
Received February 13, 2020, accepted February 28, 2020, date of publication March 4, 2020, date of current version March 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978297

Unified GPU Technique to Boost Confidentiality,
Integrity and Trim Data Loss in Big
Data Transmission
SHILADITYA BHATTACHARJEE 1, LUKMAN BIN AB. RAHIM 1,
JUNZO WATADA 2,3, (Senior Member, IEEE), AND ARUNAVA ROY 2,3,4
1High-Performance Cloud Computing Centre, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
2Computer and Information Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
3Shale Gas Research Group (SGRG), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
4Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai 603203, India

Corresponding author: Shiladitya Bhattacharjee (shiladitya.b@utp.edu.my)

ABSTRACT Data integrity, confidentiality and data loss are the issues that arise during transmission
because of the use of an inadequate security scheme. These issues become particularly critical for big
data transmission due to its own individual overhead causes. Moreover, multiple executions of distinct
security algorithms for maintaining confidentiality and integrity reduce throughput and add a large number
of additional bits as security overhead that hampers the robustness against data loss. Conversely, an efficient
compression technique minimizes data confidentiality, as it eliminates redundant data during compression.
Contemporary studies shows the lack of security policies for solving the mentioned issues in a combinatorial
manner. The current study proposes an innovative integrated technique to collectively addresses the above
security issues. It increases confidentiality and offers a backup for accidental data loss by combining the
simplified data encryption standard (SDES) and an advanced pattern generation technique that uses a unique
pattern generation table. A novel dual round of error control technique has been introduced to maximize
data integrity by considering an arbitrary number of transmission errors. A new compression technique is
adopted to enhance the robustness against data loss along with high compression efficiency and resistance
against transmission errors. Confidentiality and integrity are further enhanced by integrating advanced audio
steganography that uses a distinctive sample selection for hiding bits. Additionally, the implementation of
the proposed innovative integrated technique in the graphics processing unit (GPU) environment increases
the execution speed and reduces time complexity with extended parallel processing power. Furthermore,
the application of a GPU enhances the execution speed at least 28-fold compared to the CPU performance.
Experiments are performed using the standard Calgary Corpuses, text files (sized up to 1 TB), and audio files
to validate the objectives. The proposed method offers a higher signal-to-noise ratio (SNR), entropy, and
avalanche effect (AE) and lower amplitude difference (AD), and uncorrectable error rate (UER) as well as a
lower percentage of information loss (IL), which substantiates its potential to offer higher data confidentiality
and integrity. The capacity to reduce the computational complexity is further measured with compression
ratio (CR) and throughput. The results further depicts the method’s superiority in offering confidentiality
and integrity over contemporary approaches.

INDEX TERMS SDES, pattern string generation and the incorporation technique, dual round XOR
operations to control transmission error, data compression, LSB-based audio steganography, GPU-oriented
integrated technique, signal-to-noise ratio (SNR), entropy, avalanche effect (AE), amplitude difference (AD),
uncorrectable error rate (UER), percentage of information loss (IL), compression ratio (CR) and throughput.

I. INTRODUCTION
Currently, ‘big data’ is a well-known term that depicts the
exponential growth and availability of data in both structured

The associate editor coordinating the review of this manuscript and

approving it for publication was Tomás F. Pena .

and unstructured forms. According to [1], it commonly is
a collection of similar or different datasets of very large
scale and is furthermore too complex and difficult to pro-
cess via traditional applications. In fact, countless efforts
have been made to counter the adverse effects of various
transmission hazards. For instance, a number of standard

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 45477

https://orcid.org/0000-0003-3311-4250
https://orcid.org/0000-0002-7320-7980
https://orcid.org/0000-0002-3322-2086
https://orcid.org/0000-0003-3523-1960
https://orcid.org/0000-0002-7622-4698

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

public or private key cryptography methods have been used
to resolve various confidentiality issues. Yet, such meth-
ods are subject to several limitations in terms of high time
and space complexity due to involving many iterations as
well as large initialization vector and key sizes during the
encryption process [2], [3]. Alternatively, the applications of
DNA structure-based patternmatching and hash functions are
unable to stop data notching during transmission [4], [5]. Fur-
thermore, efforts to resolve confidentiality issues by using a
number of steganographic techniques in big data transmission
have failed due to low hiding capacity and a complex hiding
procedure [6]–[8]. The existing error control techniques for
resolving data integrity issues are inadequate if the length
of error bits is more than eight at the same time [9], [10].
Most importantly, the existing compression techniques fail to
control the data size in big data transmission, as lossy com-
pression compromises the data quality during compression by
eliminating the redundant data bits permanently. Meanwhile,
lossless compression methods also entail a number of issues.
For instance, fixed-length coding (FLC), a type of lossless
compression, is inefficient in not offering the desirable com-
pression efficiency, while variable-length coding (VLC) is
not robust against errors due to its dependency on prefix
codes [11], [12].

In addition, we have observed that applications of very
complex encryption, pattern matching or steganographic
methods to enhancing data confidentiality entail high time
and space complexity. As a consequence, data loss occurs,
and data integrity in big data transmission suffers [13], [14].
There is commonly a high probability of data loss or cor-
ruption of a larger number of data bits in big data trans-
mission. However, the existing methods do not adequately
control larger (more than 8 bits) discrete or continuous errors
and fail to offer a backup system for accidental data loss,
which further jeopardizes data integrity [15], [16]. According
to [17], [18], exiting data compressionmethods are inefficient
in either data compression or maintaining data integrity due
to a dependency on prefix codes. Moreover, the time com-
plexity of addressing data confidentiality and integrity further
reduces both efficiency aspects in big and complex data
processing due to increased latency and channel congestion.

Hence, an innovative integrated technique is proposed in
this study that can resolve all of these issues in a combi-
natorial way. This study also analyses the performance of
all existing security techniques used to enhance the level of
confidentiality in big data transmission. Additionally, this
study helps identify the SDES encryption technique and
design pattern generation and pattern matching techniques
that perfectly fit big data transmission due to low time and
space requirements. Their integration helps maintain data
confidentiality and enhance robustness against data loss by
providing a unique backup system for accidental data loss,
which is a major problem in currently available big data trans-
mission systems. Furthermore, the planned pattern generation
technique uses a new reference table to generate pattern

strings and offer a high confidentiality level; these features
make it different from other exiting techniques.

Consequently, this research discusses various data integrity
issues experienced in big data transmission and caused by
various transmission errors. This study designs and builds a
comprehensive error control technique that can also resolve
the limitations of existing error control techniques by being
applicable to any number of discrete or continuous error bits.
The uniqueness of the proposed error control technique is
in its capacity to control any number of discrete or contin-
uous error bits, incorporated during transmission with a low
space overhead, which makes it suitable for transferring big
data files. Finally, this research explores various limitations
discovered in the existing data compression methods used in
big data transmission to enhance robustness against data loss.
This exercise helps design and develop a highly efficient and
low-complexity lossless compression method that suits big
file transfers and removes all the limitations of current data
compression methods. At the same time, the proposed com-
pression technique offers a high level of robustness against
data loss by reducing data overhead and enhancing resilience
to various transmission errors, which makes it immediately
usable.

As we know, a high compression efficiency poses a chal-
lenge to data confidentiality. Therefore, this research specif-
ically identifies various existing security techniques that are
less complex and can thus restore data confidentiality up to
an adequate level. To this end, this study develops a less com-
plex and highly confidential audio steganography technique
that is a perfect fit to big data transmission. The innovation
of this proposed technique is the use of an advanced sam-
ple selection method for hiding data, which helps enhance
data confidentiality and data integrity at the same time. The
implementation of the proposed novel integrated technique in
the GPU environment enhances the execution speed at least
28-fold compared to the CPU implementation. The parallel
processing power of a GPU further reduces the hardware and
software latencies and data loss due to transmission delay
and enhances data integrity by reducing data errors during
execution.

The current work focuses on building an integrated tech-
nique that could enhance data confidentiality and integrity in
addition to minimizing data loss and processing overhead in
big data transmission. The specific objectives of this study
are to do the following:

Mitigate the present challenges to confidentiality related
to big data transmission by applying the said low-complexity
integrated technique and maximize the confidentiality level,

Resolve the limitations of current data compression
methods by controlling the extra data overhead and reduce
channel congestion in big data transmission by designing a
new lossless compression method as part of the said inte-
grated technique,

Reduce the processing time by reducing the hardware
and software latencies, utilizing GPU-based accurate parallel

45478 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

TABLE 1. Nomenclature.

processing and an adequate resource allocation mechanism,
and

Explore the limitations of existing error control tech-
niques to maximize data integrity by minimizing data loss in
big data transmission with the use of a new error-checking
technique applicable to any number of discrete or continuous
bit errors.

The rest of paper is arranged as follows: Section II presents
an effective review of the strengths and weaknesses of the
contemporary security mechanisms used in big data trans-
mission. Section III describes the current research gap and
helps to resolve the current security issues, discovered in big
data transmission. Section IV describes the design and the
workings of SDES, as well as the said pattern generation,
the error checking algorithm, the fixed length coding-based
lossless compression, and LSB-based audio steganography.
Complexity of the proposed approach has been analyzed in
Section VI. Section V includes and describes the decoding
process for retrieving the original data from the received stego
files. The layout for performing experiments has been dis-
cussed in Section VII in the forms of Experimental Setup and
Data Preparation. A set of assessment parameters have been
defined in Section VIII and the performances of the projected
integrated technique and its distinct parts have been done
with them. In this section, the performances of this said inte-
grated technique and its different parts are further compared
with the performances displayed by corresponding existing
techniques to show their superiorities over them. Finally,
Section IX concludes and discusses the overall research
work, as well as analyzes the strengths and weaknesses of
the said integrated technique alongwith the possible future
research.

II. RESEARCH BACKGROUND
Table 1 shows a list of notations that will be used throughout
the remainder of the text.

According to the objectives of this research, the present
section on the study’s background has been divided into
several subsections that review various security aspects of
big data transmission. These subsections primarily discuss
the strengths and limitations of distinct existing security tech-
niques in enhancing data confidentiality and integrity in a
large and complex file transmission.

A. CRYPTOGRAPHY AND PATTERNING
According to [1], [19], [20], data security is a technique that
concerns protecting data from unauthorized intentional or
unintentional tampering, destruction or disclosure of infor-
mation and data loss. In accordance with [2], cryptography is
the technique that converts or encrypts the input plaintext into
an unreadable format called ciphertext. A technique to reduce
the repetition of execution with a 128-bit key was inferred
in [21], and the researchers also considered a table built on an
S-box. Thismethod is an embedded scheme designed to cover
vital data and entails a low deployment cost. Nevertheless,
it executes rather slowly and requires additional attention
to protect the similar key pair. A GPU-enhanced structure
was detailed in [22] for loading data in mobile devices by
generating encrypted data using the XTS-AES encryption
process. This encryption scheme approaches security through
the loading of data of very large size and processes a very
large quantity of data in parallel. The bit size, related to the
input lump, is very minor. Therefore, the presented encryp-
tion is incapable of protecting from nonlinear attacks, such as
rectangular and square attacks. A multipath-oriented routing
protocol was proposed in [23] to improve confidentiality by
using cryptography in ad hoc networks. The used protocol
was rather simple and could be easily employed in diverse
ad hoc devices. However, it resulted in similar data being
transmitted redundantly by multipath routing and amplified
channel overhead. A hash key-oriented encryption method
for video transmission was devised in [24] to improve con-
fidentiality. It precluded some unusual attacks, e.g., regroup-
ing and erasure attacks, but data corruption in frames could
occur during decryption and decompression. Pattern genera-
tion is the process of generating a sequence of tokens repre-
sented by character or binary strings, and pattern matching
is the process of searching in string containing character or
binary data. As reported in [4], [25], pattern generation and
matching techniques further enhance data confidentiality in
big data transmission. Here, the original information bits
are converted into some predefined bit sequences to gen-
erate a particular bit pattern, and the pattern bits are then
matched with the previously stored sample patterns from the
database to retrieve the original information at the receiving
end [26], [27]. Data patterns can also be generated by using
a DNA structure and a hash function, and using such a hash
function for security purposes is also useful for reducing the
packet loss in any transmission system. However, DNA-based
and hash function-based pattern generation techniques are too
complex and cannot protect data from various attacks on their
security. On a few occasions, cryptography has similarly been
used to construct stronger message authentication codes and
digital signatures; such processes involve many iterations and
a great deal of space overhead during execution.

B. ERROR CONTROL MECHANISM
In any data transmission infrastructure, the conveyed infor-
mation can be erroneous due to limitations of hardware
or software, communication delay, bandwidth restrictions,

VOLUME 8, 2020 45479

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

channel congestion, channel noise, and other reasons.
Because of such erroneous information, the data retrieval
process is interrupted at the receiving end, data loss occurs
and the percentage of data transmitted correctly declines. The
control mechanism for such errors can be divided into two
phases: detection and correction. Error detection is the proce-
dure of identifying data errors, which can be categorized into
single or multiple bits and incorporated into data in a discrete
or continuous form within the data during the transmission
process [15], [16]. In contrast, error correction is the process
of replacing erroneous bits with the original bits after the
former have been detected [28], [29]. An error correction
method of the burst error using cyclic codes has been pro-
posed in [30]; it is simple and easy to implement, and it does
not need any lookup table for decoding. However, the redun-
dancy of the same code requires a longer execution time,
and the method is too complex to implement by using logic
gates. A forward error correction scheme for transmission
in WSN has been designed in [28]. A flexible forward error
correction code was proposed in [31] and used to recover the
partial media. The cited study optimized the partial recovery
of media, and the above code could be easily enhanced to
protect against unequal errors. However, the complexity of
error computation was very high, and the method additionally
suffered from a high execution delay.

C. DATA COMPRESSION
With the rapid growth of internet use, transmissions of
electronic media have become commonplace. Conversely,
the transmission of largemedia files requires compressing the
files to avoid extra overhead and channel congestion. The rel-
evant compression techniques can be of two types: lossy and
lossless. Lossy compression deletes redundant unimportant
information permanently during the compression operation,
which degrades data quality. JPEG, MPEG, TIFF, PING, and
MP4 are some of the well-known examples of lossy com-
pression methods. On the other hand, lossless compression
methods, such as RLE, Shannon Fano, Huffman, adaptive
Huffman, arithmetic, and LZ77, offer similar data quality as
the original [17], [18]. Furthermore, [32] has recommended
using a lossy data compression method for real-time data.
This compression technique results in a high compression
ratio and offers a low error rate and a higher execution speed.
Lossless compression-based methods have been designed
in [17], [33] for handling seismic floating point data. Such
a method provides a high compression ratio and SNR in
addition to offering a low data loss rate. Nevertheless, this
technique offers very low processing speed, and transmission
of compressed data is very expensive at the same time. Trim-
ming the texture size via a lossless compression technique has
been suggested in [34]. This approach improves the transmis-
sion rate but takes a very long time and degrades the texture
quality during decompression.

D. STEGANOGRAPHY
Steganography is the process or tactic of hiding a message
within media files (i.e., text, image, audio or video files).

Based on the type of the cover file, it can be classified into
several categories, such as plain text, still imagery, audio and
video steganography. Text steganography offers a very weak
confidentiality level, as the hidden text can be extracted very
easily, whereas image steganography exploits a weakness of
the human visual system (HVS) tomaintain data confidential-
ity during incorporation of data within the image. However,
image steganography is also considered weak, as it comprises
a few simple steps for incorporating data and extracting hid-
den data. In steganography involving audio and video, secret
messages are incorporated into digital audio or video signals.
Among various audio steganography techniques, in parity bit
embedding steganography, a parity bit is generated from the
input cover sample string, and secret bits are embedded into
the parity bit. The LSB of each binary sample is replaced by
a secret message bit in an LSB-based steganography tech-
nique [35], [36].

Various studies have explored different steganographic
techniques by using different media files and different types
of input files for hiding data to resolve steganography’s
diverse shortcomings. Based on [35], the concept of multiple
cryptographies where the data are encrypted into a cipher, and
the cipher is hidden in amultimedia image file in an encrypted
format has been proposed. This technique offers high data
confidentiality and integrity but has a high time and space
complexity and is unsuitable for big data applications. Addi-
tionally, a novel technique for image steganography based on
the Huffman encoding has been proposed in [37]. It produces
steganographic images of good quality to maximize the level
of confidentiality and can resist a brute force attack. This
algorithm also improves the security and the quality of the
steganographic image and offers a better hiding capacity than
do other existing techniques. However, its hiding capacity is
nonetheless low, and it is not robust against errors.

E. TIME OPTIMIZATION
Time management is one of the greatest challenges in pro-
cessing and transmission of large and complex files. The
processing of a large and complex file on a CPU with any
integrated security algorithm enhances the latency and trans-
mission delay [38], [39]. As a consequence, data loss occurs
during transmission of a large file over the internet. Accord-
ing to [40], [41], parallel processing in the GPU environment
can reduce the time overhead by reducing the hardware and
software latencies. Hence, several studies have explored the
GPU environment, aiming to address the time-related issues
in big data processing. However, the available literature could
not address these issues related to time requirements in big
data processing and transmission. According to [42], the pro-
cessing of big graph data entails complex and numerous iter-
ations that increase the task’s difficulty; challenges include
parallel memory bottlenecks, deadlocks, and resource inade-
quacy. Hence, the authors proposed an advanced mechanism
for processing big graph data in the Cloud efficiently by
analysing spatial data correlation and segregating a graph’s
dataset into clusters. In such a cluster, the execution overhead

45480 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

can be aggregated by extrapolation depending on time series
correspondence. The proposed technique further included
temporal data compression that was implemented by utilizing
temporal correlation for every individual time series or a sin-
gle graph edge. An advanced data scheduling approach was
further introduced to improve the throughput [43], [44]. How-
ever, this approach cannot be used for all types of correlations
or data models to reduce the size of various large datasets, and
the proposed technique cannot be used dynamically to pro-
duce a reasonable workload distribution and attain the desired
throughput.

III. RESEARCH GAP ANALYSIS
The primary objective of this study is to ensure data confiden-
tiality and integrity in big data transmission. The LSB-based
steganography and the AES cryptographic techniques have
been observed to lead to better efficiency in various aspects.
However, various limitations, such as high time and space
overhead and a weak ability to protect against data loss
and ensure data integrity, make them unsuitable for big
data applications. The literature shows that transmission
errors pose another challenge to data confidentiality and
integrity [1], [19], [20]. Consequently, studies show that
using a cryptography-based hash function leads to better
results, as it yields a higher SNR than do the other meth-
ods. However, these existing error control techniques entail
several limitations, such as high time and space complexity
and inability to cope with a large number of transmission
errors [45]. At the same time, data overhead disrupts big data
transmission very greatly. The background study suggests a
number of data compression techniques to handle such issues.
Nevertheless, those compression techniques either have poor
efficiency of data compression or cannot efficiently pro-
vide the required robustness against various data errors [33].
A high compression efficiency also poses a challenge to data
confidentiality. Hence, retaining data confidentiality without
imposing a great deal of data and time overhead is another
challenge in big data transmission. The issues of time over-
head are important in executing any security mechanism
for a large file transmission. The use of GPUs can solve
these issues with the power of massive parallel process-
ing. Yet, the subsequent issues that arise in GPU-based big
data applications diminish its significance [39]. Therefore,
there are still some research gaps that pertain to security
aspects, such as data confidentiality and integrity in big data
transmission.

IV. PROPOSED METHODOLOGY
The issues of confidentiality, integrity and data loss in big
data transmission have been solved by implementing an
integrated technique. The structure of the proposed tech-
nique is shown in Figure 1 using an unstructured input text
file.

Figure 1 shows that the proposed integrated technique
comprises several parts. The construction of each of them is
further described in the following subsections.

FIGURE 1. Flow of the proposed integrated technique.

A. SDES ENCRYPTION
The SDES encryption algorithm creates a cyphertext with an
8-bit input string and a 10-bit key. The 10-bit key can be gen-
erated by using any random 10-bit binary string generation
algorithm. Studies [10], [46] present a detailed description of
cyphertext formation from a parallel 8-bit input string using
SDES and the corresponding key generation. Let n instances
of 8-bit strings be generated from the input text file and store
them in 〈Ptn〉, where n is the total number of characters. The
related 10-bit keys are stored in 〈Keyn〉, and the corresponding
ciphertexts are in 〈Ctn〉. A specific ciphertext and the related
key are joined to create an array 〈Etn〉 using the following
Equation (4.1).

Etn = (Ctn × (10)l(Keyn) + Keyn (4.1)

where l(Keyn) = blog10 Keync+ 1, and n varies from 0 to the
total number of elements of input text. Similarly, the length
of any element of array 〈Etn〉 will be 18, as the length of each
key is 10 bits and that of a cyphertext is 8 bits.

B. PATTERN STRING GENERATION
According to [25], a pattern string is a predefined bit
sequence. Hence, a unique bit sequence is designed to gen-
erate the pattern string array in the proposed method. The
uniqueness of this step is in the design of a novel pattern table.
Input text 〈Ptn〉 is used here to create pattern array 〈Patn〉
using Algorithm 4.1.

In Algorithm 4.1, line (a1) declares various variables
and arrays for this operation, while lines (a2-a20) tra-
verse the entire input text 〈Ptn〉 to create the final pattern
string array 〈Patn〉. The decimal value of an input character
〈Ptn〉 is calculated by lines (a2-a5) and stored into 〈Dec′n〉.

VOLUME 8, 2020 45481

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

Algorithm 4.1: Pattern String Generation
(a1) Take, Dec[n], Dec′[n][3], Pos[n][3] as integer and

Sub[n][3][5] as string as well as x, y as integer;
(a2) for (int p = 0; p ≤ (n-1); p + +)
(a3) for (int i = 0; i ≤ 7; i + +)
(a4) Dec[p] = Dec[p] + (Pt[p][i] ×2i);
(a5) End for
(a6) for (int k = 0; k ≤ 2; k + +)
(a7) Dec′[p][k] = b Dec[p]/10jc modulo 10;
(a8) Pos[p][k] = (k × 10) + Dec′[p][k];
(a9) for (int i = 0; i ≤ 4; i + +)
(a10) y = (Pos p][k] /2i);
(a11) x = y modulo 2i;
(a12) Sub[p][k][i] = x;
(a13) End for
(a14) End for
(a15) for (int j = 0; j ≤ 4; j + +)
(a16) Pat[p][j] = Sub[p][0][j];
(a17) Pat[p][j + 5] = Sub[p][1][j];
(a18) Pat[p][j + 10] = Sub[p][2][j];
(a19) End For
(a20) End For

TABLE 2. Pattern Table.

Lines (a6-a7) split three consecutive decimal digits from
each 〈Dec′n〉. The position value of a particular separated
decimal digit in the pattern table is calculated and stored
into integer array 〈Posn×3〉 at step (a8). Each of the initial
pattern values are subsequently converted into 5-bit binary
strings and stored into 〈Subn×3×5〉 by steps (a10-a12). Each
set of three resulting 5-bit binary strings is taken from string
array 〈Subn×3×5〉 and concatenated to create the final 15-bit
pattern string, stored in 〈Patn〉 in steps (a15-a19). An example
is shown in Table 2 to explain the proposed pattern generation
further. Let A be a character of the input text with the decimal
value of 65. Initial pattern values generated from 65 are 0, 6,
and 5. These initial values are placed in Table 2 according to
position values of 0, 1, and 2.

Thus, the position values of the initial pattern such as 0,
6 and 5 are 1, 17 and 26, respectively. These three posi-
tion values are subsequently converted into 5-bit strings and
concatenated into a 15-bit final pattern string in each itera-
tion. Apart from this, the SDES encryption is a symmetric
key cryptographic method. Therefore, each key has to be
transferred to the receiving end for decryption. Hence, if any

FIGURE 2. Concatenation operation.

accidental loss occurs, a backup system designed as shown
in Figure 2 can be used to regenerate the lost data.

Figure 2 shows that each concatenated string array is gen-
erated from each particular set of 8-bit ciphertexts 〈Ctn〉,
10-bit keys 〈Keyn〉, and the corresponding 15-bit pattern
strings 〈Patn〉. Here, the ‘‘+’’ sign represents the concatena-
tion operation. This procedure is further illustrated by Equa-
tion (4.2).

Concatn = (Etn × (10)l(Patn))+ Patn (4.2)

where l(Patn) = blog10 Patnc+1, and the length of a specific
element in string array 〈Concatn〉 becomes 33 bits after the
concatenation operation has been performed.

C. CONTROL OF TRANSMISSION ERRORS
The proposed error control technique includes two phases
used to identify and correct errors. The first is designed to
facilitate an additional backup system to be used in the event
of accidental loss. The second phase examines each bit of the
custom string to determine the particular error location and to
correct the respective error bit.

1) FIRST STEP OF ERROR CONTROL BIT FORMATION AND
FUSION
In the first phase of error control bit generation, XOR opera-
tions are performed between each individual set of encrypted
strings 〈Etn〉 and the corresponding pattern string 〈Patn〉 to
generate 〈XorStrn〉.

XorStrn = (Etn ⊕ Patn) (4.3)

In this first phase of error control bit generation and incorpo-
ration, the resulting strings are stored in an another new string
array 〈Concat ′n〉 by equation (4.4).

Concat ′n = (Concatn × 10l(XorStrn))+ XorStrn (4.4)

where l(XorStrn) = blog10 XorStrnc + 1. A specific concate-
nated string from array 〈Concatn〉 and a XOR string from
array 〈XorStrn〉 are 33 bits and 18 bits long, respectively.
Hence, after the completion of the second phase, each of the
strings in 〈Concat ′n〉 becomes 33+ 18 = 51 bits long.

45482 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

Algorithm 4.2: Error Control Bit Fusion in Phase II
(b1) Declare len, num as integer and Str as string;
(b2) len= 51; //len is the length of each item in 〈Concat ′n〉
(b3) for (int i = 0; i ≤ n; i + +)
(b4) ErrCon[i][0] = Concat ′[i][0];
(b5) ErrCon[i][1] = Concat ′[i][1];
(b6) num = 0;
(b7) for (int j = 2; j < len; j = j + 2)
(b8) Str = Concat ′[i][num]⊕Concat ′[i][num+ 1];
(b9) ErrCon[i][j] = Str;
(b10) ErrCon[i][j+ 1] = Concat ′[i][num+ 2];
(b11) num = num + 1;
(b12) End for
(b13) End for

2) SECOND STEP OF ERROR CONTROL BIT FORMATION
AND FUSION
The second phase of error control bit generation and incorpo-
ration is initiated and performed with the input string array
〈Concat ′n〉. Algorithm 4.2 illustrates the operations in this
phase. The final results are stored in a string array 〈ErrConn〉.
In Algorithm 4.2, line (b1) declares an integer variable

len and a string variable Str, while line (a2) initializes len
to 51. Lines (b3-b13) traverse the array 〈Concat ′n〉, though
lines (b4-b5) assign the first and second elements of string
array 〈Concat ′n〉 to the first two places in string array
〈ErrConn〉. Lines (b7-b12) traverse the array 〈Concat ′n〉 from
its third to last elements. Line (b8) generates the refer-
ence error control bits by performing the XOR operation on
two specific consecutive bits of a particular string of array
〈Concat ′n〉. Each of the resultant error control reference bits
is included in the third place after the corresponding input bit
pair in the same string of array 〈ErrConn〉with the use of lines
(b9-b11). All of these operations are continued for each of
the string elements of 〈Concat ′n〉 to construct the string array
〈ErrConn〉 for controlling errors at the second stage.

D. DESIGN OF THE PROPOSED COMPRESSION
TECHNIQUE
The application of SDES, pattern string generation and incor-
poration of error control bits causes the converted input file
to exceed its original size. Hence, a new fixed length-based
(FLC) lossless compression is introduced to reduce data
overhead and address the limitations of existing FLCs and
VLCs. After the dual rounds of error control bits’ generation
and incorporation operations are performed on string array
〈Concat ′n〉, the newly generated string array 〈ErrConn〉 is
used as input here to execute the proposed data compression
routine. In addition, the proposed compression routine has
three parts, and each of them is described in detail in the
following subsection.

1) GENERATION OF CHARACTER TABLE
In first phase of compression, the redundant elements are
eliminated from the string array 〈ErrConn〉 and copied into
the string array 〈Chstrm〉, where 0 ≤ m ≤ n. Here, m

is the total number of non-redundant elements in the input
text. The formation of 〈Chstrm〉 is further represented by
Equation (4.5).

Chstrm =
(
ErrConn

m

)
(4.5)

Once all the non-redundant elements have been copied,
the string arrays 〈ErrConn〉 and 〈Chstrm〉 are used as inputs
to create the frequency table. Such a table 〈Freqm〉 is created
by putting the frequencies (the number of occurrences) of
each non-redundant element in array 〈ErrConn〉. The string
array 〈Chstrm〉 is subsequently sorted in the order of descend-
ing frequency. The creation of frequency table 〈Freqm〉
and sorting of character table 〈Chstrm〉 are shown in
Algorithm 4.3.

Algorithm 4.3: Creation of the Sorted Character Table
(c1) Declare temInt as an integer and temStr as string;
(c2) for (int j= 0; j<m; j++) //Frequency table creation
(c3) for (int i = 0; i < n; i + +)
(c4) if (Chstr[j] == ErrCon[i])
(c5) Freq[j] = Freq[j] + 1;
(c6) End if
(c7) End for
(c8) End for
(c9) for (int i = 0; i < m; i + +) //Sorting
(c10) for (int j = 0; j < m; j + +)
(c11) if (Freq[j-1] < Freq[j])
(c12) temInt = Freq[j-1];
(c13) temStr = Chstr[j-1];
(c14) Freq[j-1] = Freq[j];
(c15) Chstr[j-1] = Chstr[j];
(c16) Freq[j] = temInt;
(c17) Chstr[j] = temStr;
(c18) End if
(c19) End For
(c20) End For

In Algorithm 4.3, line (c1) declares a temporary integer
and a string variable used to create the sorted character
tables whilst the array 〈Chstrm〉 and 〈ErrConn〉 are tra-
versed in lines (c1-c8) and (c2-c7). During such traversal,
steps (c4-c6) compare each pair of elements of string
arrays 〈Chstrm〉 and 〈ErrConn〉 to calculate the frequency
of each element of string array 〈Chstrm〉 appearing in array
〈ErrConn〉 using step (c5). The corresponding calculated
frequency values are subsequently stored in integer array
〈Freqm〉 in step (c5). The character table 〈Chstrm〉 is traversed
further twice: initially from the first to the last element in
lines (c9-c20) and from the second to the last element in
steps (c10-c19), while lines (c11-c18) sort the character array
〈Chstrm〉. Sorting is performed in the descending order of
frequency of elements of array 〈Chstrm〉 depending upon the
corresponding frequency value in integer array 〈Freqm〉.

VOLUME 8, 2020 45483

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

2) GENERATION OF COMPRESSED CODE
The compressed codes corresponding to each non-redundant
character of the character table are generated in this phase. In
any input text, there can be at most 128 distinct characters
according to the American Standard Code for Information
Interchange (ASCII) Table. The compressed code generation
process is split into several parts. Each of them is described
in the following subsections.
Case 4.1 (Compressed Code Generation If 0 ≤ m ≤ 31):

The compressed codes are created by converting the position
value of each element in the string array 〈Chstrm〉 into a 5-bit
string and storing the newly generated string into the string
array 〈CodeStrm〉. If x, i, j are integer variables, the code string
is created using Equation (4.6).

x = i modulo 2j

CodeStrij = x

}
for 0 ≤ i ≤ m & 0 ≤ j ≤ 4 (4.6)

Here, i represents the position value of a specific code string,
and j represents the bit sequences of each 5-bit compressed
code.
Case 4.2 (Compressed Code Generation If 32 ≤ m ≤ 61):

In the second phase, the compressed codes are created if the
position value of any character string in string array 〈ChStrm〉
is varied between 31 and 61. The 5-bit code strings are created
from the corresponding position values when m ≤ 30, and
the analogous compressed codes are put into string array
〈CodeStrm〉 by repeatedly applying equation (4.6). The prefix
code is generated and concatenated with the compressed code
to create the final compressed code when the corresponding
position value is greater than 30. In this phase, the deci-
mal value 31 is converted into a 5-bit binary string using
Equation (4.6), and the result is assigned to a string variable
Pref. If i, j are two integers, 31 ≤ i ≤ m and 0 ≤ j ≤ 4, then,

x = (i− 31) modulo 2j

TemStrj = x
TemStr ′ = (Pref × 10l(TemStr))+ TemStr
CodeStri = TempStr ′

 (4.7)

Here, x is an integer, TemStr and TemStr’ are string vari-
ables, and l(TemStr) = blog10 TemStrc + 1. The numeric
value of 31 is subtracted on every occasion from a particular
position value. Each value resulting from the subtraction
is further converted into a 5-bit pre-compressed code and
assigned to TemStr. The prefix code (Pref) and an individual
pre-compressed code (TempStr) are subsequently concate-
nated and assigned to TemStr’. Finally, all the concatenated
compressed codes are stored in a string array 〈CodeStrm〉
using Equation (4.7).
Case 4.3 (Compressed Code Generation If 62 ≤ m ≤ 89):

The compressed codes are created and stored into the string
array 〈CodeStrm〉 in a way similar to that of Case 4.2 when the
position value varies from 0 to 29. Using equation (4.6), deci-
mal values 30 and 31 are converted into 5-bit strings to create
prefix codesPref1 andPref2. Repeating Case 4.2, the decimal
value of 30 is subtracted from a particular position value of
a character string in 〈ChStrm〉 when the particular position

value is between 30 and 59. Similarly, when the position value
is between 60 and 89, the decimal value of 60 is subtracted
from the respective value. The 5-bit pre-compressed codes are
created from the corresponding position value that resulted
from subtraction and concatenated withPref1 if 30 ≤ m ≤ 59
and with Pref2 if 60 ≤ m ≤ 89 using equation (4.7).
Case 4.4 (Compressed Code Generation If 90 ≤ m ≤

115): In this case, the compressed codes in string array
〈CodeStrm〉 are determined by repeating Case 4.3 when a
particular position value varies from 0 to 28. Similarly to
Case 4.3, prefix codesPref1, Pref2 andPref3 are generated by
converting the decimal values 29, 30 and 31 into 5-bit binary
strings, and decimal values 29, 58 and 87 are subtracted
from the respective position values when a particular position
value is in the range of either 29 to 57, 58 to 86 or 87 to
115. The pre-compressed codes are subsequently generated
from each respective value that resulted from subtraction by
repeating Case 4.3. Equation (4.7) determines the final com-
pressed codes by concatenating the pre-compressed codes
with their respective prefix codes and stores them into code
array 〈CodeStrm〉 in parallel.
Case 4.5 (Compressed Code Generation If m ≥ 116): The

compressed codes are created in a way similar to that of
Case-4.3 when the position value of a particular character
in string array 〈ChStrm〉 diverges from 0 to 27. Similarly to
Case 4.2 to Case 4.4, the prefix codes Pref1, Pref2, Pref3,
and Pref4 are created by converting the decimal values 28,
29, 30 and 31 into 5-bit binary strings using equation (4.6),
and the decimal values 28, 56, 84 and 112 are subtracted if
the position value of a particular character is between 28 to
55, 56 to 83, 84 to 111 or 112 − 127, respectively. Each of
the values resulting from subtraction is then converted into a
5-bit string to create the corresponding pre-compressed code.
The final compressed codes are created by concatenating the
pre-compressed codes with the respective prefix codes and
are stored in string array 〈CodeStrm〉 at the same time by
iterating Equation (4.7).

3) GENERATION OF THE FINAL COMPRESSED STRING
String arrays 〈ChStrm〉, 〈CodeStrm〉 and 〈ErrConn〉 are
used as inputs in this stage. The string array 〈ComStrn〉
is created by replacing all elements of array 〈ErrConn〉
with the resulting compressed codes determined using
Equation (4.8).

ErrConn = ChStrm→ ComStrn = CodeStrm (4.8)

Equation (4.8) compares each pair of elements 〈ErrConn〉
and 〈ChStrm〉. It further stores the equivalent compressed
code from 〈CodeStrm〉 into 〈ComStrn〉 if a particular string
of array 〈ErrConn〉 matches a string of 〈ChStrn〉. After the
creation of 〈ComStrn〉 is complete, a separator string (Sep)
is created by concatenating the value one (1) 101 times.
Finally, the final compressed string (FinCom) is created
using Equations (4.9-4.11) by concatenating 〈ChStrn〉, Sep

45484 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

and 〈ComStrn〉.

FinCom = FinCom× 10l(Chstrm) + Chstrm (4.9)

FinCom = FinCom× 10l(Sep) + Sep (4.10)

FinCom = FinCom× 10l(ComStrn) + ComStrn (4.11)

Here, l(ChStrm) = blog10 ChStrmc + 1, l(Sep) =

blog10 Sepc+1 and l(ComStrn) = blog10 ComStrnc+1. After
concatenation, the final compressed string (FinCom) is ready
for inclusion in the audio file.

E. PROPOSED AUDIO STEGANOGRAPHY
According to [47], [48], a high compression efficiency result-
ing from any compression technique threatens data confiden-
tiality. As the proposed compression is also very efficient,
it also jeopardises data confidentiality. Hence, this study con-
siders a unique LSB-based audio steganography technique
that helps to resolve this issue and offers a larger amount of
hiding space along with a new hiding scheme. The develop-
ment of this technique has been divided into several phases
and is discussed in the following subsections.

1) BINARIZATION OF THE COVER AUDIO FILE
In the initial phase, an input audio file is converted into
several minor samples using the sampling theory. In this step,
samples are extracted from the cover file using a predefined
threshold value. Normalization is further performed on these
extracted samples to obtain their actual amplitude values.
Such normalized amplitude values are numbers with a dec-
imal point and lie in the range of −255 to 254. Hence, these
normalized values are multiplied by 10 to convert them into
integers. After being converted into an integer, each sample
value is transformed into an 8-bit string using Equation (4.7).
Finally, with a different use of Equation (4.7), these converted
strings are stored into the string array 〈As〉, where s is the
number of sample strings.

2) GENERATION OF REFERENCE ARRAY FOR SELECTING
SAMPLE
According to [6], if no audible difference is detected between
a steganographic audio file and the original file, the functional
steganography is called efficient or vice versa. Hence, A few
minor changes are made in the original cover file to perform
the proposed embedding operation. The sample selections
from the string array 〈As〉 for hiding compressed bits are initi-
ated by marking the prime position values of string elements
in array 〈As〉. The prime position values are then put into
another integer array 〈A′p〉, where p is the total number of
prime positions in the string array 〈As〉. The position values
of each element in 〈A′p〉 is furthermore stored into an integer
array 〈Posp〉. The resulting values from 〈A′p〉 and 〈Posp〉 are
added to generate the actual position values. The resulting
position values are stored at that time into a separate integer
array 〈A′′p〉 using equation (4.12).

A′′p = A′p + Posp (4.12)

3) EMBEDDING A COMPRESSED STRING INTO AN AUDIO
SAMPLE
Embedding of compressed bits starts with the collection
of 8-bit samples from 〈As〉 according to the position values
of 〈A′′p〉, and the collected strings are stored into a string array
〈Samp〉. The final compressed string (FinCom) and the newly
generated string array 〈Samp〉 are used as inputs here. The
embedding operation picks two consecutive compressed bits
form string FinCom in each iteration and incorporates them
at the first and fourth bit positions respectively. The fourth bit
of any selected sample string in 〈Samp〉 can be changed either
from 0 to 1 or from 1 to 0. At the same time, the inclusion of
a compressed bit in the first bit position does not require any
change of other bit positions. Pass 4.1 and Pass 4.2 further
describe the required changes in the other bit positions.

Pass 4.1: The Fourth Bit Is Changed From 0 to 1
(P1.1) if (Samp2 = 1 and Samp4 = 1)
(P1.2) for (int i = 0; i ≤ 2; i + +)
(P1.3) Sampi = 0;
(P1.4) End for
(P1.5) End if
(P1.6) if (Samp2 = 1 and Samp4 = 0)
(P1.7) for (int i = 0; i ≤ 2; i + +)
(P1.8) Sampi = 0;
(P1.9) End for
(P1.10) End if
(P1.11) if (Samp2 = 0 and Samp4 = 1)
(P1.12) Samp4 = 0;
(P1.13) for (int i = 0; i ≤ 2; i + +)
(P1.14) Sampi = 1;
(P1.15) End for
(P1.16) End if
(P1.17) if (Samp2 = 0 and Samp4 = 0)
(P1.18) for (int i = 0; i ≤ 2; i + +)
(P1.19) Sampi = 1;
(P1.20) End for
(P1.21) for (int j = 4; j ≤ 7; j + +)
(P1.22) if (Sampj = 1)
(P1.23) Sampj = 0;
(P1.24) Break;
(P1.25) End if
(P1.26) else Sampj = 1;
(P1.27) End for
(P1.28) End if

In Pass 4.1, steps (P1.1-P1.5) consider the changes made
if the third and fifth bits of Samp are both 1, and the fourth
bit changes from 0 to 1 during the inclusion of a compressed
bit at the fourth position. Steps (P1.2-P1.4) set all bits from
the first to the third to 0 at the same time. If the third bit is
1 and fifth bit is 0, steps (P1.6-P1.10) describe the changes in
Samp, while steps (P1.7-P1.9) set all bits from the first to the
third bit of Samp to 0. Steps (P1.11-P1.16) further describe
the alterations made if the third bit of Samp is 0 and fifth bit

VOLUME 8, 2020 45485

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

is 1. The fifth bit of Samp is set to 0 in step (P1.12), and steps
(P1.13-P1.15) set all bits from the first to the third to 1. Steps
(P1.17-P1.28) further describe the changes of Samp made if
the fifth and the third bits of Samp are both 0. Consequently,
steps (P1.18-P1.20) set all bits from the first to the third bit of
Samp to 1. If any bit of Samp between the fifth and the eighth
bit positions is 1, steps (P1.21-P1.27) set that bit to 0. Step
(P1.24) stops such changes when 1 is encountered between
the fifth to the eighth bit; otherwise, step (P1.26) sets all bits
to 1.

Pass 4.2: The Fourth Bit Is Changed From 1 to 0
(P2.1) if (Samp2 = 0 and Samp4 = 0)
(P2.2) for (int i = 0; i ≤ 2; i + +)
(P2.3) Sampi = 1;
(P2.4) End for

(P2.5) End if
(P2.6) if (Samp2 = 0 and Samp4 = 1)
(P2.7) for (int i = 0; i ≤ 2; i + +)
(P2.8) Sampi = 1;
(P2.9) End for
(P2.10) End if
(P2.11) if (Samp2 = 1 and Samp4 = 0)
(P2.12) Samp4 = 1;
(P2.13) for (int i = 0; i ≤ 2; i + +)
(P2.14) Sampi = 0;
(P2.15) End for
(P2.16) End if
(P2.17) if (Samp2 = 1 and Samp4 = 1)
(P2.18) for (int i = 0; i ≤ 2; i + +)
(P2.19) Sampi = 0;
(P2.20) End for
(P2.21) for (int j = 4; j ≤ 7; j + +)
(P2.22) if (Sampj = 0)
(P2.23) Sampj = 1;
(P2.24) Break;
(P2.25) End if
(P2.26) else Sampj = 0;
(P2.27) End for
(P2.28) End if

In Pass 4.2, steps (P2.1-P2.5) show the essential modifi-
cations made in Samp if the third and the fifth bits of Samp
are both 0, and the fourth bit of Samp is changed from 1 to
0 during integration. Initially, Steps (P2.2-P2.4) set all bits
from the first to the third to 1. Similarly, steps (P2.6-P2.10)
perform the changes of Samp if its third bit is 0 and the fifth
bit is 1. Steps (P2.7-P2.9) set all bits from the first to the
third to 1. If the third bit of Samp is 1 and the fifth bit is 0,
the adjustments of Samp are shown by steps (P2.11-P2.16).
Consequently, step (P2.12) sets the fifth bit of Samp to 1, and
steps (P2.13-P2.15) set all bits from first to the third bit of
Samp to 0. The changes of Samp shown specifically by steps
(P2.17-P2.28) are made if the third and the fifth bits of Samp
are both 1. In particular, steps (P2.18-P2.20) set all bits from

the first to the third to 0, while if any bit between the fifth and
the eighth bit is 0, steps (P2.21-P2.27) change that particular
bit to 1. Step (P2.24) prevents this conversion from continuing
further if 0 is encountered between the fifth and the eighth bit;
otherwise, step (P2.26) sets all bits from the fifth to the eighth
to 0. In contrast, the first bit of Samp is changed according
to the compressed bit during the embedding process, and no
further changes are required for other bits of Samp. At the
same time, if the forth bit or the first bit of Samp are the
same as the corresponding compressed bits, Samp does not
require any changes. As a result of repeating this overall set
of steps, the entire compressed string is embedded within the
respective string elements of array 〈Samp〉 to create the final
array 〈Stes〉 of steganographic samples from the secret input
text file.

4) FORMATION OF A STEGANOGRAPHIC AUDIO FILE
After the embedding of dual compressed bits at the first and
the fourth LSB positions of each selected sample, the stegano-
graphic array 〈Stes〉 is used as input for generating the
steganographic audio file of same format as that of the cover
file. In the beginning, each element of 〈As〉 is converted into a
decimal value using Algorithm 4.1 and stored into an integer
array 〈SteInts〉. The decimal values of 〈SteInts〉 are dissimilar
to the amplitude values extracted from original file. Hence,
all of these values of 〈SteInts〉 are divided by 10 and stored
in another double-precision array 〈SteDbs〉. The denormal-
ization operations are performed further with all elements of
〈SteDbs〉 to obtain the corresponding steganographic samples
using a predefined threshold value. Finally, the de-sampling
operation is performed with all denormalized samples to
concatenate them into a single steganographic audio file in
the same format as that of the cover file for transmittal to the
target location.

V. DECODING FOR RETRIEVAL OF THE ORIGINAL DATA
The reverse operations are performed at receiving end to
extract the original data from the received steganographic file.
This phase further comprises the following steps.

A. RETRIEVAL OF THE COMPRESSED STRING
In the foundation step of this stage, the received stegano-
graphic audio file is sampled based on the sampling theory
to extract the audio samples, and normalization is performed
using each extracted sample. The normalization process helps
extract the amplitude values depending upon a predefined
threshold value. After normalization, the newly generated
decimal amplitude values are transformed to be within the
range of −255 to 254. These normalized decimal values are
converted to integers by being multiplied by 10. Each of the
resulting integer values is further converted into the corre-
sponding 8-bit binary string. The compressed bits embedded
in the sample strings are selected using the method of Subsec-
tion 4.5.2 and Equation (4.12). Such bits are collected from
the selected steganographic sample strings and concatenated
into a single compressed string.

45486 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

B. DECOMPRESSION OF THE EXTRACTED STRING
In the beginning of the decompression operation, the charac-
ter string and the code string are separated from the extracted
compressed string using the 101-bit separator and stored into
a character array. The separator can be corrupted during
transmission or extraction of the compressed string. Hence,
if a 101-bit string comprises at least 70 discrete or contiguous
bits with the value of one (1), it is regarded as a separator.
The code array is prepared further based on the character
array. By referencing the code array, all the elements of
the compressed array are replaced with the corresponding
character strings of the character array to form the extended
string array 〈ErrCon′n〉, where n is the number of elements.

C. REGENERATION OF THE ORIGINAL FILE
In this stage, the dual rounds of error control operations
are performed with each element of array 〈ErrCon′n〉. The
decimal 0 is concatenated at the MSB position of each input
string of string array 〈ErrCon′n〉 to initiate the first round of
the error control operation. In the first round, each third bit of
the input string is regarded as a reference bit. Additionally,
an XOR operation is performed for each two consecutive
bits preceding the third reference bit. The resulting bit is
subsequently compared with the third reference bit. If it fails
to match, then the previous and the next bit sequences are
checked in a similar way to detect the corrupted bit, are
changed accordingly, and all reference bits are eliminated.
Similar operations are performed cyclically with all elements
of array 〈ErrCon′n〉, and the output strings are stored in
〈ErrCon′′n〉.

In the second round, the pattern, encrypted and XorStr
strings are separated from each element of 〈ErrCon′′n〉. A sec-
ond pattern string is generated by performing the XOR oper-
ation for XorStr and encrypted strings; a second encrypted
string is generated by performing the XOR operation for
XorStr and pattern strings. The 10-bit secret key is subse-
quently separated from both encrypted strings, and two pairs
of 8-bit keys are generated from them. The encrypted string
pair is decrypted using the corresponding dual 8-bit key pairs,
and the pattern string pair is de-patterned further. Two pairs of
8-bit strings are generated at this stage. They are subsequently
converted into characters by reference to the ASCII table.
Afterwards, such dual pairs of characters are compared, and
the best matched character is regarded as original. All of these
steps are repeated for all elements of 〈ErrCon′′n〉 to extract all
characters, which are then concatenated into a file.

VI. COMPLEXITY ANALYSIS OF THE PROPOSED
APPROACH
As per the working principle of SDES encryption algo-
rithm, it executes with a fixed size of data block. Hence,
with the increasing file size, the time and space complexi-
ties will not change with. As per the convention, the time
and space complexity of SDES Encryption and Decryption
are O(1). Similarly, the proposed pattern string generation,

incorporation, retrieval of original symbol or character from
pattern string as well as error control techniques require fixed
size of input string for execution. They are independent of
input size. Hence, the complexities of projected pattern string
generation, incorporation and error control techniques are
also O(1) accordingly. Again, the complexity of projected
data compression depends on the input size. It has three
parts called, character and code tables generation and final
compressed string. As per the Algorithm-4.3, the complexity
of character table creation in planned compression technique
is O(m2), where m is the total number of character in char-
acter table. For Case-4.1 to Case-4.5, the complexity of final
compressed code table creation is O(1), which is dependent
of fixed size of final character table. Furthermore, as per
the Equation-4.7 to Equation-4.11, the complexity of final
compressed string generation is O(n), where n is the total
number of symbols or characters in the input file. As the pro-
posed technique is developed for very large input files, hence,
n � m and the cumulative complexity of the proposed com-
pression becomes O(n). The complexity of decompression
technique isO(n). Conclusively, the projected steganography
has four different stages such as binarization of cover file,
generation of reference array for selecting sample, embed-
ding a compressed string into an audio sample, and formation
of stego audio file. Among the four stages, the embedding of
compressed string into audio file does not rely on input file
size. Therefore, the complexity of it is O(1). The other three
stages are linear and dependent of input file size; specifically,
number of compressed bits. Thereupon, the complexities of
these three stages areO(n) accordingly. It follows that the uni-
fied complexities of the outlined steganography technique is
O(n). In the same manner the complexity of compressed data
retrieval from the stego file is alsoO(n). Hereinafter, the final
collective complexities of the proposed integrated technique
will be O(n) in both encoding and decoding junctures.

VII. LAYOUT FOR PERFORMING EXPERIMENTS
This section primarily includes the description of the experi-
mental setup for implementing the proposed integrated tech-
nique and its distinct parts in a diverse environment. It further
explains data preparation for testing various aspects of perfor-
mance of the proposed technique.

A. EXPERIMENTAL SETUP
The proposed integrated technique was implemented to be
executed on a CPU and a GPU to examine various aspects of
its performance in both environments. During implementa-
tion, the PC being used was configured with 32 GB of DDR3
RAM and an Intel R© CoreTM i8 CPU. A custom CPU-based
implementation was developed using Java (specifically, JDK
7.0) as the programming language due to its parallel process-
ing feature (Java threads). The GPU-based implementation
uses an NVIDIA GTX 570 GPU as the hardware and CUDA
8.0 as the programming language for utilizing the GPU’s
massive parallel processing capabilities. The open-source
CUDA 8.0 was downloaded from NVIDIA’s website, and

VOLUME 8, 2020 45487

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

JDK 7.0 was downloaded from Oracle’s website. Both CPU
and GPU implementations used UBUNTU 16.04 LTS as
the operating system. The High Performance Computing
Centre (HPC3) of Universiti Teknologi PETRONAS (Perak,
Malaysia) provided the cloud storage space to store input
and output files. Local area and wireless networks were used
during the experimental large data transfer.

B. DATA PREPARATION
Performance measures of distinct parts related to the pro-
posed integrated technique are evaluated using various types
and sizes of input files, such as files of the Calgary Corpus,
text files, and WAV sound files. Text files of various sizes
are generated by a Java-based program designed to generate
and merge such files. The sizes of input text files vary up to
approximately 1 TB during the experiments. Due to several
resource limitations, a 1 TB input text file is regarded as
a large data file during performance analyses. The WAV
files and Calgary Corpus files are downloaded from distinct
benchmark databases. The large cover files (of the WAV
format) used during the experiment are prepared by merging
distinct small WAV audio files using the ‘‘Audio Convert and
Merge Free’’ software. The names of all important software
and input files used in the experiments as well as their sources
are further tabulated in Table 8 in the Appendix.

VIII. RESULT ANALYSES
The performance of the proposed integrated technique and its
various parts is evaluated in this section by computing their
efficiency in minimizing the basic security issues related to
confidentiality and integrity in big data transmission. This
section is divided into three parts according to the basic
objectives of this study, and they are discussed in detail in
the following subsections.

A. ABILITY TO PROTECT DATA CONFIDENTIALITY
According to [37], [47], [48], the confidentiality level of
our integrated technique can be measured by determining its
capacity to retain perceptual similarities between the original
and steganographic files and resist unauthorized tampering of
illicit third parties.

1) PERCEPTUAL SIMILARITY
Following the approach of other studies, perceptual differ-
ence can be assessed by measuring the signal-to-noise ratio
(SNR) and the amplitude difference (AD) between any origi-
nal and steganographic samples. SNR and AD are defined in
detail as follows.

a: SIGNAL-TO-NOISE RATIO (SNR)
The SNR is the amplitude or length of the output analogue
or digital data sample relative to the background noise [11],
[29], [34]. It is used to measure the difference in strength
between the output and input samples. In audio steganog-
raphy, it is used to calculate a measure of the level

FIGURE 3. SNRdB measures of various steganographic methods.

of confidentiality. It can be expressed in decibels (dB) as

SNRdB = 10× log10
∑

n
x2(n)/

∑
n
(x2(n)− y2(n)) (7.1)

In Equation (7.1), x(n) denotes the mean amplitude of the
cover file, whereas y(n) represents the mean amplitude of the
steganographic sample, and n is any finite number. Accord-
ingly, if SNRmeasured in dB is high, the perceptual difference
between the cover file and the steganographic sample will be
very insignificant, and vice versa. According to [16], [36],
[47], various steganographic method, such as the existing LSB
method, parity coding, phase coding, spread spectrum and
echo hiding, can be used in big data applications. The SNR
measures of the above-mentioned techniques are calculated
using Equation (7.1) and plotted in Figure 3.
The steganographic file size has been varied from 100 GB

to 1 TB in calculating SNRdB. Moreover, Figure 3 shows that
the proposed technique resulted in a greater SNR than did
other existing methods in all cases. ThSNR values of our said
technique vary from 60.79 dB to 60.91 dB. Figure 3 further
shows that parity coding and the existing LSB method offer
lower SNR values. As the proposed technique results in a
higher SNR than those of the other existing methods, it offers
a lower perceptual difference and higher confidentiality.

b: AMPLITUDE DIFFERENCE (AD)
The amplitude of any audio sample determines the power
of the sound it represents. If a sound wave of frequency F
(cycles/sec) travels D meters, the amplitude (A) of a sample
is

A =
(
D
F

)
meter

cycles/second
(7.2)

The perceptual difference between the cover and stegano-
graphic audio files can be measured by considering their
amplitude difference (AD) [36], [37], [49]. AD can be formu-
lated as

AD = |Stego Amplitude-Actual Amplitude| (7.3)

According to the definition, AD represents the audible dif-
ference between the input and output samples and is used to
measure the quality of any steganographic method. The AD
values of the planned technique are shown in Figure 4.

45488 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

FIGURE 4. Amplitude differences (ADs) between original and
steganographic audio samples.

In Figure 4, the peak amplitude values of steganographic
samples and the corresponding original samples are almost
identical. This signifies that there are minor perceptual dif-
ferences between the original and steganographic samples.
Hence, Figure 3 and Figure 4 show that the proposed stegano-
graphic technique offers high data confidentiality.

2) UNAUTHORISED INTERFERENCE
According to the literature, the strength of any security tech-
nique can be determined by measuring its ability to resist
attacks. The avalanche effect (AE) and entropy values are
important measures of such ability [50], [51]. This subsection
defines both of them as follows.

a: AVALANCHE EFFECT
A corruption of any single bit or multiple bits dur-
ing the encryption, decryption or transmission processes
may cause very large changes in the output string. As a
result, it may be impossible to decrypt the encrypted
data properly. In cryptography, the avalanche effect (AE)
measure calculates how a slight change during encryp-
tion can affect the output string [4]. AE can be calculated
as

AE =
(
Total flipped bits in ciphertext

Total bits in ciphertext

)
× 100 (7.4)

According to the definition, AE is used to measure the effi-
ciency of any encryption technique. Hence, if a technique is
characterized by a high AE, it is efficient in offering higher
data confidentiality and integrity.

b: ENTROPY
According to information theory, entropy is used to measure
the uncertainty of information associated with a random vari-
able. As a result, entropy is the opposite of the amount of
structural data present in any message [32][50-51]. Accord-
ing to Shannon’s theory, the entropy (H(S)) of any source (S)
is

H (S) =
2n−1∑
i=0

(
P(Si)× log2

1
P(Si)

)
(7.5)

TABLE 3. Values of AE and entropy of diverse cryptographic methods (s).

Here, P(Si) represents the probability of any character Si,
and n is the total number of characters. According to [31],
[32], [37], [47], [50], AES, DES, 3-DES, Blowfish and RSA
offer strong protection against diverse attacks. The efficiency
of various techniques used to increase AE and entropy is
calculated using Equations (7.4) and (7.5) and is shown
in Table 3.

Table 3 shows that the proposed technique outperforms the
other existing methods according to AE and entropy. Hence,
the table shows that the proposed technique offers a better
potential for protecting confidential data than do existing
methods. Figure 3, Figure 4 and Table 3 therefore support
our first objective.

B. ABILITY TO REDUCE PROCESSING OVERHEAD
A method’s ability to reduce the file size can be measured by
its compression ability in terms of producing a lower number
of bits per code (BPC) [51], [52]. According to [13], the time
efficiency of any process can be measured by calculating the
throughput.

1) BITS PER CODE (BPC)
In compression methods based on variable-length coding
(VLC), the code length is determined by the frequency of each
element. Hence, in such methods each code’s length is varied,
whereas it remains the same in fixed-length coding (FLC).
The average number of bits required to define a compressed
code is called bits per code (BPC) [52]–[54]. BPC can be
calculated as

BPC =
(

Compressed File Size
Uncompressed File Size

× 8
)

(7.6)

By convention, if a compression method results in a high
BPC, it is said to be efficient, and vice versa. According to
the literature, arithmetic coding, Huffman, BWT, LZSS BWT,
and dictionary-based methods are some of the well-known
VLCs [51]–[54], whereas ASCII coding, EBCDIC, and run
length coding are some well-known FLCs [11], [17], [18].
The values of BPC of various techniques are calcu-
lated using Equation (7.6) and plotted in Figure 5 and
Figure 6.

VOLUME 8, 2020 45489

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

FIGURE 5. Comparison of the proposed technique and various VLCs with
respect to BPC.

FIGURE 6. Comparison of the proposed technique and various FLCs with
respect to BPC.

Figure 5 shows that the proposed technique offers the
smallest BPC in all cases. Hence, its compression ability is
better than that of other existing VLCs. Figure 6 further com-
pares the proposed technique with existing FLCs according
to the ability to produce lower BPC values.
Figure 6 shows that the existing FLC compressionmethods

produce BPCs inferior to those of the proposed method in
all cases. This finding thus supports our second research
objective.

2) THROUGHPUT (TP)
In a computing system, any specific task should be completed
within a certain timeframe. The efficiency of any data trans-
mission can also be measured using throughput. According

TABLE 4. Values of TP of various cryptographic techniques.

TABLE 5. Values of TP of various compression techniques.

TABLE 6. Values of TP of various error control techniques.

to [13], [21], TP represents the amount of work performed
within a given time. TP can be measured as

TP =
(

Output file size
Total execution time to hatch output

)
(7.7)

According to [16], [32], the required time is inversely
proportional to processing speed. The TP measures related
to all individual parts of the proposed technique and other
existing methods are calculated using Equation (7.7) and
plotted in Tables 4-7.

For execution on a CPU, Tables 4-7 show that each of
the individual parts of the proposed integrated technique
offers a higher execution speed in terms of offering a higher
throughput. Table 6 shows that parity checking offered a

45490 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

TABLE 7. Values of TP of various steganographic methods.

FIGURE 7. Comparison of TP of the proposed technique and several
other security combinations (during execution on a CPU).

higher processing speed in terms of TP. However, it failed
to detect more than one error bit and to identify the error’s
location. Considering a CPU implementation, the throughput
of the proposed integrated technique and some state-of-the-
art security combinations available in the literature are further
compared in Figure 7.
Figure 7 clearly shows the superiority of the proposed inte-

grated technique with regard to offering a higher throughput
than that of other security combinations for executions on a
CPU. The execution speed in the GPU environment is further
calculated using Equation (7.7), and the speed differences
between various methods in different conditions are plotted
in Figure 8.
Figure 8 further shows that the execution speed of the

GPU implementation is much higher than that of the CPU

FIGURE 8. Values of TP observed during execution on CPU and GPU.

implementation. Hence, Tables 4-7 and Figure 7 prove that
the individual parts as well as the integrated form of the pro-
posed technique outperform other related individual security
techniques or security combinations in terms of the execution
speed. Thus, based on Tables 4-7, Figure 7 and Figure 8,
we can claim that the proposed integrated technique fulfils
our third research objective.

C. ABILITY TO OFFER INTEGRITY
Data integrity of any transmission system depends on its abil-
ity to protect from data loss or corruption. According to [11],
[24], [32], the metrics required for measuring the integrity
level are the uncorrectable error rate and the percentage of
information loss (IL). Both metrics of integrity are further
described in the following subsections.

1) UNCORRECTABLE ERROR RATE (UER)
The uncorrectable error rate (UER) is used to calculate
the total number of uncorrected errors that exist in a data
file after an error correction algorithm has been applied [16],
[32], [55]. The UER metric can be calculated as

UER =
Total errors− Corrected errors

Total Errors
× 100 (7.8)

By convention, an error control technique with a high
percentage of UER is regarded as less efficient, and vice
versa. Values of UER of the proposed technique and other
existing methods are calculated using Equation (7.8) and
shown in Figure 9.
Figure 9 shows that UER obtained after applying the pro-

posed integrated technique is less than that of other methods.
Hence, the proposed integrated technique is more efficient in
reducing data loss and enhancing data integrity in big data
transmission.

2) PERCENTAGE OF INFORMATION LOSS
According to [24], [42], [56], a part or the entirety of data
can be modified or corrupted during transmission by noise
or various unwanted causes; this phenomenon is known as

VOLUME 8, 2020 45491

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

FIGURE 9. Values of UER of various error control techniques.

FIGURE 10. Percentage of information loss observed after the
application of various security techniques.

information loss (IL). The ability to offer integrity can be
measured by calculating IL as

IL =
Actual file size− Restored file size

Actual file size
× 100 (7.9)

Equation (7.9) shows that the percentage of IL is
the amount of the difference between the original and
retrieved file sizes. The percentage of IL measured for the
planned and other techniques during data retrieval is shown
in Figure 10.

Figure 10 shows that all security techniques, including
the proposed one, offer such a small percentage of informa-
tion loss that all techniques are comparable to each other.
According to Figure 10, the proposed integrated technique
results in IL being at least 0.0009% and at most 0.004% of
the input size. Under the same conditions, Blowfish produced
the maximum percentage of IL among the existing methods.
Hence, the proposed technique has been proven to be useful in
protecting the transmission system in terms of having a lower
percentage of information loss. So, Figure 9 and Figure 10

show that the proposed integrated technique is capable of
enhancing data integrity, which fulfils the final objective.

IX. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH
Present work shows the inability of the contemporary security
techniques in offering an integrated solution for resolving
confidentiality, integrity and data loss issues in big data trans-
mission. Hence, the current study proposes a novel integrated
technique to address the above issues of transporting big
files in combinatorial way. The proposed technique includes
simplified data encryption standard (SDES) and a new and
less complex pattern generation technique to enhance the
confidentiality of data and to offer a backup in case of acci-
dental data loss. It adopts a new pattern generation table that
distinguishes it from the other methods. Proposed approach
further combines a novel dual round error control technique to
combat various transmission errors. This technique removes
the limitations of the existing error control techniques by
accommodating any number of error bits. A distinct lossless
compression technique is proposed in the current work for
reducing data size. Moreover, this technique can resolve the
current issues related to both lossy and lossless data compres-
sion methods. Usually, a high compression efficiency reduces
data confidentiality; hence, this study introduces advanced
LSB-based audio steganography as an integral part. It uses
a new sample selection technique during data hiding, which
resolves the current limitations of audio steganography. With
the use of massive parallel processing, the implementation of
the entire method on a GPU enhances the execution speed
28-fold compared to that on a CPU.

The result analysis shows that, compared to other existing
steganographic techniques, the proposed integrated technique
provides greater SNRs, avalanche effects, and entropy values
and lower amplitude differences between the steganographic
file and the cover audio file. The proposed integrated tech-
nique has been comparedwith several exiting audio steganog-
raphy techniques in terms of complexity and the ability to
resist various security attacks. Additionally, the ability to
offer data integrity has been measured by estimating the
percentage of information loss after the extraction of original
information from the received steganographic audio files, and
the percentage of uncorrectable error rate was calculated by
using the extracted data’s size. The results show that the
proposed integrated technique produced lower percentage of
information loss and uncorrectable error rate than did the
existing error control techniques. Hence, the error control
part of the proposed integrated technique outperformed in
terms of integrity by resisting various transmission errors
and data loss more effectively than did the other existing
techniques. Moreover, the efficiency of the compression part
of the proposed integrated technique has been estimated by
computing the number of bits per code. The compression
part of the proposed integrated technique offers a greater
space efficiency than do the other existing approaches. The
results show that the proposed integrated technique and its

45492 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

TABLE 8. Sources of downloaded files and software.

individual parts are more time-efficient in a CPU implemen-
tation in terms of throughput (2.71 to 2.76 MB/s) than the
corresponding existing techniques. The analysis of results
additionally shows that use of a GPU further enhances the
throughput (76.25 to 79.14 MB/s) of the proposed integrated
technique considerably by utilizing the power of immense
parallel processing, and reduction of hardware and software
latencies.

The experimental results show that despite the efficiency
of the proposed integrated technique, it neither suppresses
transmission errors absolutely nor protects against com-
plete data loss. Additionally, the experimental results show
that it produced a very low percentage of information loss
(0.004-0.0009%), given the input file size. Furthermore,
it displayed inefficiency in resisting all types of security
attacks and data errors, as it produced up to 71% of avalanche
effect when subject to various security attacks and the uncor-
rectable error rate of at least 0.00094%. The following points
will be investigated in our forthcoming research works:

With the further advancement of the projected integrated
technique the percentage of data loss can be sensibly min-
imized, and the transmission error can be controlled more
accurately.

The execution time can further be reduced by employing
parallel approaches and high-quality GPUs, which will be
investigated in our future works.

The user and packets authentication will be added in our
future research works to further improve the security of the
current proposal.

The space complexity can also be reduced with the
enhancement of projected data compression, which will be
addressed in our subsequent works.

APPENDIX
See Table 8.

ACKNOWLEDGMENT
The authors would like to express their special gratitude to
NVIDIA for supporting them in their research by offering

the integrated GPU boards for testing various aspects of
performance of the proposed integrated technique, important
research directions and advice.

REFERENCES
[1] J. Whitworth and S. Suthaharan, ‘‘Security problems and challenges

in a machine learning-based hybrid big data processing network sys-
tems,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 4, pp. 82–85,
Apr. 2014.

[2] C.-C. Lee, H.-H. Chen, H.-T. Liu, G.-W. Chen, and C.-S. Tsai, ‘‘A new
visual cryptography with multi-level encoding,’’ J. Vis. Lang. Comput.,
vol. 25, no. 3, pp. 243–250, Jun. 2014.

[3] C. Li, D. Lin, B. Feng, J. Lü, and F. Hao, ‘‘Cryptanalysis of a chaotic image
encryption algorithm based on information entropy,’’ IEEE Access, vol. 6,
pp. 75834–75842, 2018.

[4] O. Mujahid, Z. Ullah, H. Mahmood, and A. Hafeez, ‘‘Fast pattern recog-
nition through an LBP driven CAM on FPGA,’’ IEEE Access, vol. 6,
pp. 39525–39531, 2018.

[5] A. K. Shukla, A. K. Shukla, B. Singh, and A. Kumar, ‘‘A secure and
high-capacity data-hiding method using compression, encryption and opti-
mized pixel value differencing,’’ IEEE Access, vol. 6, pp. 51130–51139,
2018.

[6] A. Majumder and S. Changder, ‘‘A novel approach for text steganography:
Generating text summary using reflection symmetry,’’ Procedia Technol.,
vol. 10, pp. 112–120, Jan. 2013.

[7] G. Blinowski, P. Januszewski, G. Stepniak, and K. Szczypiorski,
‘‘LuxSteg: First practical implementation of steganography inVLC,’’ IEEE
Access, vol. 6, pp. 74366–74375, 2018.

[8] N. Meghanathan and L. Nayak, ‘‘A review of the audio and video steganal-
ysis algorithms,’’ in Proc. 48th Annu. Southeast Regional Conf. (ACM SE),
2010, pp. 1–5.

[9] B. Kwon,M. Gong, and S. Lee, ‘‘Novel error detection algorithm for LZSS
compressed data,’’ IEEE Access, vol. 5, pp. 8940–8947, 2017.

[10] X. Liu, S. Wu, X. Xu, J. Jiao, and Q. Zhang, ‘‘Improved polar SCL
decoding by exploiting the error correction capability of CRC,’’ IEEE
Access, vol. 7, pp. 7032–7040, 2019.

[11] L. Guo, D. Zhou, J. Zhou, S. Kimura, and S. Goto, ‘‘Lossy compres-
sion for embedded computer vision systems,’’ IEEE Access, vol. 6,
pp. 39385–39397, 2018.

[12] S.-H. Kim, N.-U. Kim, and T.-M. Chung, ‘‘Attribute relationship evalua-
tion methodology for big data security,’’ in Proc. Int. Conf. IT Converg.
Secur. (ICITCS), Dec. 2013, pp. 1–4.

[13] S. Bajaj and R. Sion, ‘‘TrustedDB: A trusted hardware-based database with
privacy and data confidentiality,’’ IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 752–765, Mar. 2014.

[14] G. Russello, C. Dong, N. Dulay, M. Chaudron, and M. van Steen,
‘‘Providing data confidentiality against malicious hosts in shared
data spaces,’’ Sci. Comput. Program., vol. 75, no. 6, pp. 426–439,
Jun. 2010.

[15] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, ‘‘QED: Quick error detection
tests for effective post-silicon validation,’’ in Proc. IEEE Int. Test Conf.,
Nov. 2010, pp. 1–10.

[16] J. Kang, D. Nyang, and K. Lee, ‘‘Two-factor face authentication using
matrix permutation transformation and a user password,’’ Inf. Sci., vol. 269,
pp. 1–20, Jun. 2014.

[17] X. Xie and Q. Qin, ‘‘Fast lossless compression of seismic floating-
point data,’’ in Proc. Int. Forum Inf. Technol. Appl., vol. 1, May 2009,
pp. 235–238.

[18] J. Shukla, M. Alwani, and A. K. Tiwari, ‘‘A survey on lossless image
compression methods,’’ in Proc. 2nd Int. Conf. Comput. Eng. Technol.,
vol. 6, 2010, pp. V6-136–V6-141.

[19] A. S. Elmaghraby andM.M. Losavio, ‘‘Cyber security challenges in smart
cities: Safety, security and privacy,’’ J. Adv. Res., vol. 5, no. 4, pp. 491–497,
Jul. 2014.

[20] C. Tankard, ‘‘Big data security,’’ Netw. Secur., vol. 2012, no. 7, pp. 5–8,
2012.

[21] C.-H. Liu, J.-S. Ji, and Z.-L. Liu, ‘‘Implementation of DES encryp-
tion arithmetic based on FPGA,’’ AASRI Procedia, vol. 5, pp. 209–213,
Jan. 2013.

VOLUME 8, 2020 45493

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

[22] M. A. Alomari and K. Samsudin, ‘‘A framework for GPU-accelerated
AES-XTS encryption in mobile devices,’’ in Proc. IEEE Region Conf.
(TENCON), Nov. 2011, pp. 144–148.

[23] J. Ben-Othman and B. Yahya, ‘‘Energy efficient and QoS based rout-
ing protocol for wireless sensor networks,’’ J. Parallel Distrib. Comput.,
vol. 70, no. 8, pp. 849–857, Aug. 2010.

[24] X. Wang, P. Golle, M. Jakobsson, and A. Tsow, ‘‘Deterring voluntary trace
disclosure in re-encryption mix-networks,’’ ACM Trans. Inf. Syst. Secur.,
vol. 13, no. 2, pp. 1–24, Feb. 2010.

[25] W. Bian, Y. Luo, D. Xu, and Q. Yu, ‘‘Fingerprint ridge orientation field
reconstruction using the best quadratic approximation by orthogonal poly-
nomials in two discrete variables,’’ Pattern Recognit., vol. 47, no. 10,
pp. 3304–3313, Oct. 2014.

[26] F. Benhammadi and K. B. Bey, ‘‘Password hardened fuzzy vault for
fingerprint authentication system,’’ Image Vis. Comput., vol. 32, no. 8,
pp. 487–496, Aug. 2014.

[27] K.-K.-R. Choo, J. Nam, and D. Won, ‘‘A mechanical approach to derive
identity-based protocols from Diffie–Hellman-based protocols,’’ Inf. Sci.,
vol. 281, pp. 182–200, Oct. 2014.

[28] M. P. Singh and P. Kumar, ‘‘An efficient forward error correction scheme
for wireless sensor network,’’ Procedia Technol., vol. 4, pp. 737–742,
Jan. 2012.

[29] Z. Zhao, G. Kim, D. Y. Suh, and J. Ostermann, ‘‘Comparison between
multiple description coding and forward error correction for scalable video
coding with different burst lengths,’’ in Proc. IEEE 14th Int. Workshop
Multimedia Signal Process. (MMSP), Sep. 2012, pp. 37–42.

[30] V. P. Semerenko, ‘‘Burst-error correction for cyclic codes,’’ in Proc. IEEE
EUROCON, May 2009, pp. 1650–1655.

[31] J. Korhonen and P. Frossard, ‘‘Flexible forward error correction codes
with application to partial media data recovery,’’ Signal Process., Image
Commun., vol. 24, no. 3, pp. 229–242, Mar. 2009.

[32] L. M. Varlakshmi, G. F. Sudha, and G. Jaikishan, ‘‘An efficient scal-
able video encryption scheme for real time applications,’’ Procedia Eng.,
vol. 30, pp. 852–860, Jan. 2012.

[33] S. Bhattacharjee, L. B. A. Rahim, and I. B. A. Aziz, ‘‘A secure transmission
scheme for textual data with least overhead,’’ in Proc. 20th Nat. Conf.
Commun. (NCC), Feb. 2014, pp. 1–6.

[34] J. Strom and P.Wennersten, ‘‘Lossless compression of already compressed
textures,’’ in Proc. ACM SIGGRAPH Symp. High Perform. Graph. (HPG),
2011, pp. 177–182.

[35] L. Fan, W. Tiejun, and W. Liuyi, ‘‘Research and implementation on model
for high availability of enterprise information system,’’ IERI Procedia,
vol. 3, pp. 181–185, Jan. 2012.

[36] R. Das and T. Tuithung, ‘‘A novel steganography method for image based
on Huffman encoding,’’ in Proc. 3rd Nat. Conf. Emerg. Trends Appl.
Comput. Sci., Mar. 2012, pp. 14–18.

[37] P. Marwaha and P. Marwaha, ‘‘Visual cryptographic steganography in
images,’’ in Proc. 2nd Int. Conf. Comput., Commun. Netw. Technol.,
Jul. 2010, pp. 1–6.

[38] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and
M. Imran, ‘‘Exact string matching algorithms: Survey, issues, and future
research directions,’’ IEEE Access, vol. 7, pp. 69614–69637, 2019.

[39] M. Lastra, J. Carabaño, P. D. Gutiérrez, J. M. Benítez, and F. Herrera, ‘‘Fast
fingerprint identification using GPUs,’’ Inf. Sci., vol. 301, pp. 195–214,
Apr. 2015.

[40] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, ‘‘Loca-
tionSpark: A distributed in-memory data management system for big
spatial data,’’ Proc. VLDB Endowment, vol. 9, no. 13, pp. 1565–1568,
Sep. 2016.

[41] G. Zhou, X. Zhang, Y. Lang, R. Bo, Y. Jia, J. Lin, and Y. Feng, ‘‘A novel
GPU-accelerated strategy for contingency screening of static security anal-
ysis,’’ Int. J. Elect. Power Energy Syst., vol. 83, pp. 33–39, Dec. 2016.

[42] C. Yang, X. Zhang, C. Zhong, C. Liu, J. Pei, K. Ramamohanarao, and
J. Chen, ‘‘A spatiotemporal compression based approach for efficient
big data processing on cloud,’’ J. Comput. Syst. Sci., vol. 80, no. 8,
pp. 1563–1583, Dec. 2014.

[43] K. Shirahata, H. Sato, and S. Matsuoka, ‘‘Out-of-core GPU memory
management forMapReduce-based large-scale graph processing,’’ inProc.
IEEE Int. Conf. Cluster Comput. (CLUSTER), Sep. 2014, pp. 221–229.

[44] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, ‘‘GFlink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big
data,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1275–1288,
Jun. 2018.

[45] P. Reviriego, M. F. Flanagan, S.-F. Liu, and J. A.Maestro, ‘‘Error-detection
enhanced decoding of difference set codes formemory applications,’’ IEEE
Trans. Device Mater. Rel., vol. 12, no. 2, pp. 335–340, Jun. 2012.

[46] S. Puangpronpitag, P. Kasabai, and D. Pansa, ‘‘An enhancement of the SDP
security description (SDES) for key protection,’’ in Proc. 9th Int. Conf.
Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., May 2012,
pp. 1–4.

[47] K. Qazanfari and R. Safabakhsh, ‘‘A new steganography method which
preserves histogram: Generalization of LSB++,’’ Inf. Sci., vol. 277,
pp. 90–101, Sep. 2014.

[48] L. B. A. Rahim, S. Bhattacharjee, and I. B. Aziz, ‘‘An audio steganography
technique to maximize data hiding capacity along with least modification
of host,’’ in Proc. 1st Int. Conf. Adv. Data Inf. Eng. (DaEng). Singapore:
Springer, 2014, pp. 277–289.

[49] E. Satir and H. Isik, ‘‘A compression-based text steganography method,’’
J. Syst. Softw., vol. 85, no. 10, pp. 2385–2394, Oct. 2012.

[50] P. E. D. Pinto, F. Protti, and J. L. Szwarcfiter, ‘‘Exact and approxi-
mation algorithms for error-detecting even codes,’’ Theor. Comput. Sci.,
vols. 440–441, pp. 60–72, Jul. 2012.

[51] Y. Liang and Y. Li, ‘‘An efficient and robust data compression algo-
rithm in wireless sensor networks,’’ IEEE Commun. Lett., vol. 18, no. 3,
pp. 439–442, Mar. 2014.

[52] V. Sathish, M. J. Schulte, and N. S. Kim, ‘‘Lossless and lossy memory I/O
link compression for improving performance of GPGPU workloads,’’ in
Proc. 21st Int. Conf. Parallel Archit. Compilation Techn. (PACT), 2012,
pp. 325–334.

[53] W. Zhan and A. El-Maleh, ‘‘A new scheme of test data compression
based on equal-run-length coding (ERLC),’’ Integration, vol. 45, no. 1,
pp. 91–98, Jan. 2012.

[54] S. T. Klein and D. Shapira, ‘‘Practical fixed length Lempel–Ziv coding,’’
Discrete Appl. Math., vol. 163, pp. 326–333, Jan. 2014.

[55] K.Wang, X. Ding, R. Lee, S. Kato, and X. Zhang, ‘‘GDM: Device memory
management for GPGPU computing,’’ ACM SIGMETRICS Perform. Eval.
Rev., vol. 42, no. 1, pp. 533–545, Jun. 2014.

[56] Y. Yuan, M. F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang,
‘‘Spark-GPU: An accelerated in-memory data processing engine on
clusters,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016,
pp. 273–283.

SHILADITYA BHATTACHARJEE received the
B.Tech. degree in information technology from
the Techno India University, India, and the
M.Tech. degree in information technology from
Jadavpur University, India, and the Ph.D. degree
from Universiti Teknologi PETRONAS (UTP),
Malaysia, with the development of an inte-
grated technique for achieving confidentiality,
integrity, and robustness of big data transmission.
He is currently a Postdoctoral Researcher at the

High-Performance Cloud Computing Centre, UTP. His current research
interests are in data security, network security, big data security applications,
the IoT, clustering, and cloud security. His current research is focused,
in particular, on the IoT-based road safety and cloud migration. Some of the
projects he is presently working on are: 1) a method for validating software
architecture for efficient softwaremodernization of legacy system; 2) seismic
big data handling with Hadoop; and 3) various security aspects of big data
processing using GPU. Apart from these, he is also involved in research
projects related to software engineering, big data analytics, detecting faults
in turbines and predicting missing data, and mission override control systems
based on video processing.

45494 VOLUME 8, 2020

S. Bhattacharjee et al.: Unified GPU Technique to Boost Confidentiality, Integrity and Trim Data Loss in Big Data Transmission

LUKMAN BIN AB. RAHIM received the
Ph.D. degree from Lancaster University, with
a project verifying model transformations using
model checking. He is currently a Core Researcher
at the High-Performance Cloud Computing Centre
and a Senior Lecturer in computer and informa-
tion sciences at Universiti Teknologi PETRONAS
(UTP). His current research interests are in for-
mal verification, software and system modelling,
and software architecture. His current research is

focused, in particular, on adopting model-driven engineering and formal
verification in cloud computing. Some of the projects he is presently working
on are: 1) using architecture-driven modernization and model-driven engi-
neering in deploying engineering simulation software as a cloud service;
2) formal verification of cloud security mechanisms using model checking;
and 3) domain-specific modeling languages for educational games. Apart
from these projects, he is also involved in research projects related to system
engineering and big data, i.e., real-time cloud platforms, the correlation
between scheduling and job workload and energy consumption, and secure
data transmission for big data applications.

JUNZO WATADA (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees in electrical
engineering from Osaka City University, Osaka,
Japan, and the Ph.D. degree from Osaka Prefec-
ture University, Sakai, Japan. Until March 2016,
he was a Professor of management engineering,
knowledge engineering, and soft computing at
the Graduate School of Information, Production,
and Systems, Waseda University, Kitakyushu,
Japan. He is currently a Professor with Universiti

Teknologi PETRONAS, a Research Professor at the Research Institute of
Quantitative Economics, Zhejiang Gaongshang University, China, and a
Professor Emeritus at Waseda University. He is the President of the Forum
for Interdisciplinary Mathematics, India, from 2019 to 2021, after serving
as the Vice President for six years, and the President of the International
Society of Management Engineers. He received the Henri Coanda Medal
Award from Inventico in Romania, in 2002, and the GH Asachi Medal
from the Universitatea Tehnica GH Asachi, IASI, Romania, in 2006. He is
the Principal Editor, Co-Chief Editor, and an Associate Editor of various
international journals, including the ICIC Express Letters, the Information
Sciences, the Journal of Systems and Control Engineering (Proc. IMechE),
the International Journal of Innovative Computing, the Information and
Control, and the Fuzzy Optimization and Decision Making.

ARUNAVA ROY received the Ph.D. degree from
the Department of Applied Mathematics, Indian
Institute of Technology Dhanbad, in August 2014.
He worked as a Postdoctoral Researcher at the
Department of Computer Science, The University
of Memphis, Memphis, TN, USA. He has also
worked as a Research Fellow at the Department
of Industrial and Systems Engineering, National
University of Singapore (NUS), and the Corporate
Laboratory, Singapore University of Technology

and Design (SUTD). He is currently working as a Research Fellow of the
Computer and Information Sciences (CIS), Universiti Technologi Petronas
(UTP), Malaysia, and a Research Assistant Professor (on one-year leave)
with the Department of Computer Science and Engineering, SRM Institute
of Science and Technology, India. He is also a part of the Shale Gas Research
Group (SGRG), UTP. He has published a number of articles in various
reputed journals. He has twoU.S. utility patents onmultifactor authentication
(US9912657B2) and insider threat mitigation (US15/949,111). He has also
authored a book Advances in User Authentication. His current research
interests are machine learning, deep learning, statistical modeling, and infor-
mation security.

VOLUME 8, 2020 45495

