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ABSTRACT A novel hybrid ensemble framework is developed to forecast the short-term wind speed, which
consists of a data preprocessing technique, data-driven based forecasting algorithms, and an improved Jaya
algorithm. In the data preprocessing process, the pauta criterion is employed to find out the outliers, and
the variational mode decomposition algorithm decompose the original series to extract the trend and time-
frequency information of the historical inputs. The data-driven forecasting algorithms, such as BP, LSSVM,
ANFIS, and Elman, are exploited as the original predictor of the framework, while the weights of the
predictors are computed by an improved optimization algorithm-CLSJaya. Based on the experimental results
of two time-scale datasets from three sites, the proposed framework successfully overcomes the limitations
of the individual forecasting models and achieves promising forecasting accuracy.

INDEX TERMS Wind speed forecasting, data preprocessing, hybrid ensemble framework, artificial neural
networks, optimization.

I. INTRODUCTION
Due to the deterioration of the environment and the depletion
of conventional energy resources, wind energy has aroused
widespread interest and research enthusiasm [1]. Accord-
ing to the Global Wind Energy Council (GWEC), in 2018,
the newly installed wind power capacity is 51.3 GW [2].
Precisely forecasting of wind speed is imperative for an
efficient and economical integration of wind energy into
the electricity supply system [3].However, because of the
randomness, intermittent, and uncontrollable feature, it is
actually a substantial challenge to establish an accurate wind
speed forecasting model [4]–[7]. Hence, till now, various
methods have been employed for wind speed forecasting.

The proposed methods can be divided into four categories:
(i) physical algorithms, (ii) conventional statistical algo-
rithms, (iii) spatial correlation algorithms, and (iv) machine
learning algorithms. Physical algorithms mainly utilize the
meteorological environment data, which include temperature,
speed, density, and topography information, etc. The main
purpose of this category is to use the numerical weather
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prediction(NWP) data to forecast the wind speed through
exploring and establishing the intrinsic (function) relation-
ship between wind speed and meteorological data [8]. For
instance, Cheng et al. [9] applied assimilation combina-
tion of existing numerical weather prediction data, with the
results showing that the prediction accuracy is extremely
improved. Nevertheless, on account of the disadvantage in
dealing with short-term wind speed forecasting as well as
the huge computing time and resources cost, it is obviously
that this category is not suitable for short term wind speed
forecasting in wind farm. Statistical algorithms, which is
more adequate in short-term wind speed forecasting, merely
exploits historical data to predict wind speed and makes up
only the differences between the actual and forecasted wind
speed to modify the model parameters [10], [11]. Exam-
ples are the auto-regressive moving average (ARMA) [12],
auto-regressive integrated moving average (ARIMA) [13],
and fractional ARIMA models [14]. Shukur and Lee [15]
developed an ARMA model to predict the wind direction
and wind speed tuple; Cadenas and Rivera [16] applied an
F-ARIMA algorithm to predict the wind speed; Liu et al. [17]
proposed a modified Taylor- Kriging method which aiming
to predict the wind speed, and the result shows that the
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accuracy is higher than the ARIMA model. However, there
are still some shortcomings in the statistical algorithms. First,
most of the statistical algorithms are assumed that the time
series have a normal distribution, which is not always the
case in wind speed time series. Second, these models have
a linear correlation structure which leads to a low accuracy
when dealing with nonlinear wind speed data. To deal with
these problems, spatial correlation algorithms considering the
spatial relationship of wind speed from different sites are uti-
lized. For example, Tascikaraoglu et al. [18] proposed a novel
wind speed prediction model using a wavelet transform and a
spatio-temporal method, which improved the short-termwind
speed forecasting relative to other benchmark models. But
meanwhile, this model requires wind speed measurements
from multiple spatial correlated sites, which is difficult to
implement owing to the stringent measurement requirements
and their time delays [19].

Facing with the strong nonlinearity of wind speed
data, the machine learning algorithms showed good per-
formance. Cadenas and Rivera [20] Proposedan artifi-
cial neural networks for short-term prediction of wind
speed. Mohandes et al. [21] proposed the use of support
vector machines to predict wind speed. On this basis,
Zhou et al. [22] adopted parameter optimized least squares
support vector machine for prediction. Tagliaferri et al. [23]
exploited the SVR-RBF to predict the wind direction and
wind speed simultaneously, which results in effectively per-
formance. However, the single machine learning algorithm
is rarely suitable for different application scenarios [24],
especially facing with the data occupied with high noise
which mainly caused by climate or measurement. In addition,
conventional machine learning algorithms, such as ANNs,
may fall into local optimums, have over-fitting problem, and
exhibit a relatively low convergence rate [25].

So in summarize, all the models mentioned above have
some inherent drawbacks[26]–[30], which would be con-
cluded as follows: (1) The physical model needs to explore
the relationship betweenmeteorological data and wind speed,
which requires a lot of calculations, and thus is not capable
for short-term wind speed forecasting;(2) Conventional sta-
tistical models are poor at fitting wind speed with complex
nonlinear characteristics; (3) Spatial correlation arithmetic
makes it relatively difficult to implement perfect wind speed
forecasting owing to the vast quantities of information such
as wind speed values of many spatially correlated sites that
need to be considered and collected; (4)while the single
model of artificial intelligence could get an acceptable result,
there are still some shortcomings such as parameter setting,
noise reduction, over-fitting, and exhibiting a relatively low
convergence rate.

Besides of that, signal decomposition algorithm is usu-
ally used to decompose the input feature sequence, then
extract the output related information in the sequence so
as to improve the modeling accuracy. Wavelet decomposi-
tion [31] and empirical mode decomposition are two kinds
of mainstream decomposition algorithms for wind speed

prediction. Lately, improved algorithms based on these two
algorithms have also been widely used in signal processing.
These methods, such as improved empirical mode decom-
position (IEMD) [32], complete ensemble empirical mode
decomposition(CEEMD) [33], ensemble wavelet decompo-
sition(EWD) [34],lead to a distinction contribution to the
signal preprocessing. Particularly in recent years, amount
of researches have shown the outstanding performance of
variational mode decomposition (VMD) in feature extracting.
Liu et al. [35] took the advantage of the VMD to decompose
the wind speed sequence into multiple sub-sequences, per-
form singular spectrum analysis on each sub-sequence, and
use the combined model of LSTM and ELM for prediction.
The previous results showed that VMD can extract the trend
information in the sequence more effectively in signal pro-
cessing and improve the forecasting accuracy.

Moreover, the intelligent optimization algorithm is mainly
utilized for deep learning network parameter optimization
due to its parallel optimization characteristics and global
optimization ability. Song et al. [36] presented a GWO algo-
rithm to optimize the combined weights of the four models
BP, Elman network(ENN), wavelet neural network (WNN),
and general regression neural network(GRNN), and proved
that the accuracy of the optimized combination model is
better than any single model. Jiang and Ma [37] employed an
improved PSO to optimize the network weights and offsets
of BP neural network, in order to comprehensively predict
wind farm parameters such as short-term wind speed, wind
power load and electricity price, and proved that it has a
satisfactory prediction effect. Yang and Wang [38] investi-
gated an improved WCA to optimize the model combination
coefficients of BP, RBF, WNN and ENN; Das et al. [39]
establish a Jaya-ELM model in order to forecast the cur-
rency, which the results show a better result than any
other modeling algorithms, as well as other optimization
algorithms.

Based upon the analysis mentioned above, to overcome
the drawbacks existed in the single model, in this work,
a novel combined framework for wind speed forecasting is
proposed, which contains a data preprocessing technique,
forecasting algorithms, an advanced optimization algorithm,
and no negative constraint theory. For the data prepro-
cessing module, a recently proposed algorithm—variational
mode decomposition(VMD), is utilized to extract the high
frequency information from the wind speed series; next
the BP, LSSVM, ANFIS, Elman, ELM—five networks are
exploited as the original predictor, which have acceptable
but not precise results; then in order to enhancing both
the accuracy and the stability of the framework, a chaotic
local search(CLS)modified Jaya algorithm, which fitness
function is designed specially for the accuracy and stabil-
ity of the framework, is employed to optimize the com-
bined weights of the predictors on the basis of no negative
constraint theory. By combining these modules above, this
hybrid forecasting framework can achieve better forecasting
performance.
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Above all, the general contributions and novel aspects of
this research are as follows:

1) Hybrid ensemble framework support an advanced data
pre-processing module. A pauta criterion combined
VMD is utilized in this module to eliminate the outliers
in actual wind time series, then extract the high fre-
quency information from the wind speed series, which
could improve the accuracy and efficiency of wind
speed forecasting.

2) A novel deciding weight method based on a swarm
intelligence based evolutionary computation technique
and no negative constraint strategy is successfully
developed to integrate the individual models. To find
the optimized value for each single model, a CLS
modified Jaya algorithm is developed based on the
no negative constraint theory, and the results shows a
great precision improvement compared with the single
model.

3) A new fitness function is utilized to consider both the
accuracy and the stability to optimize the weights of
the individual models. In this research, a new function
named WD is exploited as the fitness function of CLS-
Jaya, which not only improves the forecasting accuracy,
but can also improve the stability of the integrated
model.

4) Amore scientific and comprehensive evaluation is con-
ducted to estimate the forecasting performance of the
developed combined model in this study. Three exper-
iments using multi-step forecasting, six performance
metrics, DM test, and four benchmark function, are
employed in this evaluation system, which provides an
effective assessment in terms of forecasting accuracy
of the model.

5) The developed novel combined model provides a pow-
erful technical support for the scheduling and manage-
ment of smart grids. This model is simulated and tested
based on wind speed data of several sites in a large
wind farm, which demonstrates that it could effectively
improve the accuracy of wind speed prediction com-
pared to the conventional forecasting models.

The remainder of this research is organized as follows.
Section 2 introduce the main methodology of the model,
section 2.1 mainly describes the data preprocessing module
of the model, while section 2.2 details the individual net-
work, section 2.3 explains the weights optimized algorithm—
CLSJaya, as well as the new WD fitness function; section
2.4 introduces the process of the hybrid framework. The
simulation results are presented and discussed in Section 3.
Finally, Section 4 highlights the findings and presents the
conclusions of this study.

II. METHODOLOGY
For a more comprehensive explanation of the hybrid frame-
work proposed in this paper, in section 2, the basic method-
ology of the framework will be introduced, which include
a data preprocessing technique, forecasting algorithms and

an advanced optimization algorithm based on no negative
constraint theory.

A. DATA PREPROCESSING TECHNIQUE
In this section, an data preprocessing technique which com-
posed of Pauta Criterion and VMD, is utilized for off-line
data preprocessing and improving the accuracy of the model.
In that case, a basic introduction of the Pauta Criterion, aswell
as the VMD will be explicated so as to make a more definite
exposition for the technique.

1) PAUTA CRITERION
The outliers, which are mainly caused by sensors, could
actually affect the accuracy and stability of the model. Owing
to the convenience of the pauta criterion utilized in dealing
with the outliers, which can also obtain good results, thus in
this research, the pauta criterion is utilized to eliminate the
outliers in actual wind speed series. The results of the pauta
criterion are shown in Figure 1.

Assumed that the actual wind speed time series is X (t) =
[x1 (t) , x2 (t) , . . . , xi (t) , . . . , xn (t)](i = 1, 2, . . . , n),
the pauta criterion can be generalized into four steps which
mainly revealed in follows:

Step 1: calculate the mean value x̄ of the wind speed series
X(t):

x̄ =
1
n

∑n

i=1
xi(t) (1)

Step 2: since x̄ is known, calculate the standard deviation σ
according to the Bessel formula:

σ =

√∑n
i=1 (xi (t)− x̄)

2

n− 1
(2)

Step 3: then an interval Q is entrained based upon the pauta
criterion:

Q = [x̄ − 3σ, x̄ + 3σ ] (3)

Step 4: once the interval Q is determined, the wind speed data
which are not within the interval will be eliminated, and the
reverse will be reserved.

After finding the outliers, the missing points are then elim-
inated and replaced by the values generated by the Cubic
Spline Interpolation. for the purpose of further enhancing the
accuracy and stability of the model, an advanced decomposi-
tion algorithm is exploited for denoising thewind speed series
without outliers.

2) VARIATIONAL MODE DECOMPOSITION
Variational mode decomposition [40]–[42] is a recently
developed signal decomposition algorithm. By supposing a
series of modes with different center frequencies, the mode
bandwidth is obtained, and a variational problem is con-
structed and then solved with the aim of minimizing the
sum of the modal bandwidths. When decompositing, the
algorithm can be divided into three parts:
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FIGURE 1. The structure of the proposed model.
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a: CONSTRUCTING A VARIATIONAL PROBLEM
Supposed that u1(t), . . .uk (t)} is K intrinsic mode func-
tion with equation (A8) as the constraint (where X (t) is
the wind speed series to be decomposed), then the equa-
tions (A9)-(A11) is established to construct the variational
problem:

u1(t)+ u2(t)+ · · · + uk (t) = X (t) (4)

(1) Perform a Hilbert transform on each IMF ui(t)(i ∈ [1,K ])
to obtain its unilateral spectrum;

u′i(t) = (δ(t)+
j
π t

)ui(t) (5)

where δ(t) is the Dirac distribution;
(2) Modulating the spectrum of each IMF to the cor-

responding baseband based on the center frequency of
each IMF;

ψi(t) = u′i(t) · e
−jwit (6)

(3) Calculating the second norm of the above signal gradient
as the bandwidth of the mode signal, thereby constructing a
variational problem as referring to (7);

ui(t),wi(t)
min {

∑K
i=1 ‖∂t (ψi(t))‖

2
2},

s.t.
∑K

i=1 ui(t) = X (t)
(7)

b: SOLVING THE VARIATIONAL PROBLEM
(1) Constructing the Lagrangian function: By adding
the quadratic regularization factor C and the Lagrangian
multiplier θ (t), the above constrained variational problem
is transformed into an unconstrained variational problem.
Among them, the quadratic regularization factor C guaran-
tees the reconstruction accuracy of the signal; the Lagrangian
multiplier θ (t) ensures the strict establishment of the con-
straint. The constructed Lagrangian function is expressed as
follows:

L(ui(t), ωi(t), θ(t)) = C
K∑
i=1

‖∂t (ψi(t))‖22

+

∥∥∥∥∥f (t)−
K∑
i=1

ui(t)

∥∥∥∥∥
2

2

+

〈
θ (t), X (t)−

K∑
i=1

ui(t)

〉
(8)

(2) Solving the Lagrangian function: With the alternating
multiplier direction method, the solution to the optimization
problem is:

ûn+1i (ω) =
X̂ (ω)−

∑K
i=1 ûi(ω)+

θ̂ (ω)
2

1+ 2C(ω − ωi)2
(9)

ωn+1i =

∫
∞

0 ω
∣∣ûi(ω)∣∣2 dω∫

∞

0

∣∣ûi(ω)∣∣2 dω (10)

θ̂n+1(ω) = θ̂n(ω)+ τ [X̂ (ω)−
∑K

i=1
ûn+1i (ω)] (11)

where X̂ (ω), ûi(ω), θ̂ (ω), û
n+1
i (ω) are the Fourier transforms

of X (t), ui(t), θ(t), u
n+1
i (t), respectively, n is the number of

iterations (n ∈ [1,N ]), and τ is a constant τ ∈ (0, 1).
(3) Iteration termination condition: e is enacted as the stop

threshold. During iteration, if
∑K

i=1

∥∥∥ûn+1i −û
n
i

∥∥∥2
2

‖ûni ‖
2
2

< e or n > N

is satisfied, the iteration stops.

B. AN ADVANCED OPTIMIZATION ALGORITHM-CLSJAVA
In this section, an advanced optimization algorithm which
named CLSJaya, is exploited for optimizing the weights of
the individual networks. In that case, a basic introduction of
the individual model, as well as the WD fitness function will
be explicated so as to make a more definite exposition for the
CLSJaya.

1) INDIVIDUAL NETWORKS
As described above, different kinds of individual networks
have support reliable results. Among them, four kinds of
networks, BP, LSSVM, ANFIS, Elman are utilized as the
predictors of the framework which mainly because of the
exact forecasting capacity and good interactivity. More
details about the five networks are interpreted in Refer-
ence [43]–[46].

2) WEIGHT DEFINITING FITNESS FUNCTION
The fitness function, which is aiming to optimizing the
weights of the individual models, is vital critical to the capa-
bility of the framework. Thus, the WD fitness function is
supported to heightening the accuracy and stability of the
framework.

Presumed that Y(t) is the actual wind speed series, Y′(t) is
denoted as the predicted value of Y(t), then the following five
criteria is selected to compose the WD function:

1. MAE:

MAE =
1
n

∑n

i=1

∣∣yi (t)− y′i(t)∣∣ (12)

2. MAPE:

MAPE =
1
n

∑n

i=1

∣∣yi (t)− y′i(t)∣∣
yi(t)

(13)

3. RMSE:

RMSE =

√
1
n

∑n

i=1
(yi (t)− y′i(t))

2 (14)

4. DA:

DA =
1

n− 1

∑n

i=1
ci (15)

ci =

{
1 if (yi+1 (t)− yi (t))

(
y′i+1 (t)− y

′
i (t)

)
≥ 0

0 else
(16)

5. MDA:

MDA =

∑n
i=1Di
n− 1

(17)

Di = (Ai − Fi)2 (18)
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Ai =

{
1 if yi+1 (t)− yi (t) ≥ 0
−1 else

(19)

Bi =

{
1 if y′i+1 (t)− y

′
i (t) ≥ 0

−1 else
(20)

Once the criteria are calculated, the WD fitness function is
then defined as follows:

WD = 0.4 ∗MAE + 0.3 ∗ (MAPE + RMSE)

+0.3 ∗ (DA+MDA) (21)

In the first part of the WD, 0.4 ∗MAE only consider in the
accuracy of the framework, which plays the most impor-
tant role in the wind speed forecasting; and the next part,
0.3∗ (MAPE+ RMSE) takes the accuracy and stability into
consideration of the framework; in the last part of the fitness
function, 0.3 ∗ (DA+MDA),this part is devoted to enhanc-
ing the ability of the framework to track the trends of actual
wind speed series.

3) CLSJAVA JAYA ALGORITHM
Jaya algorithm (Venkata Rao, 2016), a swarm-based heuristic
search algorithm which no algorithm-specific parameters are
included, has been widely employed in different applications.
To apply Jaya algorithm to an optimization problem, there are
only two common controlling parameters which are the pop-
ulation size and the number of interactions, need to specify.
The main principle of Jaya algorithm is that the algorithm
iteratively updates particle solutions via moving solutions
towards to the global best solution and away from the global
worst solution:

pi (t) = xi (t)+ r1 (t) (xbest (t)− |xi (t)|)

−r2 (t) (xworst (t)− |xi (t)|) (22)

where pi(t) is the probably value of the i-th particle at
t-th iteration; xi(t) is the value of the i-th particle at t-
th iteration; xbest (t) is the best particle at t-th iteration;
xworst (t) is the worst particle at t-th iteration; r1 (t) , r2 (t)
is two random numbers which generated from the uniform
distribution. For a further explanation of Jaya, please see
Reference [47], [48].

4) CLS MODIFIED JAVA
Jaya algorithm, which has a good capability on global search
and parameter setting, has also performed some shortcomings
in the local search. In that case, a chaos local research mod-
ified Jaya is proposed to enrich the searching behavior and
accelerate the local convergence speed of the Jaya algorithm.

Chaos local search is shown in the following formula:

γi (t + 1) = µγi (t) (1− γi (t)) (23)

In which γi (t + 1) represents for the chaotic variable at
t+1-th iteration; µ = 4, and γi (0) 6= [0.25, 0.5, 0.75].

For further details regarding CLS, please refer to Refer-
ence [46].

The main structure of CLSJaya is displayed in Figure 2,
and the follows is the pseudo-code of the CLSJaya:

Algorithm 1 CLSJaya
Objective:WD(x)
Parameters:
t-iteration number.
Maxiter-the maximum number of iteration.
K-a population pop.
xmax-the upper bound
xmin-the lower bound
p-the switch probability
/∗ Initialize a population of K particles with random posi-
tions and initialize t = 0.∗/
WHILE t< Maxiter
Find the best and the worst particle xbest (t) and xworst (t)
FORi = 1 to K
Draw rand1 from the uniform distribution
IF rand1 < p then

Draw r1 (t) , r2(t) from the uniform distribution
Set pi (t) = xi (t) + r1 (t) (xbest (t)− |xi (t)|) −

r2 (t) (xworst (t)− |xi (t)|)
ELSE

Set γi (t) =
xi(t)−xmin
xmax−xmin

Set γi (t + 1) = µγi (t) (1− γi (t))
Set pi (t) = xmin + γi (t + 1) (xmax − xmin)

IF WD (xi (t))≥WD (pi (t)) then
Set xi (t + 1) = pi (t)

ELSE
Set xi (t + 1) = xi (t)

END FOR
/∗iter = iter + 1∗/
ENDWHILE
/∗ Output the best solution found. ∗/

C. THE PROPOSED FRAMEWORK
As can be seen from the above, the main structure of the
proposed hybrid framework can be

concluded in Figure 1:
Summarized from Figure 1, it can be inferred that the

framework contains 3 steps:
Step 1: Data preprocessing.
First in this research we collect the different scales of wind

speed series from 3 sites, then, via pauta criterion, all the
outliers are detected then replaced by cubic spline interpola-
tion; finally the inputs of the individual model are separately
decomposed by VMD to extract the high-frequency informa-
tion of the inputs and to improve the accuracy and efficiency
of the framework.

Step 2: Individual model forecasting.
In this research, four kinds of networks are utilized as

the individual predictors of the framework, as for the exact
forecasting capacity and good interactivity.
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FIGURE 2. The 10min experiment results in site 1.

Step 3: Weights optimization.
For searching a vector of weights of the individual

models, this research purpose an advanced optimization

algorithm-CLSJaya. On one hand, the algorithm reserves the
capability of convergence speed and global search; on the
other hand, the chaos local search enhance the ability of
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the algorithm in local search. So, depend on the no negative
constraint theory and the proposed WD fitness function, the
optimized weights could promote both the accuracy and the
stability of the framework.

III. RESULTS ANALYSIS
To identify the comprehensive performance of the hybrid
ensemble framework, two kinds of time-scale datasets from
three wind sites in Baicheng, Jilin province are utilized as the
illustrative examples.

A. PERFORMANCE METRICS
Many performance metrics are researched and applied to
evaluate the forecasting effectiveness of different models.
However, there is no general standard for the error evalu-
ation of prediction models. Therefore, multiple error met-
rics, namely mean absolute error (MAE), root mean square
error (RMSE), mean absolute percent error (MAPE), sum of
squared errors (SSE), as presented above, are employed to
assess the forecasting capacity of the proposed novel com-
bined model in this study. In addition, the study also select
the DM test to assess the hypothesis tests between the pro-
posed model results and the other model results. In the end,
another two performance metrics named symmetric mean
absolute percent error(sMAPE) and mean square percentage
error(MASE), are also listed in the tables for the future dis-
cussing of the proposed novel combined framework, which
are defined as follows:

SMAPE =
2
n

∑n

i=1

∣∣yi (t)− y′i(t)∣∣
|yi (t)| +

∣∣y′i(t)∣∣ (24)

MASE =
1
n

∑n
i=1

∣∣yi (t)− y′i(t)∣∣
1

n−1

∑n
j=2 |yi (t)− yi (t − 1)|

(25)

B. 10-MIN TIME-SCALE WIND SPEED FORECASTING
Designed to verifying the accuracy of the novel combined
framework, three experiments are exploited in both the short
term(10min) forecasting and long term(6h) forecasting.

1) EXPERIMENT 1: COMBINED WITH OTHER
DECOMPOSITION ALGORITHM
In experiment 1, in order to validate the accuracy of the
proposed novel data preprocessing technique, three other
decomposition algorithms, including EMD, EEMD and
CEEMDAN, are compared with the proposed hybrid ensem-
ble framework. As shown in Fig.2, as well as Tab.1, the fore-
casting result and performance metrics are listed below.More
details which shown in Tab.1 about the experiment 1 are
described as follows:

In site 1, generalized from all the frameworks that, the pro-
posed framework has the best forecasting performance, with
theMAE,MAPE, RMSE, SSE, SMAPE andMASE of 0.192,
1.58%, 0.325, 31.724, 1.58% and 0.001; compared with other
frameworks, the EMD-based framework has the second best
forecasting performance, with the MAE, MAPE, RMSE,
SSE, SMAPE and MASE of 0.532, 4.94%, 0.741, 164.581,

4.95% and 0.004. Thus, the proposed framework has a bet-
ter performance, which MAE, MAE, MAPE, RMSE, SSE,
SMAPE and MASE is separately 63.94%, 68.06%, 56.10%,
80.72%, 68.08% and 73.12% lower than the EMD-based
framework;

In site 2, generalized from all the frameworks that, the pro-
posed framework has the best forecasting performance, with
theMAE,MAPE, RMSE, SSE, SMAPE andMASE of 0.056,
1.72%, 0.076, 1.738; 1.62% and 0.002; compared with other
frameworks, the EMD-based framework has the second best
forecasting performance, with the MAE, MAPE, RMSE,
SSE, SMAPE and MASE of 0.431, 8.96%, 0.594, 105.934,
8.37% and 0.032.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 87.11%, 80.84%, 87.19%, 98.36%,
80.71% and 92.41% lower than the EMD-based framework;

In site 3, generalized from all the frameworks that, the pro-
posed framework has the best forecasting performance, with
theMAE,MAPE, RMSE, SSE, SMAPE andMASE of 0.146,
1.25%, 0.217, 14.091, 1.26% and 0.001; compared with other
frameworks, the CEEMDAN-based framework has the sec-
ond best forecasting performance, with the MAE, MAPE,
RMSE, SSE, SMAPE and MASE of 0.613, 6.41%, 0.808,
195.902, 6.14% and 0.008.Thus, the proposed framework
has a better performance, which MAE, MAPE, RMSE, SSE,
SMAPE and MASE is separately 76.17%, 80.58%, 73.18%,
92.81%, 79.54% and 96.83% lower than the CEEMDAN-
based framework.

Above all, among all decomposition algorithms, the pro-
posed VMD-based framework achieves the highest accuracy
and stability in 10min wind speed forecasting.

2) EXPERIMENT 2: COMBINED WITH OTHER
INDIVIDUAL MODELS
In order to verify the accuracy and stability of the whole
proposed framework in short-term wind speed forecasting,
seven individual models, involving ARIMA, BP, LSSVM,
Elman, ANFIS and NAÏVE method, are considering in the
comparison experiment. Besides that, the algorithm involved
in the recently research—LSTM network [34], is utilized
as the comparison model as well. More details about the
experiment 2 are displayed in Fig.3(b), and more descriptions
about the experiment 2 are listed as follows:

In site 1, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.192,
1.58%, 0.325, 31.724, 1.58% and 0.001; compared with other
individual models, the Elman network has the second best
forecasting performance, with the MAE, MAPE, RMSE,
SSE, SMAPE and MASE of 1.041, 9.53%, 1.440, 622.380,
9.62% and 0.015.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 81.59%, 83.45%, 77.42%, 94.90%,
83.62% and 96.44% lower than the Elman network;

In site 2, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
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TABLE 1. The performance metrics of experiment 1.

MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.056,
1.72%, 0.0761, 1.738, 1.62% and 0.002; compared with
other individual models, the ARIMA model has the sec-
ond best forecasting performance, with the MAE, MAPE,
RMSE, SSE, SMAPE and MASE of 0.738, 16.27%, 0.988,
292.82, 14.89% and 0.079.Thus, the proposed framework has
a better performance, which MAE, MAPE, RMSE, SSE is
separately 92.46%, 89.45%, 92.30%, 99.41%, 89.15% and
96.92% lower than the ARIMA model;

In site 3, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.146,
1.25%, 0.217, 14.090, 1.26% and 0.001; compared with
other individual models, the BP network has the second
best forecasting performance, with theMAE,MAPE, RMSE,
SSE, SMAPE and MASE of 0.962, 10.07%, 1.263, 478.611,
9.93% and 0.017.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
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FIGURE 3. The 10min experiment results in site 2.

and MASE is separately 84.81%, 87.63%, 82.84%, 97.06%,
87.35% and 88.56%lower than the BP network.

In general, compared with all the other individual models,
the proposed hybrid framework, achieves the highest accu-
racy and stability in short-term wind speed forecasting.

3) EXPERIMENT 3: COMBINED WITH OTHER
VMD-BASED MODELS
In experiment 3, aiming to verify the model-combined strat-
egy, other four VMD-based models are utilized as the com-
parison models. The results of the experiment 3 are shown in
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FIGURE 4. The 10min experiment results in site 3.

Fig.3(c), and the analysis of the results are mentioned in the
following part:

In site 1, generalized from all the models that, the proposed
framework has the best forecasting performance, with the

MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.192,
1.58%, 0.325, 31.724, 1.58% and 0.001; compared with other
VMD-based models, the VMD-Elman network has the sec-
ond best forecasting performance, with the MAE, MAPE,
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TABLE 2. The performance metrics of experiment 2.

RMSE, SSE, SMAPE and MASE of 0.836, 7.66%, 1.141,
390.836, 7.87% and 0.009. Thus, the proposed framework
has a better performance, which MAE, MAPE, RMSE, SSE,
SMAPE and MASE is separately 77.07%, 79.42%, 71.51%,
91.88%, 79.96% and 94.44% lower than the VMD-Elman
network;

In site 2, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.056,

1.72%, 0.076, 1.738, 1.62% and 0.002; compared with other
individual models, the VMD-LSSVM model has the sec-
ond best forecasting performance, with the MAE, MAPE,
RMSE, SSE, SMAPE and MASE of 0.170, 4.13%, 0.203,
12.364, 4.01% and 0.005.Thus, the proposed framework has
a better performance, which MAE, MAPE, RMSE, SSE,
SMAPE and MASE is separately 67.19%, 58.47%, 62.51%,
85.94%, 59.71% and 54.14% lower than the VMD-LSSVM
model;
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FIGURE 5. The 6h experiment results in site 1.

In site 3, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.146,
1.25%, 0.217, 14.090, 1.26% and 0.001; compared with
other individual models, the VMD-ANFIS has the second
best forecasting performance, with theMAE,MAPE, RMSE,
SSE, SMAPE and MASE of 0.451, 3.86%, 0.662, 131.410,
3.95% and 0.002.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 67.58%, 67.73%, 67.25%, 89.28%,
68.19% and 89.96% lower than the VMD-ANFIS.

In summary, considering in all the experiment, the pro-
posed hybrid ensemble framework performs the most accu-
rate and the most stable forecasting results in short-term wind
speed forecasting in the three sites of Jilin province.

C. 6-H TIME-SCALE WIND SPEED FORECASTING
As described above, the proposed hybrid ensemble frame-
work has shown its superiority in short term wind speed
forecasting; aiming to investigate the potential of the model
in long-term wind speed forecasting, which is analogous,

three experiments are designed to assess the capability of the
proposed hybrid ensemble framework. Fig 4 show the results
of the experiments; Tab.2 list the performance metrics of the
experiments, as well.

1) EXPERIMENT 1: COMBINED WITH OTHER
DECOMPOSITION ALGORITHM
In experiment 1, in order to validate the accuracy of the
proposed novel data preprocessing technique, three other
decomposition algorithms, including EMD, EEMD and
CEEMDAN, are compared with the proposed hybrid ensem-
ble framework. As shown in Fig.4, the forecasting result and
performance metrics are listed below. More details which
shown in Tab.1 about the experiment 1 are described as
follows:

In site 1, generalized from all the frameworks that, the pro-
posed framework has the best forecasting performance,
with the MAE, MAPE, RMSE, SSE, SMAPE and MASE
of 0.129, 3.98%, 0.163, 7.975, 3.79% and 0.005; compared
with other frameworks, the CEEMDAN-based framework
has the second best forecasting performance, with the MAE,
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FIGURE 6. The 6h experiment results in site 2.

MAPE, RMSE, SSE, SMAPE and MASE of 0.786, 23.15%,
1.043, 326.146, 23.42% and 0.191. Thus, the proposed
framework has a better performance, which MAE, MAPE,
RMSE, SSE, SMAPE and MASE is separately 83.60%,
82.82%, 84.36%, 97.55%, 83.80% and 97.61% lower than the
CEEMDAN-based framework;

In site 2, generalized from all the frameworks that, the pro-
posed framework has the best forecasting performance,
with the MAE, MAPE, RMSE, SSE, SMAPE and MASE
of 0.129, 3.49%, 0.174, 9.106, 3.31% and 0.005; compared
with other frameworks, the CEEMDAN-based framework
has the second best forecasting performance, with the MAE,
MAPE, RMSE, SSE, SMAPE and MASE of 0.815, 22.46%,
1.063, 339.034, 18.97% and 0.173. Thus, the proposed
framework has a better performance, which MAE, MAPE,
RMSE, SSE, SMAPE and MASE is separately 84.17%,
84.48%, 83.61%, 97.31%, 82.56% and 97.33% lower than the
CEEMDAN-based framework;

In site 3, generalized from all the frameworks that, the pro-
posed framework has the best forecasting performance,

with the MAE, MAPE, RMSE, SSE, SMAPE and MASE
of 0.175, 3.25%, 0.233, 16.278, 3.23% and 0.2; compared
with other frameworks, the CEEMDAN-based framework
has the second best forecasting performance, with the MAE,
MAPE, RMSE, SSE, SMAPE and MASE of 0.952, 34.00%,
1.236, 458.143, 18.70% and 3.613. Thus, the proposed
framework has a better performance, which MAE, MAPE,
RMSE, SSE, SMAPE and MASE is separately 81.68%,
90.44%, 81.15%, 96.45%, 82.75% and 96.94% lower than the
CEEMDAN-based framework.

Above all, among all the decomposition algorithm, the pro-
posed VMD-based framework achieves the highest accuracy
and stability in 6h wind speed forecasting.

2) EXPERIMENT 2: COMBINED WITH OTHER
INDIVIDUAL MODELS
In order to verify the accuracy and stability of the whole pro-
posed framework in long-term wind speed forecasting, seven
individual models, involving ARIMA, BP, LSSVM, Elman
ANFIS, NAÏVE method and LSTM, are considering in the
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FIGURE 7. The 6h experiment results in site 3.

comparison experiment. More details about the experiment
2 are displayed in Fig.5(b), and more descriptions about the
experiment 2 are listed as follows:

In site 1, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.129,
3.98%, 0.163, 7.975, 3.79% and 0.005; compared with
other individual models, the ARIMA model has the sec-
ond best forecasting performance, with the MAE, MAPE,
RMSE, SSE, SMAPE and MASE of 1.736, 66.19%, 2.263,
1536.939, 37.69% and 2.438.Thus, the proposed framework
has a better performance, which MAE, MAPE, RMSE,
SSE, SMAPE and MASE is separately 92.57%, 93.99%,
92.80%, 99.48%, 89.93% and 99.81% lower than the ARIMA
model;

In site 2, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.129,
3.49%, 0.174, 9.106, 3.31% and 0.005; compared with other
individual models, the BP network has the second best

forecasting performance, with the MAE, MAPE, RMSE,
SSE, SMAPE andMASE of 1.867, 58.22%, 2.419, 1756.011,
36.11% and 1.991.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 93.09%, 94.01%, 92.80%, 99.48%,
90.84% and 98.77% lower than the BP network;

In site 3, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.175,
3.25%, 0.233, 16.27, 3.23% and 0.002; compared with other
individual models, the BP network has the second best fore-
casting performance, with the MAE, MAPE, RMSE, SSE,
SMAPE and MASE of 1.993, 56.09%, 2.664, 2129.403,
33.99% and 5.591.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 91.25%, 94.20%, 91.26%, 99.24%,
90.51% and 99.26%lower than the BP network.

In general, compared with all the other individual models,
the proposed hybrid framework, achieves the highest accu-
racy and stability in long-term wind speed forecasting.
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FIGURE 8. The benchmark functions testing results.

3) EXPERIMENT 3: COMBINED WITH OTHER
VMD-BASED MODELS
In experiment 3, aiming to verify the model-combined strat-
egy, other four VMD-based models are utilized as the com-
parison models. The results of the experiment 3 are shown in
Fig.5(c), and the analysis of the results are mentioned in the
following part:

In site 1, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.129,
3.98%, 0.163, 7.975, 3.79% and 0.005; compared with other
VMD-based models, the VMD-ANFIS network has the sec-
ond best forecasting performance, with the MAE, MAPE,
RMSE, SSE, SMAPE and MASE of 0.199, 7.30%, 0.239,
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TABLE 3. The performance metrics of experiment 3.

17.135, 6.55% and 0.019.Thus, the proposed framework has
a better performance, which MAE, MAPE, RMSE, SSE,
SMAPE and MASE is separately 35.17%, 45.52%, 31.78%,
53.46%, 42.06% and 76.40% lower than the VMD-ANFIS
network;

In site 2, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.129,
3.49%, 0.174, 9.106, 3.31% and 0.005; compared with other
individual models, the VMD-LSSVM model has the second

best forecasting performance, with theMAE,MAPE, RMSE,
SSE, SMAPE and MASE of 0.281, 6.16%, 0.373, 41.785,
6.22% and 0.007.Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 54.07%, 43.44%, 53.32%, 78.21%,
46.83% and 34.86% lower than the VMD-LSSVM model;

In site 3, generalized from all the models that, the proposed
framework has the best forecasting performance, with the
MAE, MAPE, RMSE, SSE, SMAPE and MASE of 0.175,
3.25%, 0.233, 16.278, 3.23% and 0.002; compared with
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TABLE 4. The DM test results of all the models.

other individual models, the VMD-Elman has the second
best forecasting performance, with theMAE,MAPE, RMSE,
SSE, SMAPE and MASE of 0.292, 11.07%, 0.392, 46.158,
6.58% and 0.577. Thus, the proposed framework has a better
performance, which MAE, MAPE, RMSE, SSE, SMAPE
and MASE is separately 40.30%, 70.61%, 40.62%, 64.73%,
50.95% and 79.61%lower than the VMD-Elman model.

In summary, considering in all the experiments, the pro-
posed hybrid ensemble framework performs the highest accu-
racy and stability results in not only short-term wind speed
forecasting but also in long-term wind speed forecasting in
the three sites of Jilin province.

D. DISCUSSION
1) THE RESULT OF DM TEST
The DM test is first employed to examine the effectiveness of
the developed model. All of the other models are compared

with the proposed hybrid ensemble framework. According to
the basic idea of the DM test proposed, the null hypothesis is
that there are no significant differences between the forecast-
ing performances of three two models, while the alternative
hypothesis is that the differences between the forecasting
performances of two models are significant. The average
values of the DM test values for two time-scales in the three
sites are presented in Tab.3. Tab. 3 indicates that the proposed
combined model is different from all the other models at a
1% significance level. Moreover, for the comparison results
between the proposed framework and other models in the
10min datasets of 3 sites, the smallest values of DM are
separately 4.762, 6.826 and 7.376; similarly, in the 6h datasets
of the 3 sites, the smallest values of DM are separately 4.894,
2.604 and 3.367. Thus, the null hypothesis could be rejected
at a 1% significance level.

In addition, for some classic individual models, all values
are much larger than the upper limits at a 1% significance
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TABLE 5. The benchmark functions.

level; consequently, the differences between the proposed
model and individual models are significant at the 1% signifi-
cance level. Therefore, the proposed framework significantly
outperforms the other models at the 1% significance level.

2) THE OPTIMIZATION ALGORITHM-CLSJAVA
To further examine the capability of the prorposed optimiza-
tion algorithm, four benchmark functions, Ackley, Sphere,
Rastrigin, Rosenbrock with 10 dims and 50 dims separately,
is exploited in this discussion. The definition of the four
benchmark function are exhibited in Tab.4,and the optimized
results are displayed in Fig.6.

It can be inferred from Fig.6 that:
For the Sphere benchmark function, in the 10 dim experi-

ment, in the 47th iteration, the loss of the benchmark func-
tion optimized by CLSJaya is less than 10-8, what can be
obviously seen from Fig.7 is that the other optimization
algorithms have not overfilled 10-8 till the iteration ends.
in the 50 dim experiment, till the iteration ends,the CLSJaya
performs an accuracy with 0.00000178, which is far higher
the other two optimization algorithm. So, regardless of the
dim, for the Sphere function, the CLSJaya performs the best
accuracy and convergence speed;

For the Rastrigin benchmark function, in the 10 dim exper-
iment, in the 54th iteration, the loss of the benchmark func-
tion optimized by CLSJaya is less than 10-8, what can be
obviously seen from Fig.6 is that the other optimization algo-
rithms have not overfilled 10-8 till the iteration reach to 3000.
in the 50 dim experiment, till the iteration ends, the CLSJaya
performs an accuracy with 5.4E-07, which is far higher the
other two optimization algorithm. So, regardless of the dim,
for the Rastrigin function, the CLSJaya performs the best
accuracy and convergence speed;

For the Ackley benchmark function, in the 10 dim experi-
ment, in the 96th iteration, the loss of the benchmark func-
tion optimized by CLSJaya is less than 10-8, what can be
obviously seen from Fig.6 is that the other optimization algo-
rithms have not overfilled 10-8 till the iteration reach to 3000.
in the 50 dim experiment, till the iteration ends, the CLSJaya
performs an accuracy with 0.0000007, which is far higher the
other two optimization algorithm. So, regardless of the dim,
for the Ackley function, the CLSJaya has the most precise
accuracy and convergence speed;

For the Rosenbrock benchmark function, in the 10 dim
experiment, in the 476th iteration, the loss of the benchmark
function optimized by CLSJaya is less than 10-8, what can
be obviously seen from Fig.6 is that the other optimization
algorithms have not overfilled 10-8 till the iteration ends.
in the 50 dim experiment, till the iteration ends,the CLSJaya
performs an accuracy with 0.00000001, which is far higher
the other two optimization algorithm. So, regardless of the
dim, for the Rosenbrock function, the CLSJaya has the most
precise accuracy and convergence speed.

Combined the narrative above and the convergence curve
displayed in Fig.7, it can be concluded that the proposed opti-
mization algorithm-CLSJaya, has increased both the accu-
racy and convergence speed of the original Jaya algorithm.

IV. CONCLUSION
Wind energy, with vital importance among the low-carbon
energy, has attracted worldwide interest and research enthu-
siasm. However, due to the intermittent characteristics and
continuous fluctuation of wind speed series, the development
of wind power generation has been seriously restricted. Thus,
an effective wind speed forecasting is very urgent in enhanc-
ing the conversion efficiency and increasing the economic
benefits of wind energy. In this study, a hybrid ensemble
framework based on a data preprocessing technique, forecast-
ing algorithms, an advanced optimization algorithm is suc-
cessfully developed in both short-term and long-term wind
speed forecasting. This new model effectively capitalizes on
the benefits of individual forecasting models, which finally
leads to a further improvement in the forecasting results.
Specifically, the data preprocessing technique is first utilized
to eliminate the outliers to enhance the accuracy of the frame-
work, then employed to decompose the original series to
extract the trend and time-frequency information of the his-
torical inputs. Then, several individual algorithms are used for
forecasting the processed wind speed data. Moreover, a novel
deciding weight method based on an advanced optimization
algorithm-CLSJaya is successfully developed to integrate
each individual model and obtain the final forecasting result.
Two time-scales, three wind speed datasets collected from
the wind farm in the Jilin province of China are used as
experiment datastes to estimate the accuracy and stability of
the developed ensemble framework. The experimental results
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demonstrate that the forecasting performance of the proposed
hybrid ensemble framework is obviously superior than all the
other models. In total, the proposed hybrid ensemble frame-
work effectively contributes on the wind speed prediction and
smart grid scheduling.
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