
Received January 17, 2020, accepted February 29, 2020, date of publication March 4, 2020, date of current version March 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978406

Deep Learning for Underwater Visual
Odometry Estimation
BERNARDO TEIXEIRA 1, HUGO SILVA 1, ANIBAL MATOS 1,2, AND EDUARDO SILVA 1,3
1INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal
2FEUP - Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
3ISEP - School of Engineering, Porto Polytechnic Institute, 4200-072 Porto, Portugal

Corresponding author: Bernardo Teixeira (bernardo.g.teixeira@inesctec.pt)

This work was supported in part by the National Funds through the Portuguese funding agency, Fundacao para a Ciencia e
Tecnologia (FCT), under Project UID/EEA/50014/2019, and in part by the European Commission under the
H2020 EU Framework Programme for Research and Innovation (H2020-WIDESPREAD-2018-03, 857339).

ABSTRACT This paper addresses Visual Odometry (VO) estimation in challenging underwater scenarios.
Robot visual-based navigation faces several additional difficulties in the underwater context, which severely
hinder both its robustness and the possibility for persistent autonomy in underwater mobile robots using
visual perception capabilities. In this work, some of the most renown VO and Visual Simultaneous Local-
ization and Mapping (v-SLAM) frameworks are tested on underwater complex environments, assessing the
extent to which they are able to perform accurately and reliably on robotic operational mission scenarios.
The fundamental issue of precision, reliability and robustness to multiple different operational scenarios,
coupledwith the rise in predominance of Deep Learning architectures in several Computer Vision application
domains, has prompted a great a volume of recent research concerning Deep Learning architectures tailored
for visual odometry estimation. In this work, the performance and accuracy of Deep Learning methods on
the underwater context is also benchmarked and compared to classical methods. Additionally, an extension
of current work is proposed, in the form of a visual-inertial sensor fusion network aimed at correcting
visual odometry estimate drift. Anchored on a inertial supervision learning scheme, our network managed
to improve upon trajectory estimates, producing both metrically better estimates as well as more visually
consistent trajectory shape mimicking.

INDEX TERMS Artificial intelligence, computer vision, deep learning, visual odometry, robot navigation,
visual SLAM.

I. INTRODUCTION
Achieving persistent and reliable autonomy for underwater
mobile robots in challenging field mission scenarios is a long
time quest for the Robotics research community, to which a
great amount of research has been devoted to. In underwa-
ter scenarios, since GPS is not available and Inertial Mea-
surement Units (IMU) are prone to failures, complementary
sensorization has to be added to allow for a reliable robot
localization and navigation.

Visual odometry estimation from outdoors imagery is
always challenging due to multiple factors that generate blur,
shadows and other illumination artifacts which lead to low
signal-to-noise ratios in images. In spite of that, technological
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advancements in computer vision perception and processing
has allowed the development of ever more robust and reliable
algorithms capable of deriving camera self-motion from a
sequence of images with significant accuracy, posing as a
viable solution to help tackle the robot navigation problem.

Recently, deep learning has been garnering a lot of atten-
tion in the field of Computer Vision, even managing to
become the ‘‘go to solution’’ for most visual based object
detection and classification tasks [1]–[4]. In recent years,
there were multiple relevant tasks in the scope of Robotics
where there have been surfacing deep learning approaches,
including but not limited to: depth estimation [5], semantic
mapping [6], sensor fusion [7] and place recognition [8].

Bearing in mind the significant improvements on accuracy
and performance that deep learning applications were able
to achieve, camera pose and motion estimation frameworks
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FIGURE 1. UX-1 robot photo at an operational mission scenario, courtesy
of the UNEXTMIN1 project.

also started to be designed to take advantage of the poten-
tial increased robustness of data-centric approaches, helping
to tackle the robot navigation problem and thus serving as
a precursor for sustained autonomy for robots and other
autonomous systems.

However, the general design focus of Visual Odometry
systems is historically not placed on underwater scenar-
ios, with much more emphasis on designing and tailoring
visual odometry systems to urban dataset scenarios [9]–[11].
The underwater context poses some additional challenges
to visual-based navigation applications in comparison to the
urban scenarios they were designed to tackle, especially
under harsh operational mission scenarios. Underwater deep
sea and/or inland flooded mines present uniquely challenging
operational conditions, as repetitive image patterns and low
texture, coupled with unfavourable lighting conditions, push
the limits of visual odometry methods and shed light on most
of their degenerate failure conditions.

In this work, we are expanding the formulation pre-
sented in [12], presenting additional benchmark informa-
tion through a more thorough comparison against classical
VO and v-SLAM methods, using datasets gathered using the
UX-1 robot, see Fig.1. It is worth noting that we are interested
in assessing the performance and accuracy of visual-based
navigation methods with respect to the underwater scenarios
we have been facing in the field, by performing a comparison
between VO estimation methods, encompassing both feature-
based, direct and especially learning-based algorithms
(i.e. Deep Learning methods).

This article outline is as follows: Section II contains a
review of motion estimation literature, starting from classical
VO and v-SLAM techniques and ultimately culminating in
novel deep learning approaches. In section III, we describe
the different underwater dataset scenarios acquired and devel-
oped in the scope of this work. Section IV discusses the

1https://www.unexmin.eu/

multiple renown VO, v-SLAM and deep learning frame-
works that we evaluate on our underwater dataset sequences.
In section V, an outline of the design of a novel Visual-Inertial
Fusion Network approach is presented and in section VI
comparison is drawn with the previously referenced visual
odometry estimation methods. Finally, in section VII, some
conclusions are drawn from the obtained results and future
research directions in the scope of this work are layed out.

II. RELATED WORK
VO is the process of estimating solely the self-motion of an
agent over consecutive camera image frames, and can serve
as a prerequisite input for v-SLAM, which is a process by
which a robot is required to simultaneously localize itself and
build a map of the environment without any prior knowledge.
This means VO mainly focuses on achieving higher local
consistency in its estimates through incrementally estimating
trajectories pose after pose and possibly performing local
optimization operations. v-SLAM algorithms, on the other
hand, aim to obtain a globally consistent map and therefore
estimate pose mostly through reducing odometry drift in
loop closure steps (i.e. understanding and recognizing when
trajectories re-visit the same places in the map).

Recently, novel VO and v-SLAM learning-based data-
centric approaches to the motion estimation problem, espe-
cially deep learning architectures, have been the focus of
research in the motion estimation field, as advances in GPU
technology and availability means that implementing large
convolutional network architectures is no longer an insur-
mountable computational problem.

Through leveraging powerful high-level feature represen-
tations and exploring parallel convolutional implementations
to the fullest, deep learning camera pose and motion esti-
mation algorithms can replace the classical VO estimation
pipeline and theoretically allow for the design of end-to-end
systems that can be offer more robustness to different appli-
cation scenarios and camera calibration parameterization.

In the remainder of this section, we will review previous
work with regards to motion estimation, respecting this same
taxonomy, separately reviewing Visual Odometry, Visual
SLAM and Learning-based approaches.

A. VISUAL ODOMETRY
The need for the development of VO applications stems
from the increased proliferation of the use of mobile robotic
systems in a wide range of modern world tasks, across very
different application scenarios. As such, mobile robots are
required to extend their perception and cognition capabilities,
so as to be able to navigate effectively in complex unstruc-
tured environments, where they may be deprived of the most
commonly used IMU/GPS data for navigation purposes.

VO is performed through determining instantaneous cam-
era displacement over consecutive frames, concatenating the
obtained relative translational and rotational deltas onto a
trajectory on a global reference frame. Robotic systems deter-
mine self-motion by measuring their displacement relative to
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FIGURE 2. Feature-based VO typical processing pipeline: Features are
detected and tracked in an image sequence, allowing for motion
estimation. Additional modules such as camera intrinsic calibration,
outlier rejection and bundle adjustment are utilized so as increase
accuracy and performance of VO methods.

static key points in the environment and may or may not have
algorithmic components that introduce robustness to ‘‘hard
to handle’’ situations such as occlusions, non-Lambertian
surfaces and dynamic elements in the scene.

VO algorithms take advantage of either monocular,
stereo or RGB-D camera setups but the processing pipeline
is roughly similar regardless of the sensor configuration
(see Fig.2). The literature taxonomy divides VO algori-
thms in two different categories: feature-based
(e.g., Howard et al. [13]) and dense (e.g., Engel et al. [14])
approaches. Nonetheless, there are some instances of hybrid
approaches [15] that leverage both feature correspondence
and dense methods for different estimation tasks.

1) FEATURE-BASED APPROACHES
Visual Odometry research can be traced back to the 1960’s
when a lunar rover started being constructed by Stanford Uni-
versity. Following this, Moravec [16] provided a description
of the first motion estimation pipeline (whose main defini-
tions remain basically intact today) as well of his renowned
corner detector. This work formed a basis for further research
in motion estimation using stereo vision systems, extended
by means of correcting absolute orientation [17]. When a
robust outlier rejection scheme denoted as RANSAC [18] was
developed, Cheng [19] was able to introduce a a least-squares
motion estimation step that was robust enough for the defini-
tive VO implementation on board the Mars planetary Rover.

Lots of different VO formulations have been presented
in the literate since then, amongst which Nister et al. [20]
seminal work that provided the first step-by-step motion
estimation framework for both the monocular and stereo
cases and coined the popular term ‘‘visual odometry’’. Later,
Engels et al. [21] estimated pose using this five-point algo-
rithm followed by a global refinement strategy, denoted as
bundle adjustment.

Feature-based approaches rely heavily on keypoint detec-
tion, description and matching of corresponding image
points. The traditional edge and corner detection strategies
employed by Moravec [16] and Harris [22] have fallen off
slightly in favour of incremental improvements around scale

and transformation invariant feature extraction methodolo-
gies such as SIFT [23], SURF [24], ORB [25] or BRIEF [26].

Extensive work followed on different Visual Odome-
try estimation techniques, including with different camera
topologies [27], [28], camera calibration estimation and
pose refinement bundle adjustment strategies [29]. In 2011,
Scaramuzza et al. [30] proposed a 1-point algorithm for
motion estimation, leveraging physical constraints to help
reduce model complexity.

Other influential work by Kitt et al. [31], was made avail-
able as an opensource visual odometry estimation library
named LIBVISO that is able to estimate 6-DoF pose from
both monocular and stereo camera setups.

Combining visual input with other complementary sen-
sorization [32], such as GPS or IMU information, it is also
sometimes a worthwhile technique, as pose estimate com-
putation becomes generally more robust. Another interesting
approach was proposed by Kasik [33], emulating a stereo
camera setup using non-overlapping fields-of-view cameras.
The principle is to estimate monocular VO from each of the
cameras and later impose the stereo constraints thanks to the
known baseline distance.

2) DENSE APPROACHES
Algorithms for aligning images and estimating motion in
video sequences are widely used in computer vision since the
early days of digital cameras and primitive image stabiliza-
tion features [34].

Dense methods are methods by which the intensity infor-
mation of all image pixels or subregions of it is computed in
order to perceive motion in sequential images. Motion esti-
mation can then be achieved through optimizing photometric
error metrics.

Optical flow is one of the fundamental principles that
define egomotion of an observer as per Gibson ecological
optics [35]. Optical flow methods, which involves minimiz-
ing the brightness or color difference between corresponding
pixels over a time frame, are often divided in three main
categories [36], [37]:
• Differential methods: The motion is computed from
spatio-temporal derivatives or filtered versions of the
image [38], [39]. [40]

• Frequency methods: These methods work by app-
lying spatio-temporal filters in the frequency
domain [41], [42].

• Correlation methods: Correlation based methods
attempt to find matching image regions by maximizing
some similarity measure between them, all under the
assumption that the image has not been overly distorted
over a local region for a short period of time [43]–[45].

More recently, Engel et al. [46] proposed a direct sparse
odometry scheme, which optimizes the photometric error in
a framework similar to sparse bundle adjustment. It avoids the
use of geometric priors commonly encoded in feature-based
approaches at the same time it uses all image points to esti-
mate egomotion even in lower texture environments.
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3) HYBRID APPROACHES
Feature-based methods are known to provide reliable data
at the cost of disregarding a lot of information from the
image. Dense methods on the other hand, take the entirety
of the image data with the downside of usually introducing
reconstruction errors on some patches of the image. Some
authors propose to combine both approaches in a way to fur-
ther increase algorithmic robustness to complex unstructured
environments.

Scaramuzza et al. [15] used dense methods for rotation
estimation whilst translation was handled by feature extrac-
tion on the ground plane. Forster et al. proposed SVO [47],
where pose estimates are refined through minimizing the
reprojection error introduced in the feature-alignment step.
Silva et al. proposes a dense egomotion estimation technique
that works in tandem with a feature-based translation scale
factor estimation, later refined through a Kalman filter [48].
This work was later extended through employing a fully
dense probabilistic stereo egomotion framework, that reports
increased robustness against more challenging image scenar-
ios [49].

B. VISUAL SLAM
Probabilistic robotics is a growing area in robotics, concerned
with perception and cognition in the face of uncertainty [50].
One such algorithm in the scope of probabilistic robotics is
Simultaneous Localization and Mapping (SLAM).

As described in this chapter introduction, SLAM is a
method whereby a robot has to localize itself in an unknown
environment, all while it is constructing a map of the sur-
rounding environment.

Visual SLAM has merited a strong degree of interest
mostly because low-cost cameras can provide rich visual
information about the environment. The tradeoff is the higher
computational burden when compared with laser scanner
based SLAM, but due to recent CPU and GPU advances in
computational power, this is becoming less of a factor.

There are three main building blocks in a SLAM system:

1) Initialization: Define initial coordinate system and
reconstruct an initial map of the environment

2) Tracking: The reconstructed map is used to track the
current position with respect to the map. To do so, it is
necessary to solve the 2D-3D correspondences between
the current image and map.

3) Mapping: The map is extended everytime the camera
observes a region previously unseen, by computing the
3D structure of the environment

Additional modules became increasingly more relevant for
SLAM systems, mostly for application purposes.

Relocalization is required to account for fast camera
motions that may cause the system to lose track of its position.
This problem is known in the literature as ‘‘kidnapped robot’’
and can be tackled through recomputing camera pose with
respect to the map, thus making the system more robust and
versatile.

Loop-Closure is also a commonplace technique aimed at
global map optimization. The reconstructed map in SLAM
systems generally has a tendency to accumulate estimation
errors proportional to camera movement. To mitigate these
errors, modern algorithms detect when the acquired images
match an already visited part of the map, enforcing geometric
consistency to the estimated trajectory and thus suppressing
most of the accumulated odometry drifts. Bundle adjust-
ment [21] (minimizing the reprojection error of the map by
jointly optimizing map and pose ) or pose-graph optimization
(representing pose and map relationships as a computational
graph to be optimized) strategies can also be employed to the
purpose of obtaining a more globally concsist map and pose
estimate.

One of the first proposed v-SLAM frameworks is
Mono-SLAM [51], [52]. They employed a monocular cam-
era setup using feature-based Shi-Tomasi [53] operators
and matched features to previously observed ones though
SSD correlation.

In order to solve the problem of the high computational
cost, PTAM [54] enforced computation parallelism, split-
ting the tracking and mapping into separate CPU threads.
This became the standard for later SLAM implementations.
PTAM was also more effective as its implementation allows
for real-time handling of larger numbers of points than
Mono-SLAM EKF-based approach.

LSD-SLAM [55] is an extension of previous semi-dense
VO, where camera motion is estimated by view synthesis
generation from the reconstructed map and coupled with the
introduction of loop closure and 7 DoF pose-graph optimiza-
tion for obtaining globally consistent maps.

LDSO [56] is an extension of DSO [46]. also intro-
ducing loop-closure and pose-graph optimization to DSO
local geometric consistency, thus transforming it in a
SLAM system.

ORB-SLAM [57], [58] is one of the most renown SLAM
systems, mostly to its versatility and accuracy whether for
monocular, stereo or RGB-D camera setups. It includes an
automatic initialization that is able to work in both planar and
non-planar scenes thanks to a cleverly designed heuristic. It is
also able to close large loops in estimated trajectories and
perform real-time relocalization in some situations it loses
tracking of the environment.

RGB-D SLAM techniques [59], [60] leverage the capa-
bilities of emergent structured light-based RGB-D cameras,
namely the ability to automatically acquire absolute scale of
the environment. This methods however, tend to work only
indoors, as it somewhat difficult to detect the emitted IR in
outdoors environments as well as the range limitations of
RGB-D camera sensors. SLAM++ [60] has the particularity
of registering an object database prior, with estimated map
refinement around detected database objects.

SLAM systems can also benefit from incorporating deep
learning components in one or more of its component tasks.
As an example, CNN-SLAM [61] leverages convolutional
neural networks to perform depth estimation, recovering pose
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FIGURE 3. Imagenet Error statistics: As of the advent of Deep Learning,
the performance on visual classification task sharply rose, inclusively
surpassing human ability. Graphic adapted from [62].

and performing pose graph optimization using conventional
feature-based SLAM.

C. LEARNING-BASED APPROACHES
Even tough the onset of deep learning methods is still
fairly recent, it is already established that deep learning
architectures can outperform most other methods for some
computer vision tasks. As an example, concerning visual
classification, deep learning methods managed to the take
the Imagenet competition by storm, massively outperforming
classical methods and even Humans at classifying objects in
a picture (see Fig.3).

Building upon the success of deep learning frameworks for
some visual tasks, a lot of research has been devoted to taking
advantage of deep learning potential for a wider range of
tasks. In this light, the egomotion between consecutive image
frames can also be estimated with the use of deep neural
architectures inspired by geometricmodels. The key principle
is that for the egomotion estimation task we are interested
in capturing the motion undergone by the camera system
between consecutive images using an end-to-end deep neural
architecture, bypassing almost all the modules in the classical
VO pipeline (see Fig. 2) with a learned motion estimation
scheme.

FlowNet [63] and its successive iterations garnered
immense attention as a reliable deep learning framework for
learning optical flow and paved the way for early egomotion
estimators. Wang et al. proposed a monocular visual odom-
etry system called DeepVO [64], which trains a RCNN to
estimate camera motion in an end-to-end fashion, inferring
pose directly from a sequence of raw RGB images in a video
clip while bypassing all usual modules in the conventional
VO pipeline. The advantage of such approach is to simul-
taneously factor in both feature extraction and sequential
modelling through combining CNN’s and RNN’s.

As labeling data in large scale significantly hinders the
application of supervised learning methods to robotic appli-
cations, Li et al. proposed UnDeepVO [65], a monocular
system that uses stereo image pairs in the training phase for
scale recovery. After training with unlabeled stereo images,

UnDeepVO can simultaneously perform visual odometry and
depth estimation with monocular images.

SfMLearner [66] is a solution that established an
influential framework for Deep Learning for Visual Odom-
etry research. It uses a monocular image sequence in order
to estimate depth and pose simultaneously in an end-to-end
unsupervised manner, through enforcing geometric con-
straints between image pairs in the view synthesis process.
SfMlearner++ [67] improved upon the results in both depth
and pose estimation by using the Essential matrix [68],
obtained using the Five Point Algorithm [69], to enforce
epipolar constraints on the loss function, effectively discount-
ing ambiguous pixels.

GeoNet [70] is a similar approach, a jointly unsupervised
learning framework for monocular depth, optical flow and
egomotion estimation that decouples rigid scene reconstruc-
tion and dynamic object motion, making use of this knowl-
edge to further tailor the geometric constraints to the model.
Vijayanarasimhan et al. [71] presented SfM-Net, innovating
through adding motion masks to photometric losses to jointly
estimate optimal flow, depth maps and egomotion.

Luo et al. [72] also presented a three-prone architecture,
composed of networks to predict the camera motion, dense
depth map, and per-pixel optical flow between two frames,
binding all together through adaptive consistency checks.
Additionally, an holistic 3D motion parser is introduced,
so as to distinguish between the camera system motion and
dynamic objects in the scene, introducing extra robustness to
occlusions.

Valada et al. [73] proposed a novel architecture that encom-
passes both global pose localization and a relative pose esti-
mation, jointly regressing global pose and odometry and
learning inter-task correlations and shared features through
parameter sharing. This method is denoted as Deep Auxil-
iary Learning. This work was later extended to also perform
pixel-wise semantic segmentation, still exploring the same
inter-task parameter sharing strategy [74].

Learning pose corrections after estimation [75] can also
be a very interesting approach. Visual Odometry methods
are particularly sensitive to rotation errors, as small early
drifts can have a large influence on final trajectory pose esti-
mates. Peretroukhin [76] proposed HydraNet, a deep learning
structure aimed at improving attitude estimates, able to be
fused with classical visual methods. Through regressing unit
quaternions, modeling rotation uncertainty and producing
3D covariances, HydraNet manages to improve visual algo-
rithms at predicting 6-DoF pose estimates.

Another application Deep learning architectures are
currently being tested on is sensor fusion. VINet [77]
is a proposed framework that fuses pose estimates from
DeepVO [64] with inertial data, showing comparable per-
formance to traditional fusion systems. The same method
was also adopted to fuse other kinds of information such as
magnetic sensors, GPS, INS or wheel odometry [7], [78].
Sensor fusion can be easily incorporated into deep learn-
ing architectures and jointly trained end-to-end with pose
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regression, thus making a potentially interesting solution
for Visual Odometry applications as it can be used for a
wide variety of purposes (e.g. recovering absolute scale on
monocular camera systems or correcting visual odometry
drift). Deep-VIO [79] also employs IMU status update upon
trajectory estimates, improving the overall accuracy of the
method by taking advantage of the sensor fusion architecture.

Zhu et al. [80] proposed to combine unsupervised stereo
optical flow estimation and monocular disparity with clas-
sical model-based optimization for camera pose estimation.
Through usingRANSAC [18] for relative pose estimation and
outlier rejection, it reports to provide extra guarantees about
instantaneous camera pose estimation robustness.

Generative Adversarial Networks (GAN’s) have recently
surfaced as a new type of network architecture to be exploited
for the purpose of estimation egomotion [81], [82]. The oper-
ating principle is to have two different networks: a genera-
tor and a discriminator. The generator is trained to perform
view synthesis reconstruction and pose estimation, while the
discriminator is fed both the reconstructed image and the
real one, learning to detect reconstruction errors and thus
helping the generator also becoming more accurate at view
reconstruction and pose estimation. A fully trained generator
is then able to produce accurate pose estimates from visual
input alone.

In this work, we employ a sensor fusion Recurrent Neural
Network architecture, using inertial data as training set super-
vision to correct visual input predictions and limit the effects
of accumulating VO drifts.

III. UNDERWATER VISUAL APPLICATION SCENARIOS
In the underwater context, there are not many publicly avail-
able large datasets. In addition, the ones that exist are mostly
focused on vehicles navigating near the seabed [83], with
close to no data pertaining to inland flooded mines. This
work serves the dual purpose of wanting to critically assess
visual odometrymethod performance for the robot navigation
task in complex underwater scenarios, as well as exploring
promising novel deep learning approaches to the problem.
In particular, we are interested to work with the UNEXMIN
UX-1 [84] robot data, as it poses several interesting chal-
lenges to visual-based navigation, given that operational mis-
sion scenarios in flooded deep mines is not a commonplace
scenario in the visual odometry literature.

Data acquisition and dataset construction was therefore a
key step towards the goal of benchmarking VO methods in
our target scenarios. During this work, we were able to gather
huge amounts of visual data automatically labeled by the
UX-1 navigation software module, allowing for the construc-
tion of a dataset with significant localization accuracywithout
the need for any kind of manual labelling.

Deep learning methods in particular usually require vast
amounts of data in order to properly train its neural architec-
tures. This is particularly true in robotic applications, since
autonomous systems can operate in very complex environ-
ments, often under extreme conditions. As so, the availability

FIGURE 4. Underwater Visual Dataset image example: indoor pool and
inland flooded mine imagery.

of large scale datasets with ever increasing variability span-
ning different scenarios and situational motions, is crucial
for further development of deep learning algorithms and
for improving upon generalization ability, as that leads to
improved robustness when being deployed in large complex
environments.

With this in mind, we can assert that the data used in
this work represents a novel and varied underwater focused
dataset collected with the UX-1, tailored for visual odome-
try method implementation and evaluation, with which we
pretend to assess performance of state-of-the-art methods for
VO estimation and Visual SLAM in different underwater
scenarios. In Fig.4, we can observe example images of our
dataset sequences, that showcase the different environments
included in our dataset.

In this section, we are discussing in detail the data
acquisition process, specifically describing the UNEXMIN
UX-1 robot and all the technology contained within it,
while providing related remarks about the image acquisition
methodology, specifically the camera setup, the reasoning
and assumptions of the process.

A. DATA ACQUISITION METHODOLOGY
As previously mentioned, the dataset was constructed using
data acquired with the UX-1 robot. This robot was built for
exploring and mapping decommissioned flooded mines so as
to assess its geological potential, and is therefore equipped
with a plethora of different sensors, including 5 cameras.
In this work, mostly due to UX-1 design constraints which
prevent the use of visual stereo methods, we are focusing on
monocular camera setups, and as so, we chose to analyze
the left camera system, with the goal of estimating robot
pose in the central reference frame (i.e. pose estimates in
the camera system reference frame has to be later trans-
formed to the robot body reference frame). Groundtruth data
is generated by the navigation module of the UX-1 software,
a filtered calibration of sensor fusion from multiple local
sensor sources (IMU, Doppler Velocity Logger, Structured
Laser System, etc), progressively refined through multiple
operation missions in complex settings and extremely chal-
lenging operational conditions.

In the scope of this work, we are working with the underly-
ing assumption that this navigation data corresponds exactly
to the real robot pose, which is not easily verifiable in
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FIGURE 5. UNEXMIN UX-1 robot description.

FIGURE 6. CRAS indoor pool.

operational mission scenarios. However, it can be asserted,
with relative confidence, that this data represents a close
approximation of the real robot position and can, therefore,
be used as groundtruth for our use case. The groundtruth data
file consists of a.txt file where each line contains 8 scalars,
representing a timestamp and 6-DoF poses with a 3D trans-
lation vector and an orientation quaternion.

B. APPLICATION SCENARIOS
For the purpose of constructing a complete and thorough
dataset, we utilize two different application scenarios, which
pose different types of problems to visual-based methods:

1) The CRAS pool sequence depicts a fully known
environment, ideal for calibrating some aspects of
visual-based navigation, since all navigation informa-
tion is fully verifiable. However, it is a rather non
feature rich environment with lack of appropriate illu-
mination conditions, which complicates visual-based
navigation.

2) The Urgeirica uranium mine is a decommissioned
flooded mine in Viseu, Portugal. It is mostly composed
of vertical shafts that lead to 15-30mwide galleries. It is
a real operational mission scenario for the UX-1, which
was tasked with exploring and mapping the mine.

FIGURE 7. Urgeirica mine entrance.

FIGURE 8. ORBSLAM-2 reconstructed map on the CRAS pool sequence.

IV. CAMERA POSE AND MOTION ESTIMATION
As mentioned before, our target scenarios for visual odom-
etry estimation is our own underwater dataset. The visual
perception and estimation of motion in this type of imagery
still poses a big research challenge, as real-time persistent
navigation accuracy with significant robustness to real world
conditions is still not feasible.

So as to assess the extent to which it is possible to rely
on visual input for navigation purposes on our challeng-
ing operational mission scenario, we decided to evaluate
some of the most renown visual-based frameworks, namely
ORBSLAM 2 [58], LDSO [56] and LIBVISO 2 [85]. In addi-
tion, following the significant attention deep learning meth-
ods have managed to garner in recent years, we also evaluate
SfMLearner [66] and Geonet [70].

ORBSLAM2 [58] is a complete feature-based SLAM sys-
tems that works in many different camera configurations and
scenarios. In our work, we are sticking to the monocular use
case and our dataset indoor pool and flooded mine scenario.
It was designed to take advantage of the same feature set for
all the modules: tracking, mapping, relocalization, and loop
closure. Feature choice was ORB [25], mostly because of
its extremely fast computation and matching, coupled with
invariance to multiple viewpoints.

Initialization was designed to be robust to both planar or
non-planar scenes, utilizing a heuristic to decide between the
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FIGURE 9. Representation of the SfMlearner PoseNet, the framework
component responsible for regressing 6-DoF pose estimates. It consists
of 7 blocks of convolutional layers followed by ReLU activations,
outputting a 6-dimensional vector that comprises a 3D translation vector
and Euler angles orientation representation.

parallelly computed homography assuming a planar scene
and a fundamental matrix assuming a non-planar scene.
In addition, the system has embedded a Bag-of-Words (BoW)
[86] place recognition module that is used for performing
both loop-closing and relocalization, built with the open-
source library DBoW2 [87], taking advantage of an offline
computation of the discretization of the descriptor space,
which is known as the visual vocabulary.

LDSO [56] is an extension of the influential DSO [46],
a direct probabilistic model that jointly considers minimizing
a photometric error with consistently introducing the geomet-
ric notions of camera motion and pixel inverse depth on the
reference frame. The introduction of loop closure detection,
also through a Bag-of-Words approach, and also pose-graph
optimization, allow the already robust tracking to be further
improved through correction rotation, translation and scale
drifts.

LIBVISO 2 [85] is another influential work egomotion
estimation, based on computing the camera motion by min-
imizing the sum of reprojection errors and refining the
obtained velocity estimates bymeans of aKalman filter. It can
work either with rectified stereo image sequences or for the
monocular use case and produces an output 6D vector with
estimated linear and angular velocities.

SfMLearner [66] is an unsupervised learning pipeline for
depth and egomotion estimation. The unsupervised objective
is fulfilled based on the following intuition: given knowledge
of camera self-motion within a sequence of images and the
depth of every pixel in those images, we can gain an unsuper-
vised target by performing view synthesis.

As mentioned above, we are interested in evaluat-
ing Zhou’s PoseNet, the SfMLearner framework compo-
nent responsible for regressing 6-DoF pose estimates. The
PoseNet architecture is essentially a temporal convolutional
network which processes a sequence of n images by pre-
dicting relative transformation from the center image of the
sequence (the image at the central position of the snippet,
as shown in Fig. 10) to the other images in the sequence,

FIGURE 10. CRAS pool 5-sequence length snippet.

outputting a n-1 transformation vector composed of a 3D
translation vector and a Euler angle orientation vector for
each transformation.

The network itself is a convolutional regressor model with
seven convolutional layers with stride-2 followed by ReLU
activations, leading to a final linear convolution that outputs
the aforementioned 6 x (n-1) - dimensional channels. On top
on this network, an ‘‘explainability’’ mask is used to down-
weight the loss on image patches undergoing motion external
to the camera motion (e.g. a car or pedestrian moving in the
frame).

GeoNet [70] is a jointly trained end-to-end unsupervised
learning framework for monocular depth, optical flow and
egomotion estimation. Specifically, this framework focuses
on extracting geometric relationships in the input data by
separately considering static and dynamic elements in the
scene. Significant performance gains have been reported,
mostly due to increased robustness towards texture ambiguity
and occlusions in the scene.

The framework is composed of two stages: the Rigid Struc-
ture Reconstructor and the Non-rigid Motion Localizer. The
first stage is tasked with understanding the scene layout and
structure and it consists of two sub-networks, i.e. the Depth-
Net and the PoseNet. The second stage concerns itself with
dynamic objects in the scene and it utilized for the purpose of
refining imperfect results from the first stage due to motion
external to the camera motion, as well as help deal with high
pixel saturation and extreme lighting conditions.

Similarly to SfMlearner, view synthesis at different stages
works as a synthetic supervision for the unsupervised learning
architecture, with image appearance similarity enforcing geo-
metric and photometric consistency within the loss function.

The most relevant part of the framework in the scope of
our work is the Pose Net, which consists of 7 convolutional
layers followed by batch normalization and Relu activation
(see Fig. 11). The prediction layers outputs the 6-DoF camera
poses, i.e. translational vectors and orientation Euler angles.

V. VISUAL-INERTIAL FUSION NETWORK
Regardless of the algorithm, traditional monocular VO solu-
tions are unable to observe the scale of the scene and are
subject to scale drift and scale ambiguity. This is not different
for deep neural architectures, as reported in the previously
studied frameworks. The most common approach for pose
optimization in the literature is to fuse visual and inertial
data as a way to enforce global consistency with respect to
the groundtruth data and therefore it would make sense to
investigate analogous deep learning approaches to perform
this task.
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FIGURE 11. Representation of the GeoNet PoseNet, the framework
component responsible for regressing 6-DoF pose estimates. It consists
of 7 blocks of convolutional layers followed by ReLU activations and
additional batch normalization layers, outputting a 6-dimensional vector
that comprises a 3D translation vector and euler angles orientation
representation.

In this work, we propose a Recurrent Neural Network
architecture anchored in a supervised learning scheme
whereby we use filtered IMU readings as a supervision for
6-DoF pose estimate optimization.

The input space of this network are the concatenated
egomotion predictions of both SfmLearner and GeoNet, i.e.
global trajectory estimates in the robot central body frame.
For this purpose, and due to deep learning architectures
requiring large amounts of data to converge to a robust model,
we had to run multiple predictions from both frameworks so
as to synthetize a dataframe dataset.

The network itself consists of stacked LSTM units work-
ing with progressively smaller time step lags leading to a
multilayer perceptron that regresses the optimized trajectory
estimate. The goal is to process the data as a sequence-to-
sequence problem, optimizing the input trajectory estimates
to a more globally consistent trajectory.

At training time, the network is fed both the visual odom-
etry pose estimates and the IMU readings. At inference time,
only the visual odometry poses estimates are fed to the net-
work, as it is able to generalize the pose corrections that
would be introduced by the inertial readings.

The fundamental assumption driving this architecture is
that the output space of the optimized trajectory estimate lie
in a manifold much smaller than 6-DoF space. Implicitly
constraining the output prediction space to a minimization of
the mean square error between visual and inertial data helps
to avoid the curse of dimensionality.

For loss function design, the intuition was that we needed
to make use of the quaternion parametrization to penalize
rotation errors in a meaningful way. In this light, we decou-
pled the translation and rotation components and formu-
lated a loss function that takes the mean squared error for
translation and the quaternion distance between estimate and
groundtruth in the SO(3) group.

loss =

√∑
(E2

x + E2
y + E2

z )+
∑
|qe − q| (1)

where Ex...z represents the computation of distance between
estimate and groundtruth position. Quaternion distance is

computed as the norm of the difference between estimate
and groundtruth quaternions. In addition, we constrained the
equation to take into account the fact that q and -q encode
the same rotation, only considering the smaller of the two
possible distances in the loss function calculation. This loss
function design allowed for a more meaningful handling of
rotations, especially around capturing the most significant
motion direction.

VI. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS AND TRAINING
PROCEDURES
In this section, we focus on the experimental results we
were able to obtain for the previously mentioned egomotion
estimation frameworks. In addition, we will show the impact
of the Visual-Inertial Fusion Network so as to optimize the
trajectory estimate and correct inherent VO drift on the tra-
jectory data generated by SfMLearner.

For testing SLAM systems, we are aware that the under-
water environment is very different from the environments
they were designed to tackle, with several different chal-
lenges they were not tailored to. As an attempt to further
calibrate the environment, a bag-of-words visual dictionary
was compiled taking into consideration the underwater sce-
narios we want to work on. For this purpose, we utilized
the DBOW2 library [87] and constructed a representation
of the descriptor space spanning both of our underwater
environments with sufficient data for providing the SLAM
systems with an additional tool for place recognition and pose
correction.

SfMLearner and GeoNet share the data preprocessing step
whereby the input image sequence is split into 5 sequence
length snippets (see Fig. 10). In conjunction with camera
intrinsic calibration and image timestamps, the 416 × 128
snippets were fed to the frameworks and the neural networks
were trained using tensorflow [88] running on a CUDA
enabled Nvidia GTX 1080. It is also worth noting that a
post-processing step was implemented in order to recover
full concatenated trajectory from the 5-snippet length pre-
dicts, so as to analyze also the global trajectory errors. Some
context finetuning was performed, empirically adapting the
network to penalize heavier errors in rotation as large global
trajectory errors were being introduced due to early rotation
errors unaligning the pose estimates with the groundtruth,
thus accumulating significant drift.

For the Visual-Inertial Fusion Network on the other hand,
and given that there was no prior knowledge about how to
tune a pose optimization network, we adopted a grid-search
learning scheme to sweep multiple combinations of hyper-
parameters and return the one that converges to smaller loss
values. This is only feasible in a short timeframe because
we are working with low dimensional data (i.e. dataframes
instead of high resolution imagery) but for this application,
it is perfectly suited for finding an optimal solution for hyper-
parameter tuning.
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TABLE 1. Absolute Trajectory Error (ATE) evaluation.

B. RESULTS
In order to analyze and benchmark the obtained trajectory
estimate results and method performance, we are following
quantitative VO literature [89]. This envolves processing the
pose estimates with scale correction optimization and align-
ment with groundtruth data, so as to resolve scale ambiguity
and minimize the impact of early drift accumulation errors.

In the remaining of this section, wewill present and discuss
the results considering the full concatenated trajectory, for
all considered methods. Particularly, when it comes to deep
learning methods, we are escaping the snippet representation
and recomputing errors with respect to groundtruth pose for
the entire test sequence trajectories under analysis. Mean
Absolute Trajectory Error (ATE) is an single value error
metric for position, rotation and velocity estimation, which
makes it easy for comparisons.

Table 1 shows the best results we were able to obtain for
our two test sequences. Results were only considered when
the algorithms manage to produce an estimate of at least two
thirds of the trajectory sequence. SLAM systems struggle a
lot in the Urgeirica mine scenario, both in achieving a robust
initialization and also keeping track of the environment for
long periods of time. It was noted that after losing tracking,

FIGURE 12. Monocular LIBVISO2 estimation for the Urgeirica mine test
sequence: trajectory estimate against groundtruth data.

most of the times the systems could not recover and reini-
tialize. Monocular LIBVISO2 manages to get an somewhat
consistent estimate, as shown in fig. 12.
The designed Visual-Inertial Fusion Network makes use of

IMU data in the training step of the algorithm, but at inference
time it uses only visual images as input, thus working ‘‘in
essence’’ as a monocular vision algorithm. Nonetheless, it is
sensible to draw a comparison with VIO algorithms, since
the input data is readily available and the addition of inertial
data could be acting as the difference maker for overall accu-
racy improvements. To this effect, two renown opensource
VIO frameworks, namely VINS-mono [90] and R-VIO [91]
were also tested on our underwater scenarios. Despite tight
camera intrinsic and camera to IMU extrinsic calibration,
VINS-mono [90]was not able to generate a sequence estimate
for any of our dataset test sequences, especially because the

TABLE 2. Result compilation for Absolute Pose Error w.r.t. translation.
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TABLE 3. Average position and orientation errors for RVIO [91].

FIGURE 13. Results for the CRAS pool sequence: trajectory estimates
against groundtruth data.

visual component prevented robust initialization due to low
parallax and rather low feature environments. R-VIO [91],
on the other hand, was able to generate trajectory estimates,
as reported in table 3.

For our underwater visual dataset test sequences, most
of the tested visual only or visual-inertial odometry esti-
mation algorithms struggle with providing a consistent esti-
mate for our trajectory test sequence. We attribute this to
domain-specific characteristics that shed light to method
degenerate conditions in repetitive low feature environments.
In that regard, the performance of Deep Learning methods
showed comparatively great potential, as their data-centric
nature appears to have been able to obtain a better represen-
tation of the feature space within the images, thus helping
improve the overall accuracy of the methods.

Zooming in on deep learning methods, as they have shown
to be more robust to the environment characteristics, we want
to quantify the trajectory error with respect to its translational
component. For the sake of coherent representation, and abid-
ing to quantitative VOmetrics, wewill present the trajectories
before and after SIM(3) alignment, which consists of the
application of a post-processing step denoted as Umeyama
alignment [92]. This algorithm performs a least-squares esti-
mation of transformation parameters translation, rotation and

FIGURE 14. Results for the CRAS pool sequence: trajectory estimates
against groundtruth data decoupled by translational component.

FIGURE 15. Results for Urgeirica Mine sequence: computed trajectory
estimates against groundtruth data.

scale between estimates and groundtruth pose data, so that the
RMSE between groundtruth and aligned estimates can then
be computed. Table 2 shows that comparison, reporting on
metric average errors with standard deviation and addition-
ally the RMSE.

As it can be observed in Fig.13 and Fig.14, our
Visual-Inertial Fusion Network component is outperform-
ing the other visual methods with respect to mimicking
groundtruth trajectory shape. In a somewhat textureless envi-
ronment, the introduction of inertial information pose correc-
tion is allowing for capturing the robot self-motion in a more
adequate fashion, especially around handling rotations.

In Fig. 15, that is even more evident, as the Urgeirica mine
sequence is significantly more challenging. In this case, it is
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also possible to see that our method is able to capture more
adequately the most significant motion direction, not overly
considering lateral motions to it. Again, it is shown to be the
closest approximation to groundtruth pose information in this
scenario, as numerically reported in table 1 and table 2.

VII. CONCLUSION
A. SUMMARY
In this paper, the focus is placed on analysing visual-based
robot navigation, exploring the different ways in which
robot egomotion can be estimated. A special emphasis is
placed upon data-driven learning-based approaches and, also,
the underwater application scenario.

As detailed in section III, a comprehensive underwater
visual dataset was constructed, which encompasses different
texture environments and provides different types of chal-
lenges for visual-based pose and/or motion estimation. This
was achieved through the use of data acquired with the
UX-1 robot, a robot tailored for exploration and mapping of
indoor decommissioned flooded mines. The dataset presents
both a fully known controlled environment in our CRAS
indoor pool, as well as an operational mission scenario in the
Urgeirica uranium mine in Viseu, Portugal.

Robot localization and motion estimation literature was
thoroughly reviewed and some of most renown opensource
software was tested, benchmarked and evaluated on our
underwater visual dataset. There was a particular interest to
see how deep learning algorithms would compare to classical
VO and v-SLAM approaches in the context of underwater
visual environments, as there was close to no information
about that in the literature.

We soon realized that SLAM systems were not suited
for handling our use case challenging underwater scenarios.
Initialization proved to be a difficult problem since some-
times there is no reliable texture and/or volume of fea-
tures to build an initial map of environment. Tracking also
proved to lose itself multiple times over the test sequences,
with relocalization again presenting a difficult issue. Overall,
it results in systems that can only estimate subsets of the
target trajectory, despite the high accuracy on those trajectory
patches.

Classical VO, specifically monocular LIBVISO-2, per-
formed much better in that regard, estimating much more
successfully the test sequence trajectories. However, it was
also not able to extract the translation and rotation for every
pair of consecutive frames, probably due to low amounts
of features and small inter-frame displacements. The same
can be said for the tested VIO systems, as low parallax and
small amount of features detected significantly hinder their
performance on our dataset test sequences.

Deep learning architectures, on the other hand, present a
significant advantage in that regard, as its data-centric math-
ematical formulation allows for constant pose estimation for
all frames, even in challenging operational mission scenarios.
The intrinsic high-level representation of the feature space

enforces consistency along the image sequence and additional
robustness to the environment challenges. However, some
challenging issues could be clearly identified, as poor han-
dling of rotations and drift accumulation compromised the
accuracy and reliability of pose estimates, as required by real
robotic systems.

A Visual-Inertial Fusion Network was presented in
section V, with the purpose of addressing the aforemen-
tioned egomotion performance problems. The proposed solu-
tion consists of a Visual-Inertial Fusion Network, aimed at
improving global pose estimates through an inertial supervi-
sion learning scheme. This supervised architecture proved to
significantly improve results on global pose estimation, with
around 40% better error rates.

In this work, real-time implementation of deep learning
algorithms was not addressed, mainly because the UX-1 does
not possess any type of GPU hardware, therefore rendering
any conclusion from on board implementations non-viable.
In addition, and although the robot possesses multiple cam-
eras, visual stereo implementations are significantly hard
to design for this particular robot, due to non-overlapping
camera fields-of-view.

B. FUTURE WORK
There are several open opportunities and challenges for
underwater data-centric motion estimation. In particular, and
following the groundwork layed on in this article, the follow-
ing research action is suggested:

• Sensitivity analysis of image preprocessing steps
(i.e. haze removal and vignetting mitigation).

• Integration of visual-inertial fusion within end-to-end
deep learning for underwater robot navigation pipelines.
Further study and calibration of inertial measurement
integration for underwater mobile robots.

• Assessment and testing of visual stereo implementations
on top of deep learning architectures for the underwa-
ter context. This work focused on monocular camera
setups mostly due to the UX-1 design constraints, yet
it would be interesting to investigate the performance
of deep learning architectures also for the stereo use
case.

• Closing the loop also poses as an interesting challenge
for VO estimation deep learning methods, as VO can
greatly benefit from global optimization steps to cor-
rect VO drift accumulation. Place recognition or higher
level semantics are worth exploring as a solution for
loop-closure in DL algorithms.

• Real-time implementation and testing of deep learning
architectures for both relocalization and egomotion tasks
for the underwater context.
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