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ABSTRACT Fall detection is a hot research issue in intelligent video surveillance. Falls can generate physical
and psychological damage, especially for the elderly. Different from most conventional vision-based fall
detection methods typically relying on hand-crafted features, fall detection methods based on deep learning
techniques can automatically learn features and hence have got widespread concern recently. However,
as deep networks are increasingly applied to fall detection, the problem of information loss in the deep
networks can not be ignored, because this will ultimately affect the performance of fall detection. To solve
the above problem, we propose a vision-based fall detection method using multi-task hourglass convolutional
auto-encoder (HCAE). In this method, hourglass residual units (HRUs) are introduced into the encoder of
the HCAE to extract multiscale features by expanding receptive fields of neurons. A multi-task mechanism
is presented to enhance the feature representativeness of the network by completing an auxiliary task of
frame reconstruction while realizing the main task of fall detection. Experimental results demonstrate that,
the proposed method can effectively achieve accurate fall detection with the shallow-layer network, and
outperforms several state-of-the-art methods.

INDEX TERMS Fall detection, deep learning, hourglass convolutional auto-encoder (HCAE), hourglass

residual unit, multi-task mechanism.

I. INTRODUCTION

Fall is a sudden, involuntary, unintentional postural change
which may endanger people’s lives, especially for elderly
people. Due to degradation of body functions, the elderly
have a greater possibility of falls in their daily lives.
Statistics have shown that one-third of the elderly over the
age of 65 fall every year [1]. Nowadays, fall is becoming one
of the most terrible accidents threatening the health of the
elderly. Specifically, falls may lead to injuries such as sprains,
bruises and lacerations, and more seriously, may even result
in disabilities or deaths. It has been reported that, falls cause
over 37.3 million severe injuries and 646,000 deaths yearly,
and hence have become a global public health issue [2]. It has
become very important to develop intelligent surveillance
systems, especially vision-based systems, which can auto-
matically monitor and detect falls [3].
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Plenty of research has been done to develop systems and
methods for highly-accurate automatic fall detection. The
intelligent systems and methods that can be widely pro-
moted should have good user-friendliness [4], such as easy
to use, non-invasive, minimally restricting the user’s nor-
mal activities, avoiding high-frequency radiation especially
for people who are wearing pacemakers and sensitive to
electromagnetic interference, efc.. Therefore, in comparison
to wearable-sensor-based and ambient-sensor-based tech-
nologies, vision-based fall detection technology will have
good universality and feasibility in the future promotion [3],
because of its advantages in rich monitoring information,
non-contact monitoring manner, and zero electromagnetic
interference monitoring environment.

Different from traditional vision-based fall detection meth-
ods relying on hand-crafted features, vision-based fall detec-
tion methods using deep learning networks can automatically
extract features for detection after learning and analyzing a
mass of data, and hence have recently received widespread
attention [5], [6]. Deep networks have been increasingly
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applied to fall detection [7]-[11]. However, information may
be lost after multiple layers of a deep network, which will lead
to representativeness reduction of the feature in the network
and further affect the accuracy of fall detection.

To solve the above problem, in this paper, we propose
a vision-based fall detection method using multi-task hour-
glass convolutional auto-encoder (HCAE). In the proposed
HCAE, hourglass residual units (HRUSs) are introduced into
the encoder to capture multiscale features by neurons with
expanding receptive fields. Addtionally, a multi-task mecha-
nism, including a main task of fall judgment and an auxiliary
task of frame reconstruction, is proposed in which the aux-
iliary task is used to enhance the representativeness of the
feature in the network and further help complete the main
task of fall detection. Experimental results prove that the
proposed method can produce accurate detection results with
the shallow-layer network and outperforms several state-of-
the-art methods.

The rest of this paper is organized as follows. In Section II,
we briefly review the related work. In Section III, we present
our fall detection method using the multi-task HCAE.
Section IV describes our experimental results and verifies
the validity of the proposed method through comparing its
performance with other five fall detection methods. Finally,
the conclusion is drawn in Section V.

Il. RELATED WORK

Fall detection is one of the hot issues in the field of public
healthcare. According to devices involved, the existing meth-
ods can be roughly categorized into three classes [3], [12]:
methods based on wearable sensors, methods based on ambi-
ent sensors, and methods based on video cameras.

Wearable sensors mainly include tilt switch, accelerometer,
gyroscope and barometric pressure sensor [13]. These sensors
are usually attached to the chest, waist or wrist to obtain
acceleration or other motion information. Lai ef al. placed
triaxial acceleration sensors in several key body parts to ana-
lyze whether horizontal acceleration and normal acceleration
of human body exceed regular ranges [14]. Tmaura et al.
used a triggering airbag to build a fall detection system with
accelerometers and gyroscopes [15]. The wearable sensors
are inexpensive and able to measure activities directly. How-
ever, the wearable sensors must be firmly fixed in specific
areas of a body, and may cause inconvenience to the elderly,
especially in daily home monitoring.

Ambient sensors are used to collect information from mon-
itoring environments when a fall event occurs. Piezoelectric
sensors, acoustic sensors and infrared sensors are commonly
used ambient sensors. Since falls generally cause vibrations
and sounds in the duration of hitting the ground, vibrations
and sounds are usually used to detect fall events. Li et al.
used a circular microphone array to collect sound signals of
the environment to detect falls [16]. In [17], a fall detection
method using piezoelectric sensors to measure floor vibration
was introduced. Ambient sensors can be installed optionally
into environments without interfering with elders’ daily lives.
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However, data collected by these sensors is limited and sus-
ceptible to external noises, which may lead to low detec-
tion accuracy of fall detection methods based on ambient
Sensors.

Video cameras have the advantages of rich information,
non-contact acquisition, no electromagnetic interference,
good user experience, low cost and multi-tasking parallelism,
and have been widely employed for fall detection in this
decade. Traditionally, vision-based fall detection methods
usually segment human silhouettes from videos captured by
RGB cameras or Kinects, and extract features to discriminate
falls. Commonly used hand-crafted features mainly include
shape related features, head trajectories and human motion
features [3], [18].

Shape related feature is often used as an important basis
for detecting a fall. Wu et al. detected falls according to
the ratio of the height to bottom of a triangle formed by
the head and two feet [19]. In [20], dynamic shapes were
represented as points moving on a unified Riemannian man-
ifold and employed for fall detection. A shape descriptor
named silhouette orientation volume was used to represent
actions and classify falls in [21]. In [22], ratios of five partial
occupancy areas of body were used as the feature and input
to four different machine learning algorithms to compare the
performance of fall discrimination. In [23], fall detection was
first achieved by using a MEWMA strategy according to
shape feature of five partial occupancy area extracted from
each frame, and then a SVM classifier was used to further
distinguish falls and fall-like behaviors.

Head trajectory is also a feature of interest in fall detection,
because the head is generally not easily occluded. Bian et.al
proposed a fall detection method based on 3D trajectory of
head joint extracted by a pose-invariant randomized decision
tree [24]. In [25], particle filter was employed to track head,
and 3D horizontal and vertical velocities of the head were uti-
lized to detect the occurrence of a fall. In [26], 3D trajectory
of head was tracked by a single calibrated camera, and used
to compute velocity characteristics for fall detection.

Human motion feature is often utilized as the clue for
fall detection. In [27], a fall detection method was proposed
based on combination of integrated time motion image and
eigenspace technique. Su er al. extracted motion features
from spatio-temporal interest points to indicate degree of
impact shock and body vibration and then achieved fall dis-
crimination [28]. In [29], speed and direction of body motion
were computed according to optical flows of interest points,
and then used to discriminate fall events.

With the development of deep learning theory, deep learn-
ing technology has been applied to fall detection in recent
years. In [5], convolutional neural network (CNN) was
applied to each frame of a video to learn human shape defor-
mation features that describe different postures of the human
and determine if a fall occurs. In [6], 3D-CNN combined with
a long short-term memory (LSTM) scheme was developed
to extract motion information within a region of interest to
implement fall detection.
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FIGURE 1. Framework of the proposed HCAE-FD method.

Most existing methods based on deep learning tend to
utilize deeper neural networks to analyze and learn features
from the mass data. In [7], a pre-trained deep AlexNet
combined with transfer learning was used to detect fall
events. Co-saliency-enhanced deep recurrent convolutional
networks were utilized for fall detection [8]. VGG-16 net
was employed to receive optical flows and to complete fall
discrimination in [9]. In [10], VGG-16 net combined with
an attention-guided LSTM was adopted to capture spatio-
temporal features for fall detection. In [11], an extremely deep
residual network and a recurrent neural network with LSTM
were utilized for fall detection.

Comparing with conventional video-based fall detection
methods, the methods based on deep learning can auto-
matically learn proper features for detection after analyzing
a mass of data, with no need to extract hand-crafted fea-
tures in advance. However, information may be lost after
going through multiple layers of a deep network, which will
decrease representativeness of the feature in the network and
further affect the accuracy of fall detection. Accordingly,
we propose a fall detection algorithm based on hourglass con-
volutional auto-encoder (HCAE-FD) in this paper. To capture
more abundant information, we adopt HRUs in the encoder
of the HCAE to extract multiscale features by expanding
receptive fields of neurons. Besides, a multi-task mechanism
is designed to improve the feature representativeness of the
network by assigning a secondary task of frame reconstruc-
tion along with a main task of fall detection.

lll. PROPOSED METHOD
In this work, a novel method based on the HCAE with HRUs
and a multi-task mechanism is proposed for fall detection.
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! : Auxiliary task: Frame reconstruction

Framework of the proposed HCAE-FD method is illustrated
in Fig. 1. In the first phase, original video frames are input into
the HCAE, and the encoder of HCAE with the HRU is used
to obtain an intermediate feature containing more abundant
behavior information. In the second phase, the intermedi-
ate feature is utilized in a multi-task mechanism, in which
fall detection is completed as the main task by classifiying
the intermediate feature using a classifier and frame recon-
struction is realized as the secondary task by the decoder
to enhance the representativeness of the intermediate fea-
ture. Optimal HCAE model can be gained after optimizing
a multi-task loss function in a training process, and then can
be utilized to detect fall events in a testing process.

A. HOURGLASS CONVOLUTIONAL AUTO-ENCODER

The HCAE consists of an encoder and a decoder. In order
to preserve more abundant information at multiple scales,
we introduce HRUs into the encoder of the HCAE, and
improve the convolutional layers into hourglass convolutional
layers. Compared with a conventional convolutional unit,
the HRU can expand receptive field and capture multiscale
features. In this way, the proposed HCAE can avoid loss of
features within a shallow-layer network (with three hourglass
convolutional layers), and hence can further help improve the
accuracy of the HCAE-FD method.

1) HOURGLASS RESIDUAL UNIT

The HRU proposed in the HCAE is adopted to capture image
information at multiple scales. When identifying features
like faces and hands, local evidence is imperative; nonethe-
less, for a judgment of a behavior, a coherent understand-
ing of the whole behavior is required. As a consequence,
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we utilize HRUs, expanding receptive field (i.e. contextual
regions of neurons), to obtain multiscale features. In this
work, a single pipeline with skip layers is used to preserve
spatial information at each resolution, and a HRU consists of
three branches, i.e. an identity mapping branch, an hourglass
mapping branch, and a residual mapping branch (as illus-
trated in Fig. 2).

The identity mapping branch is used to retain informa-
tion in original resolution; the hourglass mapping branch is
adopted to extract global features in low-resolution images;
the residual mapping branch is employed to capture local
features in high-resolution images (in comparison to the
hourglass mapping branch). Synthetically, three branches are
integrated to achieve a comprehensive understanding of the
overall human body posture and motion.

To be specific, the HRU used in the HCAE can be
expressed as:

Z=2A+z2+tzc
= o(W! % x) + u{c (W s« o [WH % p(x)]}}
+ o (W s o [WR x o(WR 5 x)]} (D)

in which x and z indicate the input and the output of the
HRU respectively, o denotes the Relu nonlinear activation
function, and the symbol * represents the convolution.

z4 denotes the identity mapping branch, in which images
in original resolution are scanned with a convolutional ker-
nel W of size 1 x 1, and then processed by a Relu non-
linear activation function. The identity mapping branch is
designed to avoid loss of image information by using the skip
connections.

zp denotes the hourglass mapping branch in which the
features in low-resolution images are captured. First of all,
in order to obtain low-resolution images, pooling (i.e. the
function p in (1)) is used on original resolution images.
Then, small convolutional kernels W1 and W2 are con-
secutively adopted to capture features, followed by a Relu
nonlinear activation function for each. Finally, an upsampling
operation (i.e. the function u in (1)) is applied to recover
images of the original resolution for easy combination with
other branches. Consequently, the hourglass mapping branch
is utilized to macroscopically analyze features of human
behavior.

Zc denotes the residual mapping branch. Multiple convo-
lutional kernels WRI, WRZ, and W3 are stacked to reduce
parameters and to increase more nonlinear functions, and
Relu nonlinear activation function is utilized after each con-
volution. The residual mapping branch can extract features
from high-resolution images, such as local information of
human posture and motion.

In conclusion, as shown in Fig. 2, to obtain output of
the HRU, the features of three branches are effectively pro-
cessed and integrated through the network. Compared with
the traditional convolutional unit, the HRU can help capture
multiscale features, expanding the receptive field to obtain
richer information.
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FIGURE 2. An illustration of the hourglass residual unit.

2) ENCODER AND DECODER IN HCAE

The proposed HCAE is presented to automatically obtain
optimal intermediate feature from original frames which is
propitious to detect falls. The architecture of the HCAE is
composed of two parts: an encoder and a decoder (as shown
in Fig. 1). First, the HCAE compresses the input into an
intermediate feature by using the encoder; then, the decoder
recovers approximate original frames from the intermediate
feature; finally, the HCAE compares the error value between
the encoded-decoded frames and the original frames, apply-
ing back-propagation for self-tuning.

In the proposed model, to capture multiresolution features
from the frames, the HRU is used in the hourglass convo-
lutional layers in the encoder. The kth (k = 1,2...,K)
hidden feature hj, of the hourglass convolutional layer can be
expressed as:

by = Ie, WhY+ HGx, (W,"}) + R, (WE) (2

in which x denotes the input of the hourglass convolu-
tional layer; I, H, and R, respectively, denote the functions
corresponding to the identity mapping branch, the hour-
glass mapping branch and the residual mapping branch
of the hourglass convolutional layer; i and j respec-
tively indicate the index of convolutional layer in the
hourglass mapping branch and residual mapping branch; Wi
denotes the weight matrix which should be learnt in the
identity mapping branch to retain the information of original

Hi, . .. . . .
frames; {W,’} indicates a set of weight matrixes which
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should be learnt in the hourglass mapping branch to capture
the global information of a behavior; {Wfi} signifies a set
of weight matrixes which should be learnt in the residual
mapping branch to extract local information of the frames.

Pooling layer down-samples the feature cube which con-
sists of the hidden features obtained through the hourglass
convolutional layer. Pooling operation, such as choosing
the maximum value over non-overlapping rectangular sub-
regions, reduces the spatial size of the representation and
the amount of parameters. Therefore, the feature size and
the parameters in the fully connected layer can be reduced
effectively, and the computation speed can be accelerated.

In the proposed HCAE, after three times of hourglass con-
volution and pooling, the encoder can obtain the intermediate
feature, the most critical part in HCAE. Then, the intermedi-
ate feature will be fed not only into a classifier to judge falls,
but also into the decoder to reconstruct the original frames.

The main function of the decoder in the proposed HCAE
is to recover frames from the intermediate feature. In gen-
eral, unpooling and deconvolution are adopted to realize the
decoder. Unpooling layer performs a reverse operation of
pooling, and reconstructs the original size of each rectangular
subregion. Then, deconvolution, an inverse operation of con-
volution, is applied to unpooled feature cube. The main steps
of the deconvolutional layer can be expressed as:

K
y=0 hixWy) 3)
k=1

where y denotes the output, and Wy is the weight matrix to
be learnt in the deconvolutional layer.

After three times of deconvolution and upsampling,
recovered frames can be output from the decoder. Finally,
by minimizing the error between the original frames and the
reconstructed frames, we can obtain the optimal intermediate
feature, effectively representing the original frames, by using
the HCAE.

The decoder in the proposed HCAE is used as a weak
supervisor to reconstruct the original frames, and hence has a
better correction effect on the intermediate feature extracted
by the encoder.

B. MULTI-TASK MECHANISM

In order to acquire more representative features by the neu-
ral network, a multi-task mechanism with a multi-task loss
function is proposed in the HCAE-FD method. Specifically,
we assign two tasks to the HCAE, including a main task of
fall judgment and an auxiliary task of frame reconstruction.
Correspondingly, we also design a two-task loss function for
the HCAE.

The goal of the main task (i.e. fall judgment) is to classify
the intermediate feature of the HCAE using a classifier to
obtain a fall or non-fall judgment; whereas the purpose of
the auxiliary task (i.e. frame reconstruction) is to make the
intermediate feature have the ability to accurately reconstruct
the original frames. Accordingly, a cross-entropy function is
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set as the loss function for the main task, and a mean square
error loss function is assigned to the auxiliary task. To achieve
the multi-task goal, the loss functions of the main task and
the auxiliary task are weighted summed into a two-task loss
function.

When optimizing the two-task loss function, objectives
of both tasks can be accomplished simultaneously, and an
optimal HCAE model can be obtained. That is, for the main
task, the HCAE model is gradually improved to capture more
suitable intermediate feature for accurate judgments of falls,
and for the auxiliary task, the HCAE model is continuously
enhanced to gain the intermediate feature better representing
the original frames.

The two tasks are closely related, for they share the inter-
mediate feature and the network parameters to jointly real-
ize the ultimate fall classification. The completion of the
auxiliary task can help make the intermediate feature better
represent the original frames, which can enhance the ability of
feature expression of the HCAE model and hence can further
improve the accuracy of fall detection in the main task.

The cross-entropy loss function for the main task is used to
measure the error between the predicted classification results
and the actual labels, and can be expressed as:

1 n
‘h:_zgynmgm+ﬂ—n%bgl—mﬂ 4)

in which #; denotes the true classification label of the ith sam-
ple, #; = O denotes a fall in the ith sample, and #; = 1 denotes a
non-fall in the ith sample; p; indicates the classification result
predicted by the HCAE-FD method; # is the total number of
the samples.

The loss function for the auxiliary task can be expressed as

n
J> = min Z Hx,- —y,-Hi (@)
i=1
in which x; indicates the frames of the ith sample, y; denotes
the reconstructed frames corresponding to the ith sample, and
n is the total number of the samples.
Finally, two loss functions are proportionally integrated
into a multi-task loss function as:

J=a-Ji+B-] (6)

in which « and 8 are respectively the weights of the main
and the auxiliary tasks, controlling the influence of the loss
of both tasks in the multi-task learning. After multiple tests,
we choose the optimal values from the candidate range [0,1]
for these parameters, that is, « = 0.7 and g = 0.3.

C. PROCEDURE OF THE METHOD
The framework of the HCAE-FD algorithm is given in Fig. 1.
The main purpose of HCAE-FD algorithm is to detect fall
behaviors from videos, and the algorithm can be mainly
divided into training phase and testing phase.

In both phases, 10 consecutive frames are input as a stack
into the encoder of the HCAE at a time, so as to take
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advantage of the temporal information. After the frames are
input into the network as 10-channel data, the processing of
each convolution kernel is to sum the results of the separate
convolutions of the 10 channels. That is, every feature in the
HCAE contains spatio-temporal information extracted from
all the input frames.

1) TRAINING

The training phase is a process of searching for optimal
parameters of the HCAE model by minimizing the value of
the multi-task loss function. In the proposed method, super-
vised learning is adopted to train the network, and the training
data is used to learn the correlation relationship between the
input and the output of the HCAE, which can be realized by
constantly updating the parameters of the network. The flow
chart of the training process is shown in Fig. 3.

Parameters initialization

}

‘ Forward propagation }:

Predicting falls

l Label

’ Calculating error

l

\ Back propagation ‘

l

’ Updating parameters ‘

Completing the training

FIGURE 3. The flow chart of the training process.

The training process is divided into two stages: forward
propagation and back propagation. In the forward propaga-
tion, the encoder of the HCAE is adopted to capture the
intermediate feature from the training data. The intermediate
feature is then used to discriminate falls by using a softmax
classifier and meanwhile used to reconstruct the frames by
using the decoder of the HCAE. In the back propagation, error
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between the expected output and the actual output of the pro-
posed method can be calculated according to the multi-task
loss function, and a back propagation algorithm is adopted
to calculate the gradient, which can be used to update the
weights and the bias values of each layer in the encoder,
the decoder, and the classifier in the HCAE-FD method.
When the loss function converges, the optimal HCAE model
is obtained.

2) TESTING

When testing, frames in the test data are input into the HCAE
sequentially. Then, by using the trained hourglass convo-
lutional encoder and the trained softmax classifier, we can
finally obtain a predicted probability p. < p < 0.5 indicates
that the predicted value p is closer to the label r = 0 (a label
for a fall event), that s, a fall is detected; whereas 0.5 < p < 1
means that the predicted value p is closer to the label t = 1
(i.e. no falls detected).

IV. VALIDATION EXPERIMENTS

All experiments ran on a dedicated GPU server with an
Intel i5-7400 running at 3.3 GHz, 4GB of memory, and four
Nvidia Tesla K80 GPU accelerators. The proposed method
was mainly implemented in python based on the tensorflow
framework, and the performance was evaluated on the UR fall
dataset [30] (URFD).

A. DATASET

In the experiments, we used the UR fall dataset which was
proposed by researchers of Computational Modelling Uni-
versity of Rzeszow in 2014 [30]. The dataset includes RGB
videos and depth videos recorded by two Microsoft Kinect
cameras with a frame rate of 32 fps and a resolution of
640 x 480, and also acceleration data recorded by
accelerometers.

RGB videos of camera 0 in the UR fall dataset, including
30 sequences of falls and 40 sequences of daily activities,
were adopted in our experiments, and were divided into a
training set and a testing set according to a ratio of 4:1. There
are in total 900 fall frames and 11036 non-fall frames used in
our experiments.

Non-fall frames mainly include common daily activities,
such as walking, squatting, bending, etc. Fall frames mainly
include fall behaviors which are performed by the partici-
pants, such as falling while walking and falling off a chair.

B. EVALUATING METRICS

The fall detection is a binary classification problem which
determines whether or not there is a fall event in a particular
sequence of a video. The most common metrics to evaluate
the performance of such a classification are sensitivity/recall,
precision, specificity, accuracy, and F-score. These metrics
are not affected by distribution of unbalanced categories,
which makes them more suitable for fall detection datasets,
because the fall samples are usually much fewer than the
non-fall samples in most datasets.
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Sensitivity/recall is the proportion of correctly detected
falls in all the falls, that is,

TP
Sensitivity/Recall = ——— 7
ensitivity/Reca TP+ FN @)

Precision is the proportion of correctly detected falls in all the
detected falls, i.e.

.. P
Precision = ——— 8)
TP + FP

Specificity is the proportion of correctly detected non-fall
behaviors in all the non-fall events, i.e.

o IN
SPElelClly = T]V—-|—FP )

Accuracy is the proportion of correctly detected falls and non-
fall behaviors, i.e.

Accuracy = TP+ 1N (10)
YT TPYIN + FP+ FN

F-score is a harmonic mean of recall and precision, and has
been proven to be the most relevant evaluation index for the
overall performance of detection algorithms [31], i.e.

Recall x Precision
F-score = 2 — (11)
Recall + Precision

in which TP refers to the number of true positives, that is, the
number of fall clips correctly classified as “fall”’; TN denotes
the number of true negatives, i.e. the number of non-fall clips
correctly classified as “no fall”’; FP indicates the number
of false positives, i.e. the number of non-fall clips wrongly
classified as “fall”’; and FN is the number of false negatives,
i.e. the number of fall clips wrongly classified as “‘no fall”.

C. EXPERIMENTAL RESULTS

1) PARAMETER SETTING FOR THE MULTI-TASK LOSS
FUNCTION

In the proposed method, a multi-task loss function is designed
by weighting the loss function of fall detection and the loss
function of frame reconstruction. The weight parameters «
and B, respectively, control the strengths of the main task
(i.e. fall detection) and the auxiliary task (i.e. frame recon-
struction) in the multi-task learning.

To investigate the impact of these parameters on the perfor-
mance of our method, we tuned the parameters in the candi-
date range [0,1] by using 0.1 as the step size, and performed
multiple tests so as to choose the optimal values. Table I
provides the values of fall detection accuracy of our method
when using different weight parameters.

When « = 0 and 8 = 1.0, the loss function of the
HCAE-FD method only contains the mean square error loss
function of the auxiliary task of frame reconstruction, without
the loss function of the main task of fall detection. In this case,
the proposed method can only complete the frame reconstruc-
tion, without fall detection, when @« = 0 and 8 = 1.0.

As o increases, the fall detection accuracy gradually
improves first, and then starts to drop. The best performance
of our method is achieved when « = 0.7 and 8 = 0.3.
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TABLE 1. Fall detection accuracy with different weights.

Parameters Accuracy
a=0 =10 0
a=01 g=09 0.944
a=02 B=038 0.946
a=03 [=07 0.950
a=04 B=06 0.954
a=05 B=05 0.955
a=06 =04 0.960
a=07 f=03 0.962
a=08 B=02 0.957
a=09 f=0.1 0.954
a=10 B=0 0.945

Therefore, we set the weight parameters with the optimal
values « = 0.7 and B = 0.3 in the following experiments.
With these optimal weight parameters, the task of fall detec-
tion dominates the HCAE-FD method, and the task of frame
reconstruction just acts as an secondary task to increase the
representativeness of features of the network.

It is worth noting that, when « = 1.0 and 8 = 0,
the HCAE-FD method only completes the task of fall detec-
tion without the task of frame reconstruction, and yields a
worse result than the optimal situation considering both the
main and the auxiliary tasks. This has further verified that,
the auxiliary task plays a good role in helping better complete
the fall detection (i.e. the main task).

2) ADVANTAGE OF THE HRUS

To further demonstrate the advantage of the HRUs used in the
proposed method, we compared the HCAE-FD method with a
fall detection method (called CAE-FD for short) which is the
same as the proposed method except that it utilizes traditional
convolutional layers without HRUs. For purpose of a fair
comparison, the CAE-FD method employs the same network
structure as the HCAE-FD method does. Considering that
training frames are randomly selected from the training set,
we compute average values of the accuracy after five times of
experiments. Table 2 provides the average values of accuracy
with different iterations for the CAE-FD method and the
HCAE-FD method.

As shown in Table 2, the proposed method obtains a
great improvement in terms of fall detection accuracy in
the 10 iterations by using the HRUs. These results thus
confirm that, the HRUs extracting multiscale features can
capture more abundant information with fewer convolutional
layers, and can further help ensure the high accuracy of fall
detection with the shallow-layer network of the proposed
method.
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TABLE 2. Comparison of average accuracy of CAE-FD and HCAE-FD.

Iterations CAE-FD HCAE-FD
1 0.661 0.828
2 0.773 0.921
3 0.829 0.932
4 0.865 0.948
5 0.889 0.949
6 0.905 0.975
7 0.920 0.975
8 0.934 0.970
9 0.944 0.973

10 0.942 0.972

3) ADVANTAGE OF THE MULTI-TASK MECHANISM

To verify the effectiveness of designing the multi-task mech-
anism in the proposed method, we compared the HCAE-FD
method with a fall detection method (called HC-FD for short).
The HC-FD method adopts the same encoder (with hourglass
convolutional layers) and the same classifier as the proposed
method does; however, unlike the multi-tasking goal of the
proposed method, the HC-FD method has only one task to
detect falls using the classifier. Since the selection of train-
ing data is random, we also calculate average values of fall
detection accuracy for these two methods after five times of
experiments. Table 3 provides the average accuracy of the
HC-FD method and the HCAE-FD method with different
iterations.

TABLE 3. Comparison of average accuracy of HC-FD and HCAE-FD.

Iterations HC-FD HCAE-FD
1 0.806 0.828
2 0.906 0.921
3 0.916 0.932
4 0.922 0.948
5 0.934 0.949
6 0.951 0.975
7 0.955 0.975
8 0.971 0.970
9 0.973 0.973
10 0.970 0.972
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As can be seen from Table 3, for iterations no more than 7,
the accuracy of the HCAE-FD method shows a significant
improvement in contrast with that of the HC-FD method;
for the latter 3 iterations, the results of these two methods
are relatively close, due to the single scene of the UR fall
dataset. Through the comparison of these two methods, the
HCAE-FD method can extract more representative and effec-
tive intermediate feature for fall detection, which is benefited
from the constraints of the auxiliary task (i.e. frame recon-
struction) in the multi-task mechanism on the intermediate
feature.

4) COMPARISON WITH THE STATE-OF-THE-ART METHODS
To objectively evaluate the HCAE-FD method, we com-
pared the performance of our method with five state-of-the-
art methods (including three methods based on hand-crafted
features and two methods based on deep learning) using the
public UR fall dataset. The five methods for comparison are
listed as follows.

1. A fall detection method based on points of interest
(called Shi-Tomasi-FD method for short) [29]. This method
first utilizes Shi-Tomasi algorithm to find interest points,
and then tracks these points and computes their maximum
displacement to obtain speed and direction of body motion to
detect a fall.

2. A fall detection method based on area ratios of human
body (called Area-FD method for short) [22]. In this method,
ratios of five partial occupancy areas of the body are used
as the feature, and input into machine learning algorithm to
detect and classify falls.

3. A fall detection method using a MEWMA strategy based
on area ratios (called MEWMA-FD method for short) [23].
In this method, fall detection is first achieved by using the
MEWMA monitoring scheme according to area ratios of
five partial areas constituting the human body extracted from
each frame, and then a classification stage based on SVM is
applied on the detected frames to further distinguish falls and
fall-like behaviors.

4. A fall detection method based on convolutional neu-
ral network (CNN-FD method for short) [9]. This method
employs VGG-16 net (including thirteen convolutional layers
and three full connected layers) to receive optical flow images
as input and to decide if a sequence of frames contains a fall
event.

5. Fall detection method based on CNN and attention-
guided LSTM (CNN-LSTM-FD method for short) [10].
In the method, VGG-16 net and an attention guided LSTM
model are adopted to detect falls.

For purpose of a fair comparison, we employ the 5-fold
cross-validation training as the CNN-FD algorithm did.
Table 4 provides the evaluating metrics of the proposed
method and the other five methods.

As can be seen from Table 4, the proposed method
yields detection results with the best F-score and the second
best accuracy when compared with the state-of-the-art
methods. By contrast with the traditional vision-based fall
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TABLE 4. Comparison with the state-of-the-art methods.

Sensitivity

Method Recall Specificity Accuracy Precision F-score
Shi-Tomasi
-FD [29] 0.967 - 0.957 0.935 -
Area-FD 0.980 0.894 0.940 0.830 0.900
[22]
MEWMA-FD 1 0.949 0.967 0.936 0.952
(23]
CNN-FD 1 0920 0.950 - -
[9]
CNN-LSTM
FD [10] 0.914 - - 0.948 0.931
Proposed | 0.930 0962 0923  0.960
method

detection methods (such as the Shi-Tomasi-FD, Area-FD,
and MEWMA-FD methods), the HCAE-FD method does
not require hand-crafted features, and has powerful data
analysis ability with the help of HCAE, which significantly
improves the performance in fall detecion. Compared with the
CNN-FD and CNN-LSTM-FD methods based on the deep
network, the proposed method also performs better with a
shallow-layer network. This mainly results from the HRUs
helping capture multiscale features and avoid information
loss, and also from the multi-task mechanism which helps
enhance the feature representativeness by completing the
auxiliary task and further improves the performanc of the
main task (i.e. fall detection).

V. CONCLUSION

In this paper, we propose a novel fall detection method
based on the multi-task HCAE. The HRUs are adopted in
the encoder of the HCAE to improve the convolutional layers
into the hourglass convolutional layers and to extract multi-
scale features from original frames. Furthermore, the multi-
task mechanism is utilized to make the intermediate feature
abundant for behavior information and further appropriate
for classification, which is benefit to improve the accuracy
of fall detection. The experimental results have shown that,
the HCAE-FD method can effectively achieve accurate fall
detection with the shallow-layer network, and outperforms
several state-of-the-art methods. In the future, we will apply
the method to complicated environments to further ensure the
lives of the elderly.
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