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ABSTRACT This paper focuses on the targeted influence maximization based on cloud computing in social
networks.Most of existing influencemaximizationworks assume that the influence diffusion probabilities on
edges are fixed, and identify the Top-k users to maximize the spread of influence assuming the knowledge of
the entire network graph. However, in real-world scenarios, edge probabilities are typically different based on
various topics, and may be affected by information received. Meanwhile, obtaining complete network data
is difficult due to privacy and computational considerations. Moreover, existing influence maximization
algorithms considering target users do not discuss cloud computing which lead to low computational
efficiency when dealing with big datasets in social networks. To this end, this paper proposes a targeted
influence maximization solution based on cloud computing. First, a new topic-aware model called tag-aware
IC model is presented, which takes into account users’ interests, characteristics of the item being propagated,
and the similarity between users and the related information. Then, efficient algorithms with approximation
guarantee are provided using a bounded number of queries to the graph structure. These methods aim to
find a seed set that maximizes the expected influence spread over target users who are relevant to given
topics. Finally, empirical studies of the proposed algorithms are designed and performed on real datasets.
The experimental results show that the techniques in this paper achieves speedup and savings in storage
compared with the state-of-the-art methods.

INDEX TERMS Social network, influence maximization, cloud computing.

I. INTRODUCTION
Online social networks play a critical role in the spread
of information, ideas, and influence among people in their
modern life [1]–[6]. The new generation of social networks
contains billions of nodes and edges. They have become one
of the most representative sources of big data. Managing and
mining big social data is a challenge for academic and indus-
trial. Social networks have been actively used as a propaga-
tion and marketing platform. For instance, in viral marketing,
a marketer tries to select a set of customers (called seed set)
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with great influence on a promoted product.With a fixed bud-
get on the number of selections, a marketer aims to maximize
the number of customers finally adopt the product. This is the
classical influence maximization problem [7]–[13].

Since the influencemaximization problem is NP-hard [14],
Kempe et al. [15] first propose a greedy algorithm to solve
the problem, which returns a seed set with a

(
1− 1

/
e− ε

)
approximation ratio to the optimal solution. However,
the greedy solution still takes a prohibitively long time
to finish. To address the efficiency issue, most researches
propose a variety of scalable influence maximization algo-
rithms [16]–[22]. Most of scalable approaches require com-
plete knowledge of the network, and focus on finding global
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influential nodes over the entire social networks to maximize
the expected influence spread. However, in practice, it is dif-
ficult and costly to collect the entire network information in
social networks with big data. Therefore, this paper combines
influence maximization with cloud computing to improve the
performance.

In recent years, topic-aware influence maximization is
emerging due to practical applications demands. It is
extended from the classical influence maximization problem.
Topic-aware influence maximization algorithms assume that
the influence diffusion probabilities between two users are
different based on various topics. However, there are still
important challenges not solved in real applications of topic-
aware influence maximization. One of them is that the influ-
ence strength between two users in real world may depend
on different topics, and may be affected by various informa-
tion received. In an online social network, e.g., Weibo, each
user is associated with several tags, which represent one’s
interests. These tags can be obtained based on hashtags and
representative keywords from the contents. Moreover, each
information is associated with tags that can be obtained by
language processing algorithms. Let us consider an exam-
ple. There is a user x of Weibo, y is a friend of x. In real
life, x and y are both college teachers for computer science.
At one day, x bought a programming book and sent a content
about the book with pictures and comments. Meanwhile,
y received advertisements about two books. One is about this
programming book and the other one is about literature. ywas
interested in the programming book instead of the literature
one because it was related to his career. Finally, y bought the
programming book because hewas influenced by the friend x.

Motivated by the above observations, this paper focuses on
targeted influence maximization with partial network infor-
mation based on cloud computing. The goal is to find the
Top-k influential nodes who are relevant to given topics for
maximizing the influence spread within target customers.
First, a new topic-aware model, which is extended from the
IC model, is proposed. Then, as the optimization problem is
NP-hard, efficient algorithms with approximation guarantee
are provided. The main idea is to adopt the topic aggregation
strategy and a bounded number of queries for constructing a
targeted sketch under the proposed model. Based on this, the
greedy algorithm is used on the maximum coverage problem
to find the Top-k seed users. Finally, experimental evaluations
are conducted on several real-world social networks. The
experimental results verify the effectiveness and efficiency of
proposed algorithms.

The rest of the paper is organized as follows. Section 2
presents some background and related works. Section 3 intro-
duces the problem studied in this paper and proposes a new
topic-aware model. Section 4 designs the algorithms for
targeted influence maximization using a targeted sketching
technique. Section 5 demonstrates the efficiency and effec-
tiveness of proposed algorithms on several real social net-
works. Section 6 summarizes the paper and gives relevant
conclusions.

II. RELATED WORK
The influence maximization is a NP-hard problem that has
been extensively studied. Kempe et al. [15] are the first to
formulate influence maximization as a combinatorial opti-
mization problem. They present a greedy approach that yields
(1−1

/
e − ε) approximate solutions. This method evaluates

the influence spread of any seed set by the Monte Carlo (MC)
simulations, which leads to be computationally expensive.
To improve computational efficiency, most researches pro-
pose a variety of scalable influence maximization algorithms.
These algorithms can be classified into three categories: the
greedy-based approach, the heuristic-based approach and the
sketch-based approach.

A. GREEDY-BASED APPROACH
The first category of approaches focuses on the optimiza-
tion for MC simulations. Methods such as CELF [30],
CELF++ [31] and UBLF [32], reduce the number of esti-
mation of influence function by a lazy evaluation technique.
The technique of [33] utilizes community structure to reduce
the number of nodes to be estimated. Although improving the
efficiency of the greedy algorithm [15], these approaches still
require significant computational overhead when selecting
the seed set on graphs with billions of edges. Therefore,
the study of influence maximization starts to focus on the
heuristic-based and the sketch-based approaches.

B. HEURISTIC-BASED APPROACH
The second category, i.e., the heuristic-based approach, relies
on approximate scoringmechanisms to estimate the influence
spread of the seed set instead of running heavy MC simula-
tions. This makes influence maximization algorithms more
scalable on larger graphs.Manymethods generate the seed set
according to a ranking metric [34]–[37]. For instance, degree
discount [34] adopts a simple discount metric for influence
estimation. Group-PageRank [35] and IRIE [36] use the
PageRank metric. Methods such as SP1M [39], PMIA [40],
IPA [41], LDAG [40], SIMPATH [42] and EASYIM [43],
leverage the idea that influence of a node can be estimated
using a function of the number of simple paths starting at that
node. Although improving practical efficiency, the heuristic-
based approach loses theoretical guarantee comparedwith the
greedy-based approach.

C. SKETCH-BASED APPROACH
The third category of approaches overcomes the drawbacks
of the greedy-based and the heuristic -based approaches.
It achieves a balance between theoretical guarantee and
practical efficiency. The sketch-based approach first pre-
computes a large number of sketches, and then utilizes the
sketches to evaluate influence spread. Therefore, it avoids
rerunning the MC simulations. In this paper, a sketching
technique is proposed to solve targeted influence maximiza-
tion. Methods such as NewGreedyIC [34], StaticGreedy [44],
PrunedMC [45] and SKIM [44], construct sketches by
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examining the entire graph for estimating the influence
spread. However, the time complexity is still too expensive to
run on graphs with millions of nodes and billions of edges.
For reducing the time consumption, Borgs et al. [23] first
propose the concept of the Reverse Reachable (RR) set. The
RR set consists of the nodes that can active the randomly
sampled node. Moreover, Borgs et al. [23] propose a method
called Reverse Influence Set (RIS). This method keeps gen-
erating RR sets until the total number of edges examined dur-
ing the generation process reaches a pre-defined threshold.
TIM [24] and IMM [25] are techniques that further improve
over RIS.

D. TOPIC-AWARE INFLUENCE MAXIMIZATION
In the real world, the influence diffusion probabilities
between two users are related to various topics. However,
all the above algorithms are not topic-aware. To meet
specific applications, topic-aware influence maximization
studies are emerging [46]–[48]. The existing topic-aware
influence maximization studies can be classified into two
categories. The first category considers the users are topic-
aware, and the second category formalizes the edges are
topc-aware. Aslay et al. [46] are the first to study this prob-
lem. They design an index-based approach INFLEX with
pre-computation and similarity search schemes. INFLEX
first samples a set of topic distributions, and pre-computes
the seed set under each distribution by CELF++ [31].
At query time, given an online query, the method finds a
sufficient set of pre-computed distributions similar to the
online query, and combines the corresponding seed sets by
using a rank aggregation technique. In [46], Aslay et al. apply
maximum-likelihood Dirichlet estimation for sampling topic
distributions, Bregman-ball tree for fast similarity search,
and Kendall-τ distance-based schemes for seed set aggre-
gation. Chen et al. [47] adopt a similar framework and
develop optimization techniques, which are suitable for some
special graphs with properties like topically-separable and
sub-additive. As [46] and [47] have no theoretical guar-
antee on the influence spread, Chen et al. [48] propose
the improved method. They develop algorithms having a
bounded approximation ratio under PMIA [40]. Specifically,
algorithms use the samples to estimate upper and lower
bounds for pruning instead of directly answering the query
in [46], [47].

Compared with existing topic-aware influence maximiza-
tion solutions, all users and user-to-user influence strength
are both topic-aware in this paper. Moreover, seed nodes are
selected depending on multiple factors.

III. PROBLEM FORMULATION
A social network is generally modeled as a graph G =
(V ,E,P), where V is the set of nodes (i.e., users) in G,
E ⊆ V × V is the set of directed edges in G. To simulate
the information propagation process in the social networks, a
number of methods such as Independent Cascade (IC) model
and Linear Threshold (LT) model [15] have been proposed.

In this section, IC model is introduced first, and then a new
topic-aware model is proposed, which is extended from IC
model.

A. IC MODEL
Under the classical IC model [15], each directed edge e =
(u, v) has an independent influence probability P (e), which
measures the social impact from user u to user v. Each user
is either in an active state or inactive state, and an active user
can active his inactive neighbors with probability P (e). The
dynamic information propagation process under the ICmodel
unfolds in the following discrete steps. Initially, at time step 0,
a selected set of seed users S are activated, while setting
all other users are inactive. If a user u is first activated at
time step t , then for each of his currently inactive outgoing
neighbors v, u has probability P (e) to activate v at time step
t + 1. After time step t + 1, u cannot activate any user. Once
a user is activated, his active state remains unchanged. The
influence diffusion process runs until no more new nodes can
be activated.

The IC model is generally considered equivalent to the
possible world semantics. LetG = (V ,EG) denote a possible
world, where EG ⊆ E . It is one certain instance of the input
uncertain graph G, and is obtained by independent sampling
of the edges. Therefore, the probability of existence of each
possible world G as follows.

Prob[G] =
∏
e∈EG

P (e)
∏

e∈E\EG

(1− P (e)) (1)

Given a set T ⊆ V of customers, the targeted influence
spread in the possible world G is defined as the number
σG (S,T ) of target nodes that are reachable from the seed set
S in G, i.e.,

σG (S,T ) =
∑
t∈T

IG(S, t), (2)

where the indicative function IG (S, t) = 1 if at least one node
in S is reachable to t in G, otherwise, IG (S, t) = 0.

The expected influence spread σ (S,T ) on the target set T
from the seed set S can be calculated as the expectation of the
number of reachable target nodes from S, i.e.,

σ (S,T ) =
∑
G⊆G

Prob[G] · σG (S,T ) (3)

B. TAG-AWARE IC MODEL
In the classical models, e.g., IC and LT model, the influence
probability P (e) is normally set to a constant one or 1/dv,
where dv is the in-degree of node v. However, in real appli-
cations of social networks, the influence probability may
depend on various topics, and may be affected by information
received. Therefore, a new tag-aware IC model is proposed
in this section, which is the extended IC model considering
multiple factors.

Let notation C denote the set of all tags present in the
social network. These tags contain not only users’ inter-
ests, but also characteristics of information being propagated.
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Appearance of specific tags in the social network affects the
corresponding influence diffusion probabilities between two
users. Therefore, the influence probability in the classic IC
model changes to be a function P : E × C → (0, 1].
It assigns a conditional probability to every edge (u, v) ∈ E
given a specific tag c ∈ C . In other words, P ((u, v) | c) is the
probability that a user u will influence his neighbor v, given
the tag c.
Similarly, in the tag-aware IC model, a social network is

represented by a graph G = (V ,E,P), and each node is
associated with active or inactive state. In the new model,
the nodes and influence strength on the edges are both topic-
aware. In other words, each node v ∈ V is associated with a
set of tags Cv ⊆ C , and each special message M is specified
with a set of tags CM ⊆ C . Hence, the information diffusion
procedure under the tag-aware IC model can be explained as
follows.

Given a social network G, a target set T , a mes-
sage M with a set of tags CM ⊆ C , and a seed
set S, the information diffusion process unfolds in discrete
steps.

• At time step 0, all nodes in S will become active, and all
other nodes will set to be inactive.

• At time step t , for each active node u which is just acti-
vated, u will try to activate its every inactive neighbor v.
For each tag c ∈ CM , uwill influence its neighbor vwith
probability P (e | c). If v is influenced by u for all tags in
CM , then v will calculate the similarity Sim

(
vtag,Mtag

)
between message M and itself, i.e.,

Sim
(
vtag,Mtag

)
=
|Cv ∩ CM |
|Cv|

(4)

It is the probability that v will continue with the next
step, otherwise, v will remain inactive. Next, the follow-
ing threshold will be computed

F (v) =

∣∣∣N̂v∣∣∣+ 1

|Nv| + 1
, (5)

where Nv is the set of neighbors of v and N̂v is the set of
active nodes in Nv. If node v is activated, it will continue
to activate its neighbors.

• The procedures above run until no more new nodes can
be activated.

The tag-aware IC model assumes that tags are independent
of one another. Hence, given a set of tags CM ⊆ C , the
information diffusion probability via an edge e can be derived
as P (e |CM ) = 1−

∏
c∈CM (1− P (e | c)). According to the

information diffusion process of tag-aware ICmodel, all edge
probabilities depends on P (e | c) and Sim

(
vtag,Mtag

)
. Hence,

the probability of each possible world G = (VG,EG) in the

tag-aware IC model can be calculated as follows.

Prob [G|CM ]

=

∏
e∈EG

P (e|CM )
∏

e∈E\EG

(1− P (e|CM ))

·

∏
v∈VG

Sim
(
vtag,Mtag

) ∏
v∈V\VG

(
1− Sim

(
vtag,Mtag

))
(6)

Analogously, the expected influence spread σ (S,T ,CM )
of the seed set S in G, given the target set T and the tag set
CM , is computed as:

σ (S,T ,CM ) =
∑

G⊆G|CM

Prob [G|CM ] · σG(S,T ) (7)

C. PROBLEM DEFINITION
Given the social network G = (V ,E,P), the target set T , and
the size of the seed set k , the targeted influence maximization
aims at finding the Top-k seed nodes, such that the influence
spread within the target users is maximized.

S∗ = argmax|S|=k,S⊆V\Tσ (S,T ,CM ) (8)

IV. ALGORITHMS FOR TARGETED
INFLUENCE MAXIMIZATION
The goal of this paper is to find a seed set that maximizes
the influence inside a target set of users considering various
topics. This section presents efficient algorithms for targeted
influence maximization. For addressing targeted influence
maximization using partial information of the network, some
ideas are adopted from [49], [50]. At a high level, the pro-
posed solution consists of two phases: limiting for targeted
sketching and seed selection.

A. TARGETED SKETCHING
This section proposes a targeted sketching technique with
the approximation guarantee (1−1

/
e − ε). Let G denote a

deterministic sub-graph of the input uncertain graph G. It is
generated by removing each edge e ∈ E with probability
(1− P (e | c))·

(
1− Sim

(
vtag,Mtag

))
independently based on

tag-aware IC model.
Since a sub-graph G is a combination (i.e., graph union)

of each chosen tag’s individual uncertain graph, random
samples are first built on uncertain graphs by considering
each tag separately. First, only the edges e associated with
a tag c in G are kept. Then, for each node, its neighbors
are probed based on tag-aware IC model, keeping the edges
with probability P (e | c) · Sim

(
vtag,Mtag

)
. Each node never

be probed more than once and each edge is sampled at
most one chance. Any remaining edge e∈ E is removed with
probability (1− P (e | c))·

(
1− Sim

(
vtag,Mtag

))
. Next, when

receiving some message, which is associated with a set of
tags CM , the targeted sketching method randomly selects
one sample from random sample set of each tag of CM , and
combines them together as the sub-graph G.
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Let τ denote a threshold that limits the number of nodes
in each connected component. In other words, if there are
more than a threshold τ nodes in a connected component,
the process of probing the neighbors stops. Note that the
probing may stop even before hitting τ nodes if there is
no new nodes can be activated. In the targeted sketching
algorithm, the value of each connected component is the
number of target nodes in that component. The influence
spread of the node is computed by adding the values of all
of the components containing that node.

The above procedures are repeated θ times and θ sub-
graphs of G are obtained.

In [49], [50], it was proved that when θ and τ are suf-
ficiently large, the proposed targeted sketching algorithm
returns near-optimal results with high probability.
Theorem 1: If θ and τ satisfy separately:

θ ≥
3 (δ + log2) (k + 1) logn

ε2
,

τ ≥
n log

(
1
/
ε
)

εk

Then targeted sketching algorithm returns a (1−1
/
e − ε)-

approximate solution, with at least 1− 2e−δ probability.
Proof: Let 3(θ ) and L(θ ) denote the maximizer of σ (θ ) and

its maximal value. The cardinality of σ (θ ) is k . Similarly,
let 3(θ )

ε and L(θ )
ε denote the optimal solution to the targeted

influence maximization on σ (θ )
ε and its value, respectively.

Moreover, let 3α,(θ ) and 3α,(θ )ε denote the α-approximate
solutions to the targeted influence maximization on σ (θ ) and
σ
(θ )
ε , respectively. The goal is to show that any 3α,(θ )ε is also
3α(1−ε),(θ ).
Let us considerG(1)

ε , . . . ,G(θ )
ε as subgraphs ofG(1),. . . ,G(θ ).

Then, for any set of nodes S, have σ (θ)(S) ≥ σ
(θ)
ε (S). The

process whereby G(i)
ε is obtained after removing some nodes

and edges from G(i) is called an ε-cutting, and subsequently,
G(i)
ε and G(i) are referred to as the cut the uncut copies,

respectively. Finally, ∅(θ)ε (v, S) is defined using the ε-cut
copies G(1)

ε , . . . ,G(θ )
ε .

The proof follows [49] closely. In particular, it suffices
to show the existence of a set L, card (L) = k satisfy-
ing σ (θ)ε (L) ≥ (1 − ε)L(θ ). Because if there exists such a
setL, then for any α-approximate solution3α,(θ )ε , have (recall
∀Sσ

(θ)(S) ≥ σ (θ)ε (S)):

σ (θ)
(
3α,(θ)ε

)
≥ σ (θ)ε

(
3α,(θ)ε

)
≥ ασ (θ)ε

(
3(θ)ε

)
≥ ασ (θ)ε (L)≥ (1− ε) αL(θ)

(9)

implying that3α,(θ )ε is also3α(1−ε),(θ ). To show the existence
of such a set L, a probabilistic argument is used to con-
struct a random set L, satisfying E

{
σ
(θ)
ε (L)

}
≥ (1− ε)L(θ).

The set L is constructed is as follows: Starting from 3(θ ),
remove εk nodes randomly, and replace them with εk
nodes chosen uniformly at random from V . To show that

E
{
σ
(θ)
ε (L)

}
≥ (1− ε)L(θ), consider

L(θ) =
∑
v∈V

∅
(θ)
(
v,3(θ)

)
, (10)

E
{
σ (θ)ε (L)

}
=

∑
v∈V

E
{
∅
(θ)
ε (v,L)

}
(11)

The inequality, E
{
σ
(θ)
ε (L)

}
≥ (1− ε)L(θ), would follow if

for any node v ∈ V have,

E
{
∅
(θ)
ε (v,L)

}
≥(1−ε)∅(θ)

(
v,3(θ)

)
+ ε≥∅(θ)

(
v,3(θ)

)
(12)

It only remains to verify the truth of the former
inequality, E

{
∅
(θ)
ε (v,L)

}
≥ (1− ε)∅(θ)

(
v,3(θ)

)
+ ε.

First, E
{
∅
(θ)
ε (v,L)

}
represents the probability of node v

being connected to one of the nodes in the random set L
averaged over the θ copies G(1)

ε , . . . ,G(θ )
ε . Consider each of

the θ copies in uncut sketch, G(1), . . . ,G(θ ), and the connec-
tions between node v and the optimal set 3(θ) in these uncut
copies. If these connections remain unchanged in the ε-cut
copies G(1)

ε , . . . ,G(θ )
ε , then with probability at least (1− ε)

they remain unchanged after εk nodes in 3(θ) are randomly
replaced. However, if any of these connections are affected
by the ε-cutting, then this is an indication that v belongs to a
connected component of size τ . This connected component
is large enough to contain one of the εk nodes of L with
probability at least ε. Indeed, the probability that one of the
τ nodes is chosen is at most ε:

(1−
τ

n
)
εk
= (1−

log (1/ε)
εk

)
εk
≤ e
− log

(
1
ε

)
= ε.

Based on the above analysis, the algorithm of targeted
sketching is as follows:

Step 1: Input a social network G, a set CM of tags.
Step 2: Keep only the edges associated with a tag c ∈ C

from G.
Step 3: Probe every node by trying to activate their neigh-

bors with probability P (e | c) · Sim
(
vtag,Mtag

)
.

Step 4: Stop probe if there are no more new nodes can be
activated or if the size of the connected component exceeds τ .

Step 5: Remove any remaining edge e ∈ E with probabil-
ity (1− P (e | c)) ·

(
1− Sim

(
vtag,Mtag

))
.

Step 6: Retain all nodes of G.
Step 7: Repeat Step 2-6 and obtain random samples of

every tag c.
Step 8: Randomly select one sample from random sample

set of a tag c ∈ CM , and combine them together.
Step 9:Repeat Step 8 θ times and obtain θ sub-graphs ofG.

B. SEED SELECTION
This section provides the algorithm for targeted influence
maximization on the sampled graphs. The implementation of
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FIGURE 1. Running time vs. Seed size.

this algorithm is based on the structure of θ sub-graphs of
G for a specific set of information tags. Since the targeted
influence spread on the sub-graphs is submodular, the seed
selection phase applies a greedy algorithm to find the seed
set with an approximation guarantee (1−1

/
e − ε) to the

optimal solution. First, the connected components of each
of the θ sub-graphs are found by using a graph search (e.g.
BFS). Then, the number of target nodes in each connected
component is counted as the value of that component. There-
fore, the main idea of the proposed method is that finding
a seed set S that maximizes the total value of all connected
components containing at least one seed node. If a connected

FIGURE 2. Speedup ratio.

component already contains some nodes in S, then the value
of that component is set to zero. The details of the algorithm
is described as follows.

Step 1: Input the θ sub-graphs of G, an positive integer k ,
a set CM of tags, a target set T .
Step 2: Find the connected components of θ sub-graphs.
Step 3: For every connected component in each of the θ

sub-graphs, initialize the current value of the component as
the number of target nodes in that component.

Step 4: Initial a node set S∗ = ∅.
Step 5: Identify the node v that maximizes σ (S∪
{v} ,T ,CM ) − σ (S,T ,CM ) by adding the current values of
the connected components containing v.
Step 6: Insert v into S∗ and set the current value of the

connected components containing v to zero.
Step 7: Repeat Step 5-7 until k seed nodes are found.

V. EXPERIMENTAL ANALYSIS
This section experimentally evaluates the targeted influence
maximization algorithms against the-state-of-the-art tech-
niques. All the experiments are conducted on a machine with
an Intel Core 2.2GHz CPU. All algorithms are implemented
in C++.

A. EXPERIMENTAL SETTINGS
1) DATASETS
To demonstrate the effectiveness and efficiency of the pro-
posed algorithm, five real world networks are employed in
the experiments. The details datasets is in Table 1. NetHEPT
and DBLP are citation networks. Epinions, LiveJournal and
Friendster are online social networks. All datasets are pub-
licly available: NetHEPT can be obtained from [51], and all
the other four datasets can be obtained from [52]–[55]. Note
that Friendster is the largest dataset, which has more than
1.8 billion edges.

2) PROPAGATION MODEL
The popular IC model is used in the experiments to
demonstrate the performance of the proposed algorithm.
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FIGURE 3. Running time.

FIGURE 4. Effectiveness ratio.

The probability of each edge is set as follows. For each edge
(u, v), p(u, v) is assigned as 1/indeg(v), where indeg(v) is the

number of incoming neighbors of node v. This setting is the
most widely used in the literature.

3) ALGORITHMS COMPARED
In this paper, the proposed algorithm is compared with
BKRIS [56], D-SSA [57] and IRIE [36]. BKRIS and D-SSA
are the best current algorithms using a sketching technique.
IRIE is one of the fastest heuristic method. For BKRIS,
when estimating the sample size, the parameters ε and `
are set as 0.5 and 1 respectively; bk is set as 16 by default
for all the datasets. For D-SSA, the parameters ε is set
as 0.1 and δ is set as 1

/
n, which is the default settings

suggested by authors. For IRIE, the internal parameters are
set as recommended in the original paper. For the proposed
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FIGURE 5. Influence spread.

algorithm, the parameters ρ and σ are set as 0.02 and 100
respectively.

4) PARAMETERS SETTINGS
In the experiments, the seed set size k is varied from 10 to
5000. To demonstrate the scalability of all these algorithms,
the seed size k = 5000 is only considered. 10,000 round
Monte Carlo simulations are conducted on each returned seed
set to calculate its influence spread, in order to verify the

algorithms’ effectiveness. On each setting and dataset, each
algorithm is ran five times and the average is took as the final
results.

B. COMPARING IN RUNNING TIME
This section examines the performance of running time of
each algorithm. The experiments are conducted over three
datasets, NetHEPT, Epinions and DBLP. Due to the scalabil-
ity issue of IRIE, k is only varied from 10 to 50. The results
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TABLE 1. Datasets characteristics.

are shown in Fig. 1. For most of the cases, IRIE can return a
result with close influence to BKRIS and the new algorithm.
So the influence spread is not shown here. The experimental
results in Fig. 1 show that the new algorithm developed in this
paper consistently outperforms IRIE, and BKRIS always runs
faster than IRIE. As BKRIS consistently outperforms IRIE,
thus in the following experiments, BKRIS is only compared
with to evaluate the performance of the proposed algorithm.

Next, the experiment is conducted on all the datasets to
compare the effectiveness of BKRIS and the new algorithm.
The value of k is set as 5000. Fig. 2 shows that the new
algorithm outperforms BKRIS on running time by a wide
margin. It is up to two orders of magnitude speedup on all
datasets.

Fig. 3 reports the running time on all the datasets by vary-
ing k from 10 to 5000. As shown in Fig. 3, the new algorithm
significantly outperforms BKRIS under all settings, achiev-
ing the speedup of two orders of magnitude.

C. COMPARING IN INFLUENCE SPREAD
In this section, the accuracy of BKRIS and the proposed
algorithm is compared by showing the influence spread of
the obtained seed set. In Figure 4, the effectiveness ratio is
evaluated on all the datasets with k to be 5,000. The effective-
ness ratio of BKRIS is rather close to 1 for all the datasets.
This shows that two methods have the similar performance
in terms of influence spread. Compared with Figure 4, these
results show that the new algorithm is superior to BKRIS.
Because the new algorithm can achieve the similar influence
spread with much less running time. For instance, on the
largest dataset Friendster, BKRIS takes more than 10 times
time compared with the new algorithm to achieve the same
result.

Fig. 5 reports the influence spread on all the datasets by
varying k from 10 to 5000. As shown in Fig. 5, two algorithms
achieve the similar influence spread.

VI. CONCLUSION
This paper considers the targeted influence maximization
based on cloud computing. The goal is to find the opti-
mal seed set that maximizes the topic-aware influence
within target customers. In this paper, a new topic-aware
model, in which all users and user-to-user influence strength
both are topic-aware, is proposed. Since the targeted influ-
ence maximization is NP-hard problem, the algorithms with

approximation guarantee are provided. As obtaining full
knowledge of the network structure is very costly in practice,
a targeted sketching technique is presented based on partial
network information. First, random samples are built for
each topic under the proposed tag-aware IC model. Then, a
targeted sketch is obtained by combining the corresponding
samples for given topics using the topic aggregation tech-
nique. Based on this, the greedy algorithm is employed to find
the Top-k seed users. Performance is evaluated on several real
complex social networks with billions of edges and hundreds
of topics. The experimental results confirm the effectiveness
and efficiency of proposed algorithms.
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