors are nodes 1, 3, 5
and 8. When p = 1, we cut off the connection between
node 2 and node 3, and thus neighbors of node 2 remain
node 1, 5 and 8. In the case of p = 2, the testing node
has two neighbors which are node 1 and 8, since we cut off
the connection between node 2 and node 3, as well as the
connection between node 2 and node 5. Note that we would
set node 1 as the attacker when the attacker is present in the
network. The parameters set in TDNN, SDNN and FDNN are
the same as those in previous subsections. The testing data of
different models are generated from a modified Manhattan
network with p = 1 or p = 2. It is worth noting that, more
judicious operation are needed to deal with the problem when
the locations of missing inputs are not the same. In general,
we can randomly select the locations of missing inputs and
replace the values of the missing locations with some specific
values, such as &; for TDNN (ref. Section III-E), X;; and
Y’ for SDNN (ref. Section III-E), D;; and L; for FDNN
(ref. Section I1I-D).

In the left and right parts of Fig. 13, 14 and 15, we show
the detection and localization mismatched ROCs curves for
TDNN (K = 5 and K = 25), SDNN (K = 1) and FDNN
(K = 1) respectively. The results show a slight degradation
in detection and localization performance as p increases. Our
model fits well with irregular degree networks.
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FIGURE 13. TDNN with different deficient size: p = M — d means that the
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FIGURE 15. FDNN with different deficient size: p = M — d means that the
number of deficient inputs is M — d.

D. ROBUSTNESS OF INSIDER ATTACK DETECTION

AND LOCALIZATION

In this part, we test the robustness of the NN methods under
the situation that when the prior information we have is mis-
matched with the actual environment. We simulate scenarios
with mismatched training and testing data. Assume that there
is only one attacker in the network. We train the NNs with
specific af, yl.k and then test it by varying statistic of o and
yik, respectively.

In particular, the training data is collected from a normal
node with only one next-to attacker under the scenario with
af ~ N, 1), y* ~ U[-0.5, 1.5]. Following the order in
the legend in Fig. 16, the first curve is the ROC of the TDNN
matched model. For the third and the fourth curves, under the
trained NN model, we generate the testing data by keeping
af ~ N(0,1) and changing yl.k to yik ~ U[-0.2,1.2]
and yik ~ U[-0.8, 1.8], respectively. The mean of yl.k is
unchanged while the deviation decreases for the third curve
and increases for the fourth curve. The results show that the
performance of the detection and localization both deteriorate
when the deviation of yl.k increases and improve when the
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FIGURE 18. ROCs of FDNN for the mismatch model: o ~ A/(0, 1) and
each entry of y’." is distributed as legended for testing data.

deviation of yl.k decreases. To generate the second and the
fifth curves, we changed the mean of yik. It shows that the
performance of the detection and localization both improve
when |]E[yl.k] — E[al].‘]| increases and deteriorate when the
gap decreases. Meanwhile, the robustness performance of
TDM is also given in Fig. 16. Obviously, the TDNN method
has better robustness performance in both detection and local-
ization tasks when dealing with a test set that is not seen in
training.

In Fig. 17, we investigated the robustness of SDNN and
SDM methods with K = 5 under an attack not seen in the
training data. The curves of SDM follow the same trends
as that in TDNN. Fig. 18 plots the ROC curves of FDNN
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with K = 1. It is worth mentioning that, even if the mis-
match between training data and attack scenario degrades the
performance, SDNN and FDNN methods inherently exhibit
very good detection and localization performance.

V. CONCLUSION AND FURTHER DISCUSSION

In this paper, we have proposed three new defense strategies
for randomized gossip algorithm for average consensus based
on NN to detect and localize insider adversarial nodes. The
NN are trained centrally, and the models are deployed at the
different network nodes for online detection. The experiments
clearly show that the NN methods provide better performance
compared to statistical detectors that rely on simplified expert
models; also, they exhibit good robustness against model
mismatch and remain effective in the presence of coordinated
attacks. At the end of this paper, we want to point it out that
while the focus of this work is on the average consensus
algorithm, the NN-based approach is also adapted to other
decentralized algorithms; some preliminary work has been
done in [42]. As a future work, it would be interesting to try
the NN-based approach on more complicated attack models
and other decentralized algorithms.
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