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ABSTRACT Recognition and pose estimation from 3D free-form objects is a key step for autonomous
robotic manipulation. Recently, the point pair features (PPF) voting approach has been shown to be effective
for simultaneous object recognition and pose estimation. However, the global model descriptor (e.g., PPF
and its variants) that contained some unnecessary point pair features decreases the recognition performance
and increases computational efficiency. To address this issue, in this paper, we introduce a novel strategy
for building a global model descriptor using stably observed point pairs. The stably observed point pairs
are calculated from the partial view point clouds which are rendered by the virtual camera from various
viewpoints. The global model descriptor is extracted from the stably observed point pairs and then stored in
a hash table. Experiments on several datasets show that our proposed method reduces redundant point pair
features and achieves better compromise of speed vs accuracy.

INDEX TERMS 3D object recognition, 3D pose estimation, point cloud, point pair feature.

I. INTRODUCTION
3D object recognition is a popular topic in computer vision
with numerous applications including robotics, biometrics,
navigation, remote sensing, medical diagnosis, entertain-
ment, and education. The aim of 3D object recognition
and pose estimation includes correctly recognizing objects
presented in a scene and estimating their pose containing
3 degrees of rotation and 3 degrees of translation. With the
availability of low-cost 3D data acquisition devices such as
Microsoft’s Kinect and Intel’s RealSense, research on 3D
object recognition and pose estimation algorithms has been
extensively developed over the last two decades. However, 3D
object recognition and pose estimation are still a challenging
task in the case of perturbations,such as noise, occlusions and
clutter.

Many different methods have been proposed for 3D
object recognition and pose estimation [1], such as 3D fea-
ture descriptors based methods [2]–[13], template matching
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based methods [16]–[18] and deep learning based methods
[19]–[26]. Usually, 3D feature descriptors based meth-
ods can broadly be classified into two categories: global
feature-based algorithms and local feature-based algorithms.
The global feature-based algorithms have efficiency in the
aspects of computation time and memory consumption.
However, they are sensitive to occlusion and clutter, and
require the objects of interest to be segmented before-
hand from the background. Compared with global feature-
based algorithms, local feature-based algorithms are more
robust to occlusion and clutter [14], [15]. But local feature-
based algorithms incur additional computational time in
the subsequent stages of matching and hypothesis ver-
ification. Template matching based methods is able to
detect textureless objects but is sensitive to occlusion. More
recently deep learning based methods have been introduced
into 3D object recognition and pose estimation [19]–[24]
and has good performance in public datasets. However,
deep learning based methods require massive computational
power and a large amount of time to prepare annotated
datasets.
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PPF [27] has shown very successful object recognition
performance on different 3D datasets and has been applied
in many practical scenarios [44]. Because of its superior
performance, PPF has been improved and extended by many
authors [28]–[31]. However, PPF and its variants share a
common problem: all point pair features of the model are
extracted and stored in a hash table. If there are too many
redundant point pair features in the hash table, the recognition
performance degrades. Some point pair features in the input
scene match with some point pair features in the model that
are unlikely to appear in the input scene, which increases the
matching time. To address these limitations, we extract point
pair features that are stably observed in some viewpoints
and store them in a hash table, and reliable recognition is
achieved by using such point pair features. We calculate the
observability of 3D points on the object model through a
multi-view rendering strategy to form the visible model part
and extract point pair features from stably observed points.

Our main contributions are described as follows. 1) We
propose a multiview rendering strategy to sample the vis-
ible model points; 2) By defining the observability of the
model point and the observability of the point pair feature,
the stably observable point pair features are extracted from
the 3D model; 3) We demonstrate significant performance
improvements of our approach compared with original PPF
[27] benchmark on several datasets.

The rest of this paper is organized as follows: Section II
introduces related work. Section III describes the PPF
algorithm. Section IV describes our proposed algorithm.
Section V presents the experimental results. Section VI con-
cludes this paper.

II. RELATED WORK
In this section we review point pair features and their modi-
fications.

PPF was first introduced to recognize free-form 3D objects
in point clouds by Drost et al. [27]. Because of its superiority,
many modifications based on PPF have been proposed. Choi
and Christensen [29] introduced a color point pair feature
(CPPF) to selectively encode the geometric surface shape and
the photometric color characteristics based on the traditional
4-dimensional point pair feature. Drost and Ilic [30] proposed
a multimodal point pair feature to use both geometric object
edges in the intensity image and depth image. Birdal and
Ilic [31] first segmented into clusters, and then PPFs are
computed for each segment. Tuzel et al. [32] proposed a
machine learning-based approach to identify and rank impor-
tant model features for voting-based 3D pose estimation and
object recognition tasks. To reduce the influence of clutter
and sensor noise, Hinterstoisser et al. [33] introduced dif-
ferent point sampling and voting schemes. Wang et al. [34]
proposed a new clustering strategy combined with DBSCAN
and PCA in PPF to further improve the pose hypothesis
result for the mismatching region. Vidal et al. [35] introduced
a novel preprocessing step based on PPF, which considers
the discriminative value of surface information. Recently,

Lilita et al. [36] presented a complete performance evalua-
tion of the original four-dimensional PPF [27] and its variants
including a detailed comparison with the most popular local
features.

For the visibility issues of PPF, Kim and Medioni [37]
enhanced the discriminative ability of PPF by incorporating
the visibility context in the range image. They defined three
different space types in terms of visibility: visibility-space,
surface, and invisible space. The experiments demonstrated
that incorporating information from the visibility context
improves the PPF matching performance. However, their
method is based on RGB-D data, and it is difficult to define
the visible and invisible spaces for the point cloud data used
in our method. Choi and Christensen [38] combined the 3D
surface point and a point on the geometric edge to improve
the robustness to occlusion and clutter in the online matching
stage. However, in the offline stage, all point pair features
of the model must be extracted and stored. This leads to
redundant point pair features in the hash table, some of which
are not necessarily observable in the input scene. Birdal and
Ilic [39] proposed a multiview rendering strategy to remove
hidden/invisible geometries and introduced a sparse voxel-
based algorithm to address the global distribution of resulting
vertices and normals using Poisson disk sampling and normal
space sampling. Their method is related to our approach and
the main difference is that our goal is to reduce redundant
point pair features. However, the goal of their method was
to create a bias-free, sparser model. To reduce the useless
point pair information, Liu et al. [40] proposed a point
pair feature-based descriptor named boundary-to-boundary-
using-tangent-line boundary (B2B-TL) and a model descrip-
tionmethod based onmultiple edge appearancemodels. Their
method is very effective even for industrial parts whose point
clouds lack key details. However, it is not suitable for general
objects. Unlike previous approaches, we propose a general
solution to reduce redundant point pair features by defining
observability.

III. PPF METHOD
The PPF approach is a voting-based algorithm combining a
hash table and efficient voting. In this section, we give a brief
description of the PPFmethod. The details of the PPFmethod
refer to [27].

The point pair feature F(m1,m2) that describes the relative
position and orientation of the oriented points is invariant to
rigid motions. It’s defined as:

F(m1,m2) = F(f1, f2, f3, f4)

=
(
‖d‖2, 6 (n1, d), 6 (n2, d), 6 (n1, n2)

)
(1)

where m1 and m2 are the oriented points, n1 and n2 are their
normals, d = m2−m1 and 6 (a, b) ∈ [0, π] denote the angle
between two vectors a and b, as shown in Fig. 1 (h).

The PPF method can be divided into two stages: global
modeling and local matching. At global modeling stage, all
model point pair features are extracted and quantized. The
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FIGURE 1. The framework of the proposed method. In the offline stage, the loaded CAD models (a) are rendered by the
virtual camera and partial view point clouds are generated (b). The partial view point clouds are aligned to the model (c)
(different colors represent partial point clouds with different viewpoints). Then, the observability is calculated (d) and the
higher observability PPF features are extracted and stored in hash table (e). In the online stage, PPF features are extracted
(h) from the input scene (f) after preprocessing (g). Then PPF features are matched to the hash table and generate
candidate poses by voting and pose clustering(i), each candidate pose is deal with postprocessing (j).

point pair features are stored in a hash table by using their
quantized descriptors as the hash keys. The hash table also
stores the angles αm of every point pair. αm describes the
angle between the positive y–axis vector and the yz–plane
projection of a vector Ea. The vector Ea is obtained by trans-
forming the second model points m2 with a transformation
Tm→g which translates m1 into the origin and rotates its
normal n1 onto the x–axis.
At localmatching stage, a set of reference points is sampled

from a scene. A given scene reference point sr paired with
another scene point si to form a point pair feature. Then every
scene point pair feature is matched with the model point pair
features using the hash table. For each of the potential match
(mr ,mi), the angle α = αm − αs is computed and then
votes are cast in the 2D space of (mr , α). αs is similar to αm,
the different is that the vector Ea is obtained by transforming
the second scene point s2 with a transformation Ts→g which
translates the first scene point s1 into the origin and rotates
its normal onto the x–axis. After all the matchings are voted,
valid pose candidates supported by a certain number of votes
are selected. Then the selected poses are clustered and the
poses with high scores output as the object poses.

IV. PROPOSED ALGORITHM
In this section, we present the details of the proposed
improvement based on the well-known point pair feature
voting approach [27] for 3D object recognition and pose esti-
mation on point cloud data. The proposed method pipeline,
as shown in Fig. 1, can be divided into an offline training stage
and an online matching stage.

A. OFFLINE TRAINING
In the offline training stage, all point pair features of a model
are extracted and stored in a hash table to create a global

FIGURE 2. The example of two points that cannot appear in the same
viewpoint.

model description according to the original PPF introduced
in Section III. The global model description by this approach
contains some redundant point pair features that never appear
in the input scene. For example, as shown in Fig. 2, the point
p1 and p2 never appear in the input scene because these
two points cannot be observed in the same viewpoint due
to self-occlusion. The redundant point pair features not only
increase searching time in the voting stage but also increase
the matching error.

We propose an efficient solution to reduce the redun-
dant point pair features based on the observability of points
inspired by Akizuki and Hashimoto [43]. The scene point
cloud data are always acquired from a certain viewpoint
by different techniques, such as stereo vision, structured
light, or time-of-flight (TOF). Only partial points of the object
can be observed in the scene, and other points are always
occluded by itself or other objects. Thus, we extract point pair
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FIGURE 3. The icosahedron and the four equilateral triangles;
(a) icosahedron, (b) four equilateral triangles.

features that can be stably observed in the same viewpoint by
computing the observability of points in an object model.

For the object model represented by point cloud data,
we define ‘‘observable points’’ as points that can be observed
from a certain viewpoint. The observability of an object’s sur-
face is affected by (1) The point cloud measurement method,
(2) The internal constitution of a 3D sensor, (3) The distance
from the 3D sensor to the detected object, (4) The viewpoint
direction, and (5) The object’s shape. The factors of (1) to
(3) are not easy to acquire before the recognition process
is performed, and we do not consider them in this research.
Thus, we calculate the observability by using only factors (4)
and (5). To extract observable points in a certain viewpoint,
we place several virtual cameras on a bounding sphere around
the CADmodel of the object, as shown in Fig. 1 (b). The CAD
model of the object is then rendered from each viewpoint to
obtain a depth buffer. The depth buffer, known as Z-Buffer,
is used to determine the visible elements and observable
points of the object. To obtain uniform sampling around the
object, the sphere is generated using an icosahedron as the
starting shape, which subdivides each triangular face with
four equilateral triangles, as shown in Fig. 3. This process is
implemented recursively for each face until the desired level
is reached, which determines how many triangles are used
to approximate spheres. The resulting triangles are used to
place the camera at their barycenter or vertex, and the pose of
the virtual camera and the point cloud of the corresponding
viewpoint are obtained by sampling from the depth buffer
of the graphic card. There are three main parameters that
govern this process: 1) the resolution of the synthetic depth
images, 2) the level of recursion and 3) whether to use the
vertices or triangle centers of the tessellated sphere as the
camera position. In our experiments, a resolution of 450×450
gives an appropriate level of detail over the object. The level
of recursion determines the min number of viewpoints. With
the level of recursion increasing, the number of viewpoints
increases. When using the triangle centers of the tessellated
sphere as the camera position, the number of viewpoints is
higher than using the vertices of the tessellated sphere as
the camera position. For example, when using the vertices
of the tessellated sphere as the camera position, and the level

of recursion is setting one, 42 partial views point clouds are
generated. In the next section, we test the effect of different
numbers of partial views.

The observability of the model points is calculated using
the pose of the virtual camera and the point cloud of the cor-
responding viewpoint. We first align these partial view point
clouds to the model according to the corresponding pose of
the virtual camera. To reduce the computational complexity,
the model is subsampled based on voxelgrid method. Then,
for any model point p after subsampled, we find the closest
point pc from the partial view point cloud after alignment. If
the distance between p and pc is lower than a setting threshold
dth, the model point p is observed in the viewpoint Vk of
the partial view point cloud. Otherwise, this model point p is
not observed in this viewpoint Vk . In this paper, the distance
threshold dth is set to the resolution of the model point after
subsampled. The model is uniformly downsampled and the
density of the model point is lower than the partial view
point clouds. So, the model point which is observed will
have at least one point of the partial view point clouds within
the distance threshold dth. If the model point isn’t observed,
the corresponding points within the distance threshold dth in
partial view point cloud will not appear. At last, the observ-
ability of the model point p is calculated according to (2).

Obs(p) =
1
K

K−1∑
k=0

δ(p, ok ) (2)

Here,K represents the number of viewpoints. ok represents
the direction of the viewpoint vector, and the function δ
returns ‘‘1’’ when the model point p is observed. Fig. 4 shows
the object model and the observability maps for different
number of viewpoints.

Fig. 4(a) shows the object model, and Fig. 4(b–f) shows the
observability maps under different numbers of viewpoints.
The blue and red colors in Fig. 4(b–f) indicate low and high
observability, respectively. The outside contour (i.e., the outer
circle with highlight) of the object has the highest observ-
ability, and the convex surface (i.e., the smooth surface area)
of the object has higher observability. Due to self-occlusion,
the internal point (i.e, the blue point ) of the object has
the lowest observability. When the number of viewpoints is
small, the distribution of viewpoints is scattered and is not
uniform around the surface. Therefore, the observability val-
ues of model points are distributed in a broad range, as shown
in Fig. 4(b–d). As the number of viewpoints increases, the dis-
tribution of viewpoints is relatively uniform around the sur-
face. Therefore, the observability values of model points are
relatively uniform and focus in a narrow range, as shown
in Fig. 4(e–f).

Using the same approach as calculating the observability
of model points, we can calculate the observability of point
pair featureObs(F(mr ,mi)). Becausemr andmi are observed
simultaneously, Obs(F(mr ,mi)) is calculated by (3).

Obs(F(mr ,mi)) =
1
K

K−1∑
k=0

δ(mr , ok )δ(mi, ok ) (3)
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FIGURE 4. Object model and observability map for different viewpoints.
(a) the object model; (b) observability map for 12 viewpoints;
(c) observability map for 20 viewpoints; (d) observability map for
42 viewpoints;(e) observability map for 80 viewpoints;(f) observability
map for 162 viewpoints.

Based on the observability of the point pair fea-
ture Obs(F(mr ,mi)), we can set an observability thresh-
old τobs. When Obs(F(mr ,mi)) > τobs, the point pair
feature F(mr ,mi) is computed according to (1). When
Obs(F(mr ,mi)) ≤ τobs, the point pair feature F(mr ,mi) is
set to NaN. Then, the point pair features with observability
larger than the given threshold are grouped together based on
their similarity and then stored in a hash table.

B. ONLINE MATCHING
The online matching stage includes preprocessing, PPF
extraction, pose voting, pose clustering and postprocessing.

1) PREPROCESSING
The number of point pair features is a quadratic of the number
of points, which increases the computational complexity.
Therefore, a downsampling method is applied in the input
scene to reduce the number of points. The input point cloud is
divided into multiple voxels with the desired resolution. For
each voxel, the point nearest to the centroid of the voxel is
selected to represent all points inside the voxel.

As described in Section III, the PPF voting method relies
heavily on the normal. Thus, in this manuscript, we use
the method proposed in [41] to compute the point’s normal,
based on the analysis of the eigenvectors and eigenvalues of
a covariance matrix created from the nearest neighbors of the
query point. To improve the robustness of normal estimation,
we find the nearest neighbors of the query point from the
point cloud before downsampling.

2) PPF EXTRACTION
During the online stage, we choose one point for every n
points as the reference point in the input scene. The fraction
of the points selected as the reference is controlled by the
parameter Pref (typically, 1/5th or 1/10th in the subsampled
scene is used). For each selected reference point, the point
pair features with respect to all other points are computed
in the subsampled scene. If the distance between the two
points is larger than the model diameter diam(M ), these two
points belong to different objects and therefore should be
excluded from the point pair features. The selected reference
point should only be paired with other scene points within the
model diameter diam(M ) from the reference point.

3) POSE VOTING
As described in section III, an object is detected via a vot-
ing scheme that is similar to the generalized Hough trans-
form. For each scene point pair (sr , si), k corresponding
model point pairs {(m1

r ,m
1
i ), (m

2
r ,m

2
i ), · · · , (m

k
r ,m

k
i )} can be

retrieved from the hash table, and the corresponding rota-
tion angles {α1, α2, · · · , αk} are calculated based on the
(sr , si) and {(m1

r ,m
1
i ), (m

2
r ,m

2
i ), · · · , (m

k
r ,m

k
i )}. Then, each

local coordinate {(m1
r , α

1), (m2
r , α

2), · · · , (mkr , α
k )} casts a

vote in a two-dimensional accumulator array. Because the
number of model points N and the discretized number of
rotation angles n are known before voting, we use a one-
dimensional accumulator array to speed up voting, as shown
in Fig. 1 (i). After all point pair features for a scene reference
point cast votes, the peak point in the accumulator array is
extracted and treated as the optimal local coordinate, from
which a global rigid transformation is computed.

4) POSE CLUSTERING
As described above, a candidate pose is estimated for each
reference point, and multiple candidate poses may exist
for all scene reference points. To merge similar candidate
poses, we first sort the candidate poses by the number of
votes they received. This ensures that the most likely can-
didate poses are merged first. Then, all votes are checked
in order, and two votes are group together if the rota-
tion and translation between these two votes are smaller
than the predefined thresholds thtra and throt . Finally, for
each cluster, a new candidate pose is calculated by aver-
aging the poses contained in the cluster, and individual
scores are summed as the score of the new candidate
pose.
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5) POSTPROCESSING
Finally, a list of candidate poses is sorted according to the vot-
ing scores. To reject the false estimation of pose, the hypoth-
esis verification method proposed by Papazov et al. [42]
is used. The hypothesis verification method evaluates how
well a model hypothesis fits into the scene by an acceptance
function µ. The acceptance function µ measures the quality
of a hypothesis and consists of a support term and a penalty
term. The support term is the number of transformed model
points falling within a certain distance from a scene point.
The penalty term is the number of model points that would
occlude other scene points. A hypothesis is accepted as a valid
hypothesis when the support term is higher than a predefined
and the penalty term is lower than a predefined. A conflict
graph is built when two valid hypotheses are conflicting if
the intersection of the point sets they explain is nonempty.
The better hypotheses are then selected by performing a
nonmaximum suppression on the conflict graph.

V. EXPERIMENTAL RESULTS
In this section, we first evaluate the effect of parameters on
the UWA dataset [9]. Then we compare the proposed method
with the original PPF method on the UWA dataset, synthetic
dataset and real dataset. For all experiments 1/5th of the
points in the downsampled scene are used as reference points.
The normal and the distance of the model are stored in a hash
table with 30 bins and 20 bins, respectively. The diam(M )
is the model diameter. The pose clustering thresholds thtra
and throt are set to be thtra = diam(M )/10 and throt =
12◦, respectively. The algorithm presented in this paper is
implemented with the point cloud library (PCL) [45], and the
tests are performed on a PC with a 3.2 GHz Intel R©Core(TM)
i7-8700 CPU and 16GBDDR III RAM.All methods are used
OpenMP to speed up matching process.

A. THE DATASET
1) THE UWA DATASET
The UWA dataset contains five object models with full view-
points and fifty scenes at specific viewpoints. The scene
data are scanned with a Minolta VIVID 910 scanner with
a resolution of 640 × 480 and saved as a 3D point cloud
in the ply file format. Each scene is generated by randomly
placing four or five objects together. For each object in a
scene, the ground truth pose is a 4× 4 transformation matrix.
The rhinomodel is usually excluded from evaluation due to

large holes during the scanning procedure. The total number
of scene instances is 188 (50 for the object chef, 48 for the
object chicken, 45 for the object Parasaurolophus and 45 for
the object T-rex) in the UWA dataset. The detected objects
are depicted in Fig. 5.

2) SYNTHETIC DATASET
The synthetic dataset contains 3 types of target parts,
as shown in Fig. 6. Each target part has 30 scenes. The
diameter of the PartA, PartB and PartC is 87 mm, 73 mm and

FIGURE 5. The object model and two random scenes in the UWA dataset,
(a) Chef; (b) T-Rex; (c) Parasaurolophus; (d) Chicken; (e-f) two random
scenes.

FIGURE 6. The objects model of the synthetic dataset. (a) PartA. (b) PartB.
(c) PartC.

FIGURE 7. The target part and two random scenes in the real scene
dataset; (a) the target part; (b-c) two random scenes.

36 mm, respectively. For each scene, 20 same target parts are
simulated that drop down one by one from a defined position
above a bin with a random orientation. The scene data are
scanned with a virtual camera and saved as the 3D point cloud
with a PCDfile. For each part in a scene, the ground truth pose
is a 4×4 transformation matrix.

3) REAL SCENE DATASET
The real scene dataset is captured by a 3D acquisition system
that consists of a digital micromirror device projector (TI
DLP lightcrafter 4500) and a monochrome camera (Point-
Grey Flea3 FL3-U3-13Y3) equipped with a c-mount lens
(Computar 8mm F1.4 M0814-MP2). The real data contain
one target part (PartA) and twenty scenes at specific view-
points. Each scene includes more than five instances. Fig. 7
shows the target part and two random scenes.
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FIGURE 8. The observability map of the model in UWA dataset under different numbers of viewpoints. The four columns from
left to right represent observability maps of chef, T-rex, parasaurolophus and chicken, respectively. The five rows from top to
bottom represent observability maps of 12,20,42,80 and 162 viewpoints, respectively.

B. EVALUATION CRITERIA
In this paper, we adopt the average point distance (ADD) [46]
as the pose error metric. Given the ground truth pose P̄ =
(R̄, t̄) and the estimated pose P̂ = (R̂, t̂), ADD is calculated
as follows:

ADD = avg
x∈M
‖(R̄x + t̄)− (R̂x + t̂)‖2 (4)

Here, M is the set of 3D model points, x is the model point.
Based on [19], we use the area under the accuracy-threshold
curve (AUC) for pose evaluation. The maximum threshold is
set to 10 cm in the UWA dataset.

If the object model is indistinguishable under different
views, the object pose is ambiguous due to object symme-
tries or occlusions [47]. Based on [46], the error is measured
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FIGURE 9. The accuracy-threshold curve under different observability
threshold τobs when the viewpoints K = 162.

according to the average closest point distance:

ADD-S = avg
x1∈M

min
x2∈M

‖(R̄x1 + t̄)− (R̂x2 + t̂)‖2 (5)

Here, M is the set of 3D model points, x1, x2 is the closest
model point in the camera coordinate system. For the syn-
thetic dataset, we use ADD-S as the error of the estimated
pose.

The fitness of the aligned object surface is the main indica-
tor of pose estimation quality. If the ground truth pose is not
available, we define the average distance ADE between the
visible model and the nearest point of the scene as the error
of the estimated pose. For the real scene dataset, we use ADE
as the error of the estimation pose.

C. PARAMETER ANALYSIS
In this subsection, the number of viewpoints K and the
observability threshold τobs are analyzed. We first qualita-
tively analyze the effect of the number of viewpoints accord-
ing to the observability map of the object model in the
UWA dataset. From Fig. 8, we find that when the number of
viewpoints is small, the observability distribution of model
points is not uniform. Some model points have very high
observability values, but the observability values near them
are very low and the overall observability values are relatively
small, such as shown in Fig. 8(a-h). It can’t reflect the observ-
ability distribution of model points well. When the number
of viewpoints is large, the observability distribution of model
points is relatively uniform, such as shown in Fig. 8(m-t). So,
the number of viewpoints K is set to 162 in our paper.
Then, we quantitatively analyze the observability threshold

τobs according to the recognition performance on the UWA
dataset. In this experiment, dvoxel is set to 0.025× diam(M ).
Because the scenes contain models with different diameters,
and Drost et al. [27] only reported the average number of
points in the subsampled scene to be S ≈ 1690. The scenes
are downsampled with 8 mm and the average number of
points in the subsampled scene is S ≈ 1750 in this paper. We
vary the observability threshold τobs from 0.0 to 0.30with step

TABLE 1. Area under accuracy-threshold curve for pose evaluation using
ADD metric from [19] on the UAW dataset.

0.05. Fig. 9 shows the results of the detailed evaluation. We
can see that when the observability threshold τobs increases,
the matching time decreases, and the AUC first increases
and then decreases. This is because the hash table which
is low the observability threshold contains some redundant
point pair features which affect the performance. And with
the observability threshold increasing, some importance point
pair features are removed. When τobs ≤ 0.15, AUC has
relatively good performance. The observability threshold τobs
is related to the shape of the model, and the optimal value is
between 0 and 0.15. In the following experiment, the view-
points and the observability threshold are set to be K = 162
and τobs = 0.05, respectively.

D. COMPARISON WITH THE ORIGINAL PPF
In this section, we compare our proposed method with the
original PPF method [26] in the UWA dataset, the synthetic
dataset and the real dataset.

1) COMPARISON WITH ORIGINAL PPF IN THE UWA DATASET
Table 1 shows the detailed evaluation results for all the
4 objects in the UWA Dataset. We show the area under
the accuracy-threshold curve (AUC) using the ADD metric
[47] and the maximum threshold is set to 10 cm. In this
experiment, the models are downsampled with with dvoxel =
0.025× diam(M ). For the object of chicken and parasaurolo-
phus, our proposed method outperforms the original PPF
method [27] with the same matching time. From Table 1,
we can observed that our proposed method outperforms the
original PPF method in the UWA dataset with less matching
time. In table 2, the PPF number of the object model and the
average reductions number of matching PPF in each scene
are also analyzed. It is clearly seen that our proposed method
can greatly reduce the PPF number of the object model. The
Table 1 and Table 2 demonstrate that our proposed method
achieves better performance by removing the point pair fea-
tures with lower observability.

2) COMPARISON WITH ORIGINAL PPF IN SYNTHETIC
DATASET
In this subsection, we compare our proposed method with the
original PPF method [27] on synthetic dataset. The estimated
pose is compared with the ground truth pose. Because the
target parts are symmetrical and their rotation direction is
not unique, we use ADD-S to evaluate the accuracy of the
estimated pose. The model and the scene are downsampled
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TABLE 2. The PPF numbers of object model on the UWA dataset; MN1 is
the PPF numbers of object model in the original PPF method; MN2 is the
PPF numbers of object model in the our proposed method; RN is the
average number of the matching PPF reductions in each scene by our
proposed method.

TABLE 3. The evaluation results on the synthetic datasets.

with 0.05 × diam(M ) for improving the overall matching
speed. We report the ADD–S AUC (< diam(M )/10) and
the recognition rate (RR). The recognition rate equals the
number of true positive divided by the number of output
poses. If the error is within the range of 10% × diam(M ),
we count the case as a true positive; otherwise, it is regarded
as a false positive. Tables 3 shows the evaluation results on
the synthetic dataset. For our proposed method, the mean
of AUC, recognition rate and the matching time are 3.85,
93.62% and 0.92s, respectively. For original PPF method,
the mean of AUC, recognition rate and the matching time
are 3.74, 92.03% and 1.10s, respectively. Thus our proposed
method achieves better performance with less computational
time in synthetic dataset.

3) COMPARISON WITH ORIGINAL PPF IN REAL SCENE
DATASET
To show the performance of our algorithm concerning real
scene data, we capture the 3D data of real scenes using a self-
built structured light senor. In this experiment, we deliber-
ately did not perform any postprocessing of acquired point
clouds, such as outlier removal and smoothing. The model
and the scene are downsampled with 0.05 × diam(M ).
Because there is no ground truth pose for the real scene
part, we quantify the pose estimation error with the average
distance between the visible model and the nearest point of
the scene. We first transform the model into a real scene by
the estimated pose. Then, a visible model can be generated
via Z-buffering. The distance between the visible model and
the nearest point of the scene can be obtained by an efficient
Kd-tree structure. Table 4 shows the AUC(< diam(M )/10),
the recognition rate and the matching time in real scene data.
The recognition rate of our proposedmethod is 69.60%which
is higher than the original PPFmethod 66.99%. Thematching
time of our proposed method is 0.66s which is lower than
the original PPF method 0.82s. Thus our proposed method
outperforms the original PPF method [27]. Fig. 10 shows the
test scenes and the qualitative results.

TABLE 4. The results of the algorithms for real scene data.

FIGURE 10. The recognition result on the real scene dataset, the first row
shows the real scenes, the second row shows the recognition results with
our proposed method.

VI. CONCLUSION
In this paper, we propose a novel strategy to build a global
model description based on point pair features and Hough-
like voting. We analyze the observability of the model points
according to the multiview rendering strategy and extract
point pair features from stably observed points.

The experimental results on UWA, synthetic and real scene
datasets demonstrate that the proposed method achieves a
better trade-off between speed and recognition performance.

In future work, wewill test its feasibility for the application
of bin-picking robots.
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