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ABSTRACT Many potential hazards are encountered during daily driving in mixed traffic situations, and
the anticipatory activity of a driver to a hazard is one of the key factors in many crashes. In a previous
study using eye-tracking data, it was reliably recognized whether the eyes of a driver had become fixated
or pursued hazard cues. A limitation of using eye-tracking data is that it cannot be identified whether the
anticipatory activity of a driver to hazards has been activated. This study aimed to propose a method to
recognize whether the psychological anticipation of a driver had been activated by a hazard cue using
electroencephalogram (EEG) signals as input. Thirty-six drivers participated in a simulated driving task
designed according to a standard psychological anticipatory study paradigm. Power spectral density (PSD)
features were extracted from raw EEG data, and feature dimensions were reduced by principal component
analysis (PCA). The results showed that when a driver detected a hazard cue, the alpha band immediately
decreased, and the beta band increased approximately 300 ms after the cue appeared. Based on performance
evaluation of the support vector machine (SVM), k-nearest neighbor (KNN) method, and linear discriminant
analysis (LDA), SVM could detect the anticipatory activity of the driver to a potential hazard in a timely
manner with an accuracy of 81%. The findings demonstrated that the hazard anticipatory activity of a driver
could be recognized with EEG data as input.

INDEX TERMS Hazard perception, EEG, anticipatory activity, SVM.

I. INTRODUCTION
In daily driving, driver anticipation of on-road hazards that
could cause a crash has been called hazard perception.
It is claimed to be the only higher-order cognitive skill
that reliably relates to the crash risk in drivers and plays a
crucial role in crash likelihood prediction [1], [2]. Hazard
perception is related to whether a driver can detect a poten-
tial hazard and prepare for it, and a traffic report revealed
that approximately 40% of traffic accidents were caused
by the lack of anticipation of potential hazards or unno-
ticed hazard cues [3]. Accelerating the learning process of
hazard perception via assessment and training is one major
strategy to improve traffic safety. Hazard perception can be
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viewed as the situation awareness of a driver for potentially
dangerous incidents in the traffic environment. Typical con-
ceptualization of situation awareness might help us more
effectively design hazard-perception skill tests and training
driving styles [4], [5]. Therefore, knowledge of this hazard-
perception psychological process is cutting-edge research in
the road safety field.

Due to the importance of hazard perception, many studies
have focused on how to evaluate the hazard perception skills
of drivers. These skills are mainly tested by video or driving
simulator tests [6], [7]. In a typical video test, video clips
recorded from the driver perspective are analyzed, and the
responses when a hazard is detected are used to evaluate
certain skills, such as manipulating a lever or pressing a
response button to indicate the level of perceived risk [8]. The
driving simulator test embeds potentially dangerous scenarios
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into the simulated driving task, which has a higher eco-
logical validity than video tests [9], [10]. Furthermore, the
hazard-perception skill has been regarded as an eligibility
criterion of drivers, which is commonly known as the fit-
ness to drive in recent years [11]. Applicants need to com-
plete a computer-based hazard-perception test before being
granted a valid driver’s license in the United Kingdom and
Australia [12]. Hazard perception is associated with per-
ception and anticipation. Existing research effectively eval-
uated whether a driver perceived hazard cues but could not
assess whether the anticipatory activity of the driver had been
activated in preparation for potential hazards.

Anticipating a potential hazard is a cognitive process dur-
ing which a person actively engages in a preparatory phase
required for stimulus perception and executes specific actions
after the appearance of a particular stimulus [13]. The psy-
chological anticipation activity of a driver to coming events
is activated by hazard cues. If a system could warn drivers
when there is a potential hazard in cases when the driver
psychological anticipation activity has not been activated,
collision accidents could be more effectively avoided.

Studies have reported that electroencephalograms (EEGs)
could represent anticipatory activities. The contingent nega-
tive variation (CNV), a slow, negative electrical brain wave,
occurs in the interval between the presentation of cue and
target stimuli in a cueing paradigm [14]. The cueing task
is used as a classical experimental paradigm for studying
the cognitive process of anticipation and has been widely
investigated [15]. The CNV lasts from approximately 300 ms
to several seconds with magnitudes up to 50µV and has been
linked to the preparatory process required for appropriate
actions of coming events [16], [17]. In addition, the frequency
domain of EEGs, which is more suitable for engineering
applications, is also related to anticipation activities. The
alpha band (7-13 Hz; alpha) is strongly correlated to the CNV
in the interval between the cue and target stimuli [18]. A cue-
induced alpha reflects attentional selection. Alpha decreases
leading to liberalization of alpha when detecting a cue and
anticipating a target in visual cueing tasks [19]. However,
a warning stimulus would elicit a decrease in alpha [20], [21].
The beta band (13-30 Hz; beta) increases during the antici-
pation process, and beta oscillations are generally associated
with motor preparation, which facilitates the action execu-
tion required based on the target stimulus [22], [23]. These
findings indicated that the frequency domain information of
EEGs could be used to detect the anticipation activities of
drivers to potential hazards.

For identifying anticipation activities to a hazard in
applications, a simulated driving experiment revealed that
eye-tracking data could be used to reliably recognize whether
the eyes of a driver had become fixated or were pursuing
hazard cues [24]. This method can effectively provide a
warning signal if the driver has not perceived cues. Gener-
ally, successful hazard perception should include detecting
cues and preparing for executing evasive actions in terms of
braking or steering [25]. A limitation of using eye-tracking

data is that it cannot identify whether the anticipatory activity
of the driver to hazards has been engaged. Since an EEG is
a kind of physiological signal with a high temporal resolu-
tion [26], it could be used to represent the whole anticipatory
activity process in CNV studies. As mentioned above, the
EEG frequency showed a strong correlation with anticipatory
activities. The results indicated that power features could be
used to recognize whether the anticipatory activity of a driver
to a hazard had been activated.

On this basis, a novel prediction method was proposed in
this study that could estimate driver anticipatory activities
to cues of potential hazards. This method could potentially
advance the warning time from hazard onset to hazard cue
detection in future driving assistance systems. We investi-
gated the brain changing process during driver anticipatory
activities upon detecting a hazard cue. The power spectral
density (PSD) features of EEGs were used to recognize
whether the anticipatory activity of driver to a potential
hazard had been activated. We recorded simultaneous EEGs
from 36 drivers performing a custom simulation driving task
designed based on the standard S1-S2 paradigm, which is
widely used to study anticipatory activities. The avoiding
behavior of a driver before the appearance of the target stimu-
lus was used to determine the label of each trial. PSD features
were extracted from raw EEG data, and these features were
fed into three widely used classifiers, including the support
vector machine (SVM), k-nearest neighbor (KNN) and lin-
ear discriminant analysis (LDA). Finally, we compared the
performance of these three classifiers to determine the best
method to recognize driver anticipatory activities. As a result,
the driver anticipatory activity to a potential hazard could be
effectively recognized by SVMwith the PSD features of EEG
signals as input.

II. DATA DESCRIPTION
A. DRIVING SIMULATOR AND TASK
The experiment was conducted with a driving simulator con-
sisting of a Logitech Driving Force G27 steering wheel with
2 pedals (throttle and brake pedals), a comfortable driving
seat, and professional driving simulation software STISIM-
DRIVE M100K [27]. The simulator provided a 60-degree
vision from a driving perspective, as well as the flexibility
to edit experimental scenarios. A 27-inch LCD display was
used to visualize the driving task scenario, which was placed
approximately 1 meter in front of the driver, with a resolution
of 1920 × 1200 pixels and a refresh frequency of 60 Hz.
The audio system consisted of a Sound Blaster X-FiTM
sound card and a Dell A225 stereo system. These apparatuses
provided a realistic driving environment.

Fig. 1 shows the design of the experiment in detail. The
driving task scenario was a simulation of urban street driving,
with two-way and two-lane roads. To isolate the effects of the
cognitive load and avoid redundant actions that could result in
EEG artifacts, there were no other moving vehicles except the
experimental vehicle [28]. The task was designed according
to the standard psychological paradigm of a S1-S2 task.
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FIGURE 1. The design of the simulation driving task.

This paradigm has been widely used in psychological antic-
ipatory studies [28]. In a standard S1-S2 task, each trial
contends a cue stimulus (S1) and a target stimulus (S2).
The anticipatory activity of subjects to the target stimulus
is induced by S1, and the response to S2 is usually used to
evaluate the anticipatory activity. In the driving task, par-
ticipants were required to drive on the right side, and they
remained at full throttle during driving (the simulator set the
maximum speed of the vehicle to 45 km/h and the engine
speed to 2200 rad/min). In each test trial, the vehicle would
pass a bus station with a bus parked along the road side
during driving, and a pedestrian would step onto the road
when the vehicle passed the front end of the parked bus. The
participant was required to steer to avoid a crash, then return
to the right side and continue driving. In the trial, the parked
bus represented the cue stimulus S1, and the pedestrian was
the target stimulus S2. The interval between the pedestrian
stepping onto the road and the parked bus appearing in the
vision range of the driver was approximately 3 s at the
design driving speed. After completing the test trial, another
bus station would appear after 15∼20 s. There were 40 test
trials in total for the whole task, and the probability of a
pedestrian stepping onto the road was randomly set to 50% in
all trials.

B. PARTICIPANTS AND EXPERIMENTAL PROCEDURE
Thirty-six fully licensed drivers participated in the driving
experiment, including 22 males and 14 females. Their age
ranged from 23 to 34 years old (a mean age of 26.6 years;
standard deviation SD= 2.7 years). Their driving experience
ranged from 1 to 10 years (a mean of 5.11 years; stan-
dard deviation = 2.3 years), and each participant had driven
more than 5000 km in the past 6 months. All participants
had normal or corrected normal vision, and none had any
history of a neurological or psychiatric illness or required
any medications or other forms of drugs that might influ-
ence the central nervous system. Drivers were recruited via

online advertisements, and this study was approved by the
Ethics Committee of the Institute of Psychology (CAS).

The participants were provided with information 24 hours
before the test. They were well rested and were asked not to
consume any caffeinated drinks such as coffee or tea and to
arrive at the lab at 9:00 am. When participants arrived at the
lab, the procedure was as follows:

1) The participants rested for 10 min to attain a resting
state. At the same time, they were introduced to the exper-
imental operations, and they signed informed consent forms
thereafter.

2) After setting up the EEG electrodes, the participants
were instructed to practice for 5min and become familiar with
the driving simulator and the special task.

3) In the formal experiment, the participants were required
to drive with as few as necessary limb movements.

The entire experiment lasted approximately 15 min, and
each participant received 100 CNY after completing the test.

C. DATA ACQUISITION
A 64-channel Neuroscan-SynAmps2 amplifier was used to
record EEG signals, with 64 active electrodes attached to an
electrode cap, which could record the required brain informa-
tion for analysis. Electrode positions were mapped according
to the standard international 10-20 system, and the left mas-
toid was used as the online reference for all channels. During
the test, the impedance of all electrodes was controlled to be
lower than 5k �, and the sampling rate of EEG data was set
to 1000 Hz, while the electrodes were automatically filtered
with a bandpass filter from 0 to 50 Hz.

Various driving parameters, such as steering angle and
throttle and lane positions, were automatically recorded by
software. The driving behavior and EEG data were synchro-
nized through communication via a parallel port, and the
driving simulator could transmit event codes to the EEG
amplifier when the test trial was started. The sampling rate
of driving behavior data was set to 50 Hz.
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FIGURE 2. Schematic diagram of the trial.

III. METHODOLOGY
A. LABELING THE SAMPLES
One goal of this study is to use EEG data to recognize the
anticipatory activity of a driver to a potential hazard upon
detecting a hazard cue. In regard to the data, each test trial
is a sample, and there are 1440 samples in total. Each sample
label is determined based on the avoiding behavior before the
appearance of the target stimulus.

When the anticipatory activity of the driver was activated
by the cue in preparation for a potential hazard, specific driv-
ing behaviors would occur, such as reducing the speed [29].
In this study, the anticipatory avoiding action of releasing the
throttle was used to label the sample. A schematic diagram of
a trial is shown in Fig. 2, and the sample is labeled according
to equation (1): The time when the parked bus appears in the
vision range of the driver is set as 0 points, and the pedestrian
steps onto the road within 3 s with a probability of 50%. If the
driver releases the throttle pedal up to 95% and maintains that
position until the target appears at 3 s, then this sample is
labeled as a trial with anticipatory activity (WA). The sample
label is 1. The point at which the throttle position is below
95% of its initial position is marked as tcut , and the EEG data
from 0 to tcut is extracted for later analysis. On the other hand,
if the driver does not release the throttle pedal within 3 s,
this sample is labeled as a trial without anticipatory activity
(WOA), and the sample label is -1. Hence, the label database
is Y = {yi} , for i = 1, 2, . . . , I , and I is the number of
samples.

f (n) =

{
1, the driver released throttle
−1, others

(1)

B. EEG FEATURE EXTRACTION
1) ARTIFACT REMOVAL
The original EEG data may contain many artifacts, including
electromyograms (EMGs) and electrooculograms (EOGs).
First, the raw EEG data were filtered with a bandpass filter
(from 0.1-30 Hz) to remove any linear trends and EMG
artifacts. Then, the data were loaded in EEGLAB, and inde-
pendent component analysis (ICA) was performed to decom-
pose the data into independent components. EMG and EOG
components weremanually removed, and the remaining com-
ponents constituted the artifact-free EEG data. Moreover,
we referenced the average data of all electrodes.

2) FEATURE EXTRACTION AND DIMENSION REDUCTION
The EEG signal is the external representation of the brain,
and its frequency and PSD characteristics are closely related

to brain activity changes. According to previous studies,
the PSDs of the alpha (α; 8-13 Hz) and beta (β; 13-30 Hz)
bands change significantly due to anticipatory activities in the
brain, which means that α and β can be adopted to recognize
the anticipatory activity of a driver. The PSD is extracted from
EEG data as follows:

For theWA trials, the EEG data of [−T cut ,T cut] were used
to extract features, where [−T cut , 0] was the baseline EEG,
and [0,T cut] was the analyzed part. Features were extracted
from the analyzed part minus the baseline, which means that
the extracted PSD features represented the changes in EEG
activity before and after the cue stimulus. For theWOA trials,
the EEG range of

[
−max(T cut),max(T cut)

]
was used to

extract features, where max(tcut) is the maximum response
time of a participant in all WA trials. Fig. 3 shows the process
of EEG feature extraction. For each trial, a sliding Hamming
window was adopted to divide the EEG data into segments
with an overlap of 50%, and the length of the window was
200 ms. Fast Fourier transform (FFT) was implemented to
transform the EEG data to the frequency domain. For segment
data containing n data points, i.e., F(n), the amplitude density
distribution function in the frequency domain is calculated as:

f FFT(k) =

{∑N−1
n=0 f (n)W

kn
N , 0 ≤ k ≤ N − 1

0, others
(2)

whereWn = cos
(
2π
N

)
− jsin

(
2π
N

)
, for N≈ n2. According

to the band of each PSD, the features of every Hamming
window are calculated.

PSDα =
1
f α

∑
k∈f α
‖ f FFT (k) ‖2

PSDβ =
1
f β

∑
k∈f β
‖ f FFT (k) ‖2

(3)

where f α = [8− 13Hz] and f β = [13− 30 Hz] . Then,
the original PSD features extracted from the baseline and ana-
lyzed EEGs were averaged, and specific PSD features were
obtained by using the averaged original PSD features of the
analyzed EEG minus the averaged original PSD features of
the baseline EEG for each trial. In addition, we also adopted
the ratio of (α + β)/β as a metric.
For each electrode, we can obtain 3 EEG PSD features. For

q electrodes (q= 64 in this study) and I trials, the database is
X = {xil} , for i = 1, 2, . . . ,I and l= 1, 2, . . . , 3q.
Too many features as inputs would affect the running

speed of the classification model and would also lead to
data dimension disasters. To eliminate the data redundancy of
the 3q column features, principal component analysis (PCA)

48920 VOLUME 8, 2020



Z. Guo et al.: Recognizing Hazard Perception in a Visual Blind Area Based on EEG Features

FIGURE 3. The process of EEG feature extraction.

was applied to compress the EEG features. PCA is a widely
used dimension reduction method that converts similar data
into linearly unrelated data by orthogonal transformation
and converts multiple features into a few comprehensive
features. In this study, L items with a cumulative contri-
bution rate higher than 85% were selected as inputs of
the classification model, and the feature database is X

′

=

{xil} , for i= 1, 2, . . . ,I, and l= 1, 2, . . . ,L.

3) THE CLASSIFIERS USED FOR COMPARISON
SVM, KNN and LDA were compared to recognize the haz-
ard anticipatory activity of a driver in this study. SVM is a
well-known binary linear classifier that establishes a hyper-
plane with certain exceptions and improves its discrimination
ability by maximizing the margins. In the KNN method,
the classifier labels samples are determined based on the
similarity between samples in the training data. LDA is a tech-
nique that is used to describe the distinctive nature of two or
more classes of objects by determining a linear combination
of features.

Support Vector Machine (SVM). The mechanism of SVM
consists of establishing the optimal classification hyperplane
to adjust the classification requirements. The hyperplane
can maximize the blank area on both sides of it while
ensuring a high classification accuracy. It is suitable for
high-dimensional and nonlinear classification with few sam-
ples. Given the database

{
xi, yi, i = 1, 2, · · · , I

}
, for xi ∈

RL and yi ∈ {1,−1}, the optimal hyperplane is
w · x + b = 0. The problem of determining the optimal
hyperplane can be transformed into the following nonlinear
programming problems:min

1
2
‖ w ‖2

s.t.yi(w · x+ b) ≥ 1
(4)

Using the Lagrange function to solve the optimization
problem, the following is obtained:

L1(w, b, a) =
1
2
‖ w ‖2 + a(y(w · x+ b)− 1) (5)

where a>0 is the Lagrange multiplier. The quadratic
programming (QP) problem can be transformed into the
following corresponding dual problems:maxQ (a) =

∑I
j=1 aj −

1
2
∑I

i=2
∑I

j=1 aiajyiyj(xi · xj)

s.t.
∑I

j=1 aiyi = 0, aj≥ 0, and j = 1, 2, . . . , I
(6)

The optimal solution is a∗ = (a∗1 , a
∗
2 , . . . ,a

∗
I )
T , and the

optimal weights and bias are:{
w∗
=
∑I

j=1 a
∗
j yjxj

b∗ = yi −
∑1

j=1 yia
∗
j

(
xj · xi

)
, j ∈ { j| a∗j > 0}

(7)

Then, the optimal hyperplane is w∗
·x+b∗ = 0, s.t.w∗ ∈

RL and b∗ ∈ R, and the best classification function is:

f (x) = sgn
(
w∗
·x+ b∗

)
= sgn

{
(
∑I

i=1
a∗i yi(x·xi)+b

∗)
}
, x ∈RL (8)

When samples are linearly inseparable, the kernel func-
tion is used to map the samples to high-dimensional space
ensuring that the samples are linearly divisible. The final
classification function is:

f (x) = sgn
{(∑I

i=1
aiyik (x·xi)+ b

)}
, for x∈RL (9)

where k (x·xi) is the kernel function. In this study, the kernel
function is the radial basis function (RBF).

k (x·xi) = exp
(
−g‖ x−xi ‖2

)
, g> 0 (10)
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TABLE 1. Eight common similarity measures in KNN.

where g is the RBF bandwidth, and the RBF has a
good anti-interference ability to the sample noise.

K-Nearest Neighbor (KNN). KNN is a method based on
mathematical statistics with a high accuracy for samples with
unknown or non-normal distributions. For a given unknown
sample, the main idea of KNN is to determine the k sam-
ples nearest to the unknown sample from training data and
evaluate the unknown sample by counting the categories
that appear the most out of these k samples. The model
construction algorithm is described as follows:

1) Select a similarity measure and create a similarity matrix
from the given training data.

2) Determine the k value and calculate the distance
between the unknown sample and all training data.

3) Identify the k-nearest samples to the unknown sample.
4) Each category is counted, and the unknown sample

belonging to the category with the highest frequency is
predicted.

The similarity measure is a key factor in the per-
formance of KNN. For any two samples xiL =

(xi1, xi2, . . . ,xiL) and xjL =
(
xj1, xj2, . . . ,xjL

)
, the distance

between these two vectors is calculated according to the sim-
ilarity measure, and there are 8 common similarity measures,
which are summarized in Table 1.

Linear Discriminant Analysis (LDA). LDA is a classical
pattern recognition algorithm, which was introduced by Bel-
humeur in 1996 in the fields of pattern recognition and artifi-
cial intelligence. To construct the LDA classifier, we assume
that the WA and WOA samples in the training data belong
to two different populations, G1 and G2, respectively, and
the unknown sample x also belongs to either G1 or G2.

The Mahalanobis distance between the unknown sample and
the rest of the population is:

d(x·Gi) =

√
(x−µi)′

∑−1

i
(x−µi), i = 1, 2 (11)

where µi are the mean-value vectors of the two populations,
and 6i are the covariance matrixes of the two populations.
The discriminant function is:

f (x) =
1
2
[d2(x,G1)−d2 (x,G1)− d2(x,G2)] (12)

If the covariance matrixes are equal, then 61 = 62 = 6,

and the discriminant function can be represented as:

f (x) = 2(x−
µ1 + µ2

2
)
T
6−1(µ1 − µ2) (13)

if f (x) > 0, x ∈ G2,y = −1
if f (x) < 0, x ∈ G1,y = 1
if f (x) = 0, x is unknown

(14)

For a given sample x, if f (x) = −1, the driver would not be
prepared enough for the potential hazards, and if f (x) = 1,
the driver would execute suitable actions in preparation for
the potential hazards.

4) MODEL PERFORMANCE MEASUREMENT
For any unknown category sample xi, the model can output
one of four different results, namely, true positive (TP), which
has an observed value of 1 and a predicted value of 1, false
positive (FP), which has an observed value of -1 and an output
of 1, true negative (TN), which has an observed value of
-1 and an output of -1, and false negative (FN), which has an
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FIGURE 4. The number of anticipatory avoiding actions for each
participant.

observed value of 1 and a predicted value of -1. The general
accuracy (ACC), true positive rate (TPR) and true negative
rate (TNR) were adopted to evaluate the performance of the
above three classifiers, and these metrics were calculated as
follows:

ACC =
TP+ TN

N2
× 100% (15)

TPR =
TP

TP+ FN
× 100% (16)

TNR =
TN

TN + FP
× 100% (17)

where N2 is the total number of test samples. In addition,
the discriminability(d’) and running time of each model were
calculated in the performance comparison.

IV. EXPERIMENTAL RESULTS
A. DRIVING BEHAVIOR RESULTS
The driving behavior data are processed according to the
method described in section III. There are 1440 samples in
total, with 1156 WA samples and 284 WOA samples. The
driving behavior distribution of each participant is shown
in Fig. 4. For all participants, the average number of anticipa-
tory avoiding actions is 32.04. Participant 26 performed the
worst with 25 anticipatory avoiding actions, and participant
36 performed the best with 38 anticipatory avoiding actions.
For the WA trials, the anticipatory avoiding action reaction
time ranged from 316 to 733 ms. There were 592 WA trials
in the first half of the experiments and 564 WA trials in the
second half. This indicated that the drivers did not execute
more anticipatory avoiding actions with increasing scenario
familiarity. The average reaction time to the target stimulus
for the WA trials was 487.12 (±86.33) ms, and that for the
WOA trials was 532.62 (±82.05) ms, while the drivers in
the WA trials performed quicker than those in the WOA
trials (t(718) = -5.83, p<0.01), which indicated that the
drivers were better prepared for the target stimuli in the WA
trials. In addition, the Pearson correlation results revealed
that there was no significant correlation between the driving
experience and anticipatory avoiding actions (p = 0.75) in
this study, which was also observed for the reaction time
(p = 0.24). This would indicate that the tasks in the

FIGURE 5. Changes in EEG when the driver detects the cue stimulus.

FIGURE 6. The cumulative contribution rate curve of PCA.

experiments measured the hazard perception of drivers at the
cognitive functional level.

B. EEG ANALYSIS
Time-frequency analysis was conducted to examine the
change process during EEG fluctuations. Fig. 5 shows the
time-frequency map of the Cz electrode during a target trial.
It is clear that when the driver detected the cue stimulus,
the α band immediately decreased, and the β band became
more active within approximately 300 ms. It was also con-
firmed that the PSD changes in the α and β bands could
effectively represent the psychological anticipation activities
of the drivers.

C. THE PCA RESULTS
Since there are 64 channels of EEG data, there are 192 orig-
inal EEG features. PCA was applied to reduce the feature
dimensions. As shown in Fig. 6, the cumulative contribution
rate of the first seven principal components is higher than
85%, and these seven principal components of each sample
were entered as input to the classifiers.

D. CLASSIFICATION RESULTS
1) DATA PARTITIONING
The database was divided into training and test data before
the classification models were constructed. The training data
were randomly selected, accounting for 70% of the WA and
WOA samples. The remaining 30% of the samples consti-
tuted the test data. Table 2 summarizes the details of the train-
ing and test data. There are 1007 training samples in total,
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TABLE 2. Details of the training and test data.

FIGURE 7. Parameter optimization of the SVM model.

of which 809 areWA samples and 198 areWOA samples. For
the test data, there are 347WA samples and 86WOA samples,
and the total number is 433. In this study, all classifiers were
constructed with the same dataset.

2) RESULTS OF THE CLASSIFIERS
The performance of the SVM model is mainly affected by
two parameters, the bandwidth g of the kernel function and
the penalty parameter c. In this study, the SVM model are
parameters optimized in MATLAB through default Bayesian
optimization, and Fig. 7 shows the parameter optimization
process. The optimal g value is 7.2, and the best c value is 11,
with a smallest error of 18.7%.

The k neighbors and the similarity measure are the two
parameters that affect the performance of KNN. In this study,
we varied the k value and examined different similarity mea-
sures, and k was set to 10, 20, 30, 40, and 50. The similar-
ity measures includes the Euclidean, city block, Chebychev,
Hamming, Minkowski, Mahalanobis, correlation and cosine
distances. Table 3 summarizes the performance of different
combinations of k with the different similarity measures.
When k was 20 with the similarity measure of the Maha-
lanobis distance, KNN attained the best performance with an
error of 24.22%.

Fig. 8 shows the distance differences of all test samples to
the two populations. The distance difference was calculated
as the distance of each test sample to the WA population
minus the distance of each test sample to the WOA popu-
lation. In Fig. 8(a), the bars below the horizontal axis repre-
sent the WA test samples that have been correctly predicted,

TABLE 3. The performance for KNN with different parameters.

TABLE 4. Confusion matrix of the SVM.

TABLE 5. Confusion matrix of KNN.

TABLE 6. Confusion matrix of LDA.

and the bars above the horizontal axis in Fig. 8(b) represent
the WOA test samples that have been correctly predicted.
The performance of LDA is not good, and the ACC of all
test samples is 52.42%. The results indicated that linear dis-
crimination methods would not be suitable for distinguishing
complex EEG features.

3) COMPARISON
To identify an effective classification model, three widely
used classification models were compared in this study. All
models were constructed and tested with the same training
and test data, and default parameters were used in MATLAB
2018a. With 5-fold cross-validation, the classification accu-
racy of all test samples, includingWAandWOA samples, was
calculated to evaluate the models. The discriminability was
adopted to evaluate the stability of the models. In addition,
the running time was calculated to assess whether the models
were suitable for online applications. Tables 4 to 6 summarize
the confusion matrix of each model, and Table 7 summa-
rizes the performance of the three models. As shown in
Fig. 9, the SVM outperformed the other two classifiers, and it
attained a classification accuracy of 81.24% with default set-
tings, while discriminability exceeded 1.50. KNN produced
a suboptimal result, but LDA was unable to distinguish the
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FIGURE 8. Distance differences of all test samples to the two populations.

TABLE 7. Comparison of the three classification models.

FIGURE 9. The performance of the three classifiers.

different psychological anticipatory activities of the drivers.
Moreover, Fig. 10 shows the receiver operating characteristic
(ROC) curves of the three classifiers, and the area under the
curve (AUC) is 0.81, 0.72 and 0.52. The results indicated
that the SVM was more stable than the other two classifiers.
Regarding the detection speed, although the running time of
the SVM was slightly longer than those of KNN and LDA,
it was only approximately 100 ms, which would have little
effect on online applications.

With the optimal SVM parameters, we retrained and
retested the model for validation. The average ACC was
80.24%, and the TPR was 84.47%, which was slightly higher
than the ACC, but the TNR was slightly lower than the ACC
at 78.92%, which indicated that the SVM model could better
detect WA samples.

FIGURE 10. The ROC curve of the three classifiers.

V. DISCUSSION AND CONCLUSION
The aim of this study was to propose a method that could
be used to recognize whether a driver could anticipate a
potential hazard upon detecting a hazard cue. We evalu-
ated three classification models based on brain activity data
and compared their performance. The data collected from
simulated driving experiments (36 drivers) included those
drivers who anticipated hazards, which was operationally
assessed by the risk-avoiding actions executed before the
target appeared. The experimental results revealed that the
SVM was able to classify samples with an accuracy of 81%
in approximately 100 ms. This finding demonstrates that the
proposed method could be implemented to detect the hazard
anticipatory activity of a driver.

In the current study, a new simulation driving task was
proposed to investigate the hazard anticipatory activities
of drivers. In contrast to the existing hazard-perception
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test method, the task was designed according to the standard
S1-S2 paradigm, and the effects of driving experience and
cognitive load on the executed hazard anticipatory activities
were eliminated by experimental control. This ensured that
the psychological data collected in the experiments reflected
the cognitive mechanism of hazard anticipation. The EEG
PSD features represent the changes in brain activity of drivers
before and after the hazard cue appeared. The time-frequency
results represented the whole process during the hazard antic-
ipatory activity. The main changes occurred in the α and β
bands, namely, the α band decreased immediately, and the β
band became more active immediately thereafter. Generally,
the PSDs of the α and β bands have been used to estimate
driver fatigue or vigilance, but studies have reported that
these two bands are also related to anticipatory activities.
The α band has been shown to play an important role in
processing visual information [30]; a high α amplitude is
associated with a reduced perceptual sensitivity [31], [32],
and a pre-stimulus reduces the α amplitude in a previous
anticipatory study [33], which means that the α band is
inhibitorywhen the driver detects a visual hazard cue. In addi-
tion, the anticipatory activity is also related to the attention
level. In the pedestrian crash scenario, the driver notices the
parked bus, and this cue increases the level of vigilance when
the driver anticipates a potential hazard, and β is an distinct
vigilance index [34], [35].

To prevent accidents caused by the lack of hazard
perception, researchers have developed a variety of driv-
ing assistance systems to help drivers in detecting haz-
ards [36]–[39] or rely on visual intervention to attract the
attention of drivers [40], [41]. For typical pedestrian colli-
sions, the augmented reality (AR) technique has been used
to detect the sudden appearance of a pedestrian and warn
drivers [42], [43], or the car is stopped with an autonomous
emergency braking system (AEB) when sensors detect a
potential collision with a pedestrian [44], [45]. However,
these systems do not perform well in emergency situations,
and even the most intelligent level of the L3 autopilot system
has failed in the 2019i-VISTA test. The explanation would be
that the warning and AEB systems only start working after
sensors have detected a pedestrian, and the time margin is
insufficient to stop the car. These systems do not rely on cues
of potential hazards, which results in visual blind areas. The
proposed method makes up for the shortcomings of these
systems. An ideal assistance system is a fusion of existing
sensor-based systems and the proposed recognition method.
By matching environmental information with the estimated
anticipatory status of a driver via the brain-computer inter-
face (BCI) system, the driver can be warned well in advance.

We have tried to recognizewhether the anticipatory activity
of a driver has been activated by a hazard cue with EEG
PSD features, as opposed to using eye-tracking data [24]. The
advantage of using EEG data is that the data represent the
whole hazard-perception activity process. Using eye-tracking
data, it can be recognized whether a driver detects a haz-
ard cue, but it cannot be assessed whether the anticipation

or vigilance level of the driver to the potential hazard has
increased; in other words, detecting a hazard cue does not
reflect how well a driver is prepared for a potential hazard
in terms of physical and psychological aspects. The current
study bridges this gap.

Three classification models were compared in this study,
and the SVM outperformed the other two models in all mea-
surements. However, it should be noted that all three models
performed better in regard to theWA samples, which could be
caused by the imbalance in sample proportion. In this study,
the number of WA samples is approximately 3 times that of
WOA samples, and more samples should be collected to fur-
ther verify the proposed method in future research. The other
limitation of this study is that we designed only one typical
scenario in the experiments, but numerous different potential
hazards are encountered in the mixed traffic environment of
daily driving. More similar driving tasks will be designed in
future studies, which would increase the applicability of the
proposed method.
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