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ABSTRACT The recent advance of synthetic image generation and manipulation methods allows us to
generate synthetic face images close to real images. On the other hand, the importance of identifying the
synthetic face images increases more and more to protect personal privacy from those. Although some deep
learning-based image forensic methods have been developed recently, it is still challenging to distinguish
synthetic images generated by recent image generation and manipulation methods such as the deep fake,
face2face, and face swap. To resolve this challenge, we propose a novel generative adversarial ensemble
learning method.We train multiple discriminative and generative networks based on the adversarial learning.
Compared to the conventional adversarial learning, our method is however more focused on improving
the discrimination ability rather than image generation one. To this end, we improve the discriminabilty
by ensembling outputs from different two discriminators. In addition, we train two generators in order to
generate general and hard synthetic images. By ensemble learning of all the generators and discriminators,
we improve the discriminators by using the generated synthetic face images, and improve the generators
by passing the combined feedback of the discriminators. On the FaceForensics benchmark challenge,
we thoroughly evaluate our methods by comparing the recent methods. We also provide the ablation study
to prove the effectiveness and usefulness of our method.

INDEX TERMS Digital image forensics, generative adversarial ensemble learning, deep learning, synthetic
image detection, face image.

I. INTRODUCTION
The face plays an important role in confirming a person’s
identity and understanding between human interactions [1].
Therefore, face images are considered as important cues
in computer vision and machine learning areas, and many
progress has been made in face detection, face recognition,
and facial emotion recognition over the last decades. In addi-
tion, due to the advances of deep learning and adversarial
learning [2], the recent face image generation methods can
generate synthetic face images close to real ones without
using image manipulation and editing by users. However,
the progress of the face image generation and manipula-
tion methods also incurs many social issues. Therefore, the
image forensic problem to detect fake images has been more
highlighted, and many fake image detection methods have
been developed. Since some traces remain after manipulation
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or editing, some detection methods [3]–[6] identify fake
images by detecting the artifacts. Reference [3] presents a
manipulated image localization method using a probability
distribution for DCT coefficients of single and double JPEG
compressing regions. Reference [5] exploits inconsistencies
of illumination in a manipulated photo. However, these meth-
ods are not suitable for various problems because the many
prior knowledges of the image manipulation methods are
needed in advance.

Recently, fake image detection methods [7]–[9] based on
deep learning have been flourished. By using the learned fea-
tures with convolutional neural networks (CNNs), [7] detects
manipulate images. In [8], two light CNNs are used to detect
image manipulation with low computational cost. Reference
[9] detects manipulated faces by evaluating inconsistent 3D
orientations of synthesized faces.

However, it is still challenging to identify fake images
generated from the elaborate fake image generation and
manipulation methods (e.g. Deepfake [10], Face2Face [11],
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Faceswap [10]). To resolve this challenge, we propose a novel
generative adversarial ensemble learning method. Based on
adversarial learning, we train multiple discriminators and
generators together. However, a goal of conventional adver-
sarial learning methods is to improve the generation ability.
On the other hand, our method is more focused on improving
the discrimination ability of discriminators. For achieving
this, we ensemble outputs of two discriminators by stacking
fully connected layers on the discriminators. By combining
different discriminators (i.e. ResNet and DenseNet), we also
increase the diversity of discriminators and the generalization
performance.

In addition, we use two generators with the same architec-
ture. However, we train the generators in different manners
to improve the diversity of fake images. The first one is pre-
trained on the CelebA-HQ dataset, but the pre-trained param-
eters of the network are fixed during advesarial ensemble
learning. The main reason is that we make this generator
provide easy but various fake images to the discriminators.
However, other one is trained in an adversarial manner with
ensembled discriminators. As a result, this one can be trained
to produce hard fake samples with the combined feedbacks of
the discriminators. By feeding the generated synthetic sam-
ples to the discriminators, we further improve discrimination
ability of the ensembled models.

On the FaceForensics challenge benchmark dataset [10],
we train and evaluate our generative adversarial ensemble
method. By comparing other fake image detection methods
[12], we throughly evaluate our method. In addition, we pro-
vide some ablation study to prove benefits of our method.

To sum up, the main contribution of this paper can be
summarized as follows:
• Proposition of the adversarial ensemble method for

improving discrimination ability;
• Proposition of designing ensemble framework and loss

function for adversarial ensemble learning;
• Proposition of training strategies to make generators

generate various and hard negative fake images.

II. RELATED WORKS
Generating synthetic or manipulated images has been studied
for decades ago. To achieve that, texture synthesis [13], image
inpainting [14], and image stylization [15]methods have been
developed, but the generated images by them with low level
or hand-crafted features can be detected easily because of the
low quality.

Recently, a remarkable progress of synthetic image gener-
ation has been achieved by generative adversarial networks
(GANs) [2]. In GANs, a generator learns a distribution of
train samples from the feedback of a discriminator over gen-
erated images. Some improved versions of GANs have been
also presented for stabilizing GAN training and preventing
mode collapses. For instance, WGAN [16] and SNGAN [17]
redefine a GAN loss function by using the Wasserstein dis-
tance and the spectral normalization, respectively.

For generating more realistic fake images for human faces,
Deepfake [10], Face2Face [11] and Faceswap [10] have been
developed. In Deepfake, two Autoencoders are trained inde-
pendently on source and target face datasets to reconstruct
each face set. However, an encoder is shared between those
Autoencoders, and all latent face vectors are produced by the
same one to learn general facial representations. By passing
a latent vector for a source image to a decoder for a target
image, the facial expressions or orientations of the target
image can be matched with the those of the source image
while maintaining its face structure.

Face2Face [11] can also transfer facial image expression
of a source image to a target image using the facial reenact-
ment algorithm. However, a dense reconstruction and facial
expression tracking are performed to a stream of source and
target videos for generating more realistic images. In addi-
tion, Faceswap [7] fits some face region of a source image
to a face of a target image. Therefore, it first detects facial
landmarks from a source face, and generate a 3D model to
those landmarks. Then, the 3D model is fitted to the located
landmarks of a target face, and textures and colors of the 3D
model are rendered with initial textures and color correction.

To identify fake images generated from these methods,
fake image detection methods have been also developed. The
most of traditional methods such as color filter array (CFA)
analysis [18], double JPEG localization [3], [4], illumination
model [5] and steganalysis feature classification [6] detect
fake images by finding some traces or artifacts of those.

In CFA analysis, the difference between CFA patterns of
real and fake images is used for detection. Therefore, it can
be easily failed to classify fake images with similar CFA
patterns in the real images or ones with distorted CFA patterns
by noises and resizing. Double JPEG localization methods
detect manipulated images using aligned double JPEG com-
pression and non-double JPEG compression. Therefore, these
methods investigate how well the quantization factors are
aligned with the original image after JPEG compressions.
In [3], a probability model is designed for computing DCT
coefficients of single and double JPEG compression regions.
For extruding artifacts of JPEG compression, 2-D array fea-
tures [4] are extracted by computing differences between the
magnitude of JPEG coefficient 2-D array of a JPEG image
and its shifted version along various directions. In addition,
illumination inconsistency [5] between authentic and forged
regions is investigated to detect manipulated regions. The
steganalysis feature [6] is also exploited to detect fake images.
However, thesemethods using low level features can be easily
failed to detect fake images when fake images have similar
features with real ones, and extracted features are distorted
by a noise.

Due to the recent advance of deep learning, several meth-
ods using deep learning have been proposed for solving
the image forensic problem. Compared to the traditional
methods mentioned above, they have shown the more better
accuracy in many applications. In [19], steganalysis features
are extracted by the learned convolution filters. To detect
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FIGURE 1. Proposed generative adversarial ensemble learning framework consisting of 2 discriminators (ResNet and DenseNet) and
2 generators (ResNets). To combine high-level features of both discriminators and output confidences for real and fake images, we add fully
connected layers on the top of both discriminators. In order to learn the ensembled discriminator, we use the FaceForensics++ and CelebA-HQ
datasets as real samples, and face images generated by two generators as fake samples. Here, for providing general and diverse fake images to
discriminators, the one of the generators uses the pre-trained network parameters from CelebA-HQ [24], and the parameters are fixed during the
adversarial learning. On the other hand, the other one is trained from scratch with the feedback of the ensembled discriminators during the
learning. Therefore, it can generate more realistic fake images to fool the discriminators during the learning.

splicing images [20], a multi-task fully connected network
is learned for the surface label and edges or boundaries of
splicing regions. In [21], a CNN-LSTMmodel is used to learn
discriminative features between authentic and manipulated
regions. A two-stream network [22] consisting of face clas-
sification and patch triplet streams is learned with a triplet
loss for fake image detection. For identifying manipulated
face images, a network [23] is learned using AdaBoost and
XGBoost to handle the imbalanced dataset. In [9], incon-
sistency between warped face region and its nearby regions
is leveraged to detect manipulated faces by the Deepfake.
MesoNet [8], which combines variants of the CNN and the
InceptionNet, is developed to detect manipulated faces in a
video.

In this work, we also present a deep learning-based
network for resolving the fake image detection problem.
However, we leverage ensemble learning and generative
adversarial learning. As a result, we can improve the detection
ability of our network using ensemble learning.

III. GENERATIVE ADVERSARIAL ENSEMBLE LEARNING
Figure 1 shows the proposed ensemble learning framework.
This framework includes two discriminators and two gen-
erators. We use the DenseNet [25] and ResNet [26] as dis-
criminators because they show promising results for many
applications. The output feature maps of these discriminators
are combined by the added fully connected layers. More
details of the discriminators are discussed in Sec.III-A. On the
other hand, we use SNGAN [17] as generators to gener-
ate fake face images. The one of the generators uses the

pre-trained network, and its parameters are not updated. How-
ever, the other generator is trained from scratch with feed-
backs of an ensembled discriminator. The more details of the
generators is given in Sec.III-B. In Sec. III-C, we provide our
learning method to train all the discriminators and generators
in the adversarial manner.

A. DISCRIMINATORS
In ensemble learning, improving diversity between networks
is crucial in order to improve accuracy and generality of an
ensemble model. To achieve this, we use the DenseNet [25]
and ResNet [26] which have different network architectures.
We then connect concatenated output feature maps with both
networks to a fully connected layer. In the next section,
we briefly discuss the ResNet and DenseNet to be ensembled.

1) RESNET
This network [26] is based on deep residual learning, and
applied for various applications due to its high accuracy.
The residual function of the ResNet can be represented as
f (x) + x with a shortcut connection which bypasses more
than one layers, where f (x) and x mean residual and identity
mapping, respectively. The shortcut connections can mitigate
the vanishing gradients when training a very deep network.

2) DENSENET
In this network, a dense block is developed to connect fea-
ture maps of all other preceding layers to all subsequent
layers. More specifically, feature maps extracted from the
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last layers of preceding blocks are aggregated via a channel-
wise concatenation, and the concatenated maps are used for
an input of a subsequent layer. The benefits of DenseNet
are the alleviation of the vanishing gradients, strengthened
feature propagation, feature reuse, and reductions of network
parameters.

3) NETWORK ENSEMBLE
For improving discriminability of real and fake images,
we combine the feature maps of a DenseNet and a ResNet.
To this end, we feed a same image to both networks, and
extract 1024-dimensional output features by using a global
average pooling and a convolution layer with 1 × 1 × 1024
filters. Then, a 2048-dimensional feature vector is generated
by concatenating the output features of both networks. This
concatenated feature is connected with two fully connected
layers of the size 2048 × 2. We use the softmax function to
normalize the 2-dimensional output scores.

B. GENERATORS
1) GENERATOR SCHEME
For providing various fake images to discriminators, we use
two generators with a same architecture, but train them in a
different manner. We use a variant [17], [27] of the ResNet,
and a hinge loss as in [17]. Figure 2 shows the network
scheme of each generator. By feeding a latent vector of
dimension 128 to a FC layer, we generate a feature map
of size 4 × 4 × 1024. Repeatably, by each ResBlock the
resolution and the number of channels of the feature map
are increased and deceased by 2 times, respectively. From
the last convolutional layer with a kernel of size 3 × 3 ×
64 × 3 and hyperbolic tangent function (Tanh), we generate
an image with 3 channels. In addition, we pre-train the one
of generators on the CelebA-HQ dataset by using spectral
normalization [17], whereas we train the other generator from
scratch with the discriminators based on adversarial learning.

2) SPECTRAL NORMALIZATION FOR GENERATIVE
ADVERSARIAL NETWORKS (SNGANS)
For stabilizing a discriminator during GAN training, a spec-
tral normalization method [17] is presented. Different from
other regularization methods [27], [28] which tune the Lips-
chitz constant by adding an input based regularization term,
the spectral normalization can control Lipschitz constant
without tuning. To this end, this method normalizes the spec-
tral norm of the a weight matrix W so that σ (W ) = 1 as
W SN (W ) := W/σ (W ). Here, the spectral norm σ (W ) is
equivalent to the largest singular value of W . To compute
σ (W ), the power iteration method is used. As a result, they
can reduce the computational cost of estimating σ (W ).

C. GENERATIVE ADVERSARIAL ENSEMBLE LEARNING
Even though our generative adversarial ensemble learning is
based on adversarial learning, the main goal of our learning is
to increase the discriminability. This is different from it of the

FIGURE 2. (a) The scheme of a residual block with up-sampling and
(b) the overall structure of our generators G1 and G2.

conventional GAN methods which is to improve the genera-
tion ability. For achieving our goal, we train two generators
in different manners. The first one that is pre-trained on the
CelebA-HQ dataset can generate diverse face images as done
in the conventional GANs. However, the other generator that
is adversarially trained with discriminators learns features to
remove artifacts rather than generating face features.

Due to the advances of synthetic image generation meth-
ods, the difference of real and synthetic face images is subtle
for a shape, color, texture of a whole face and its components
(e.g. eyes, noise, etc.). In fact, in a real and fake face image
identification, a main cue used for discriminating them is arti-
ficial traces around synthetic regions as discussed in Sec. I.
Figure 3 also demonstrates the artificial traces when using the
recent face image generation methods. Therefore, during the
adversarial learning, it is essential that a discriminator should
be trained to detect those traces, whereas a generator should
be trained to generate images excluding artifacts. In this
sense, we train both generators in the different manners, and
they can improve discriminators further by improving the
diversity of fake images.

For improving the discriminability, we combine the output
feature maps of different discriminators,D1 andD2, and yield
a confidence score of predicting real and fake image classes
by using the aggregated feature. We denote the combined
discriminators as D. In addition, we provide a variety of syn-
thetic face images to D by using both generators, G1 and G2.
A generator G1 is pre-trained on the CelebA-HQ dataset [24]
which contains different face images. Therefore,G1 is trained
for producing more general synthetic images similar to real
face images. Note that G1 is not fine-tuned further during
the adversarial learning step because the generality of G1
is reduced and the detection accuracy is degraded as shown
in Table 1. On the other hand,G2 is trained adversarially from
scratch. The image quality of G1 and G2 is evaluated by D.
In Eq.(1), we propose our adversarial ensemble loss in order
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FIGURE 3. For background and target facial images, generated face images by using the deepfake, face2face, and faceswap methods. We mark some
artificial traces with red circles, and highlight them by scaling up the corresponding regions. Because the global face and face components’ appearances
of real and fake images are similar, these artifacts should be detected for discriminating them.

to train G2 and D

min
G2

max
D

V (D,G1,G2) = Ex∼pdata[logD(xreal))]

+Ex∼pdata [log (1− D(xfake))]
+Ez∼pz [log (1− D(G1(z)))]
+Ez∼pz [log (1− D(G2(z)))]
−Ez∼pz [D(G2(z))] (1)

To maximize V , the ensemble discriminator D should pro-
duce a higher score for a real image, but a lower score for fake
image. In addition,G2 should makeD produce a higher score
for fake images to minimize V .

IV. EXPERIMENTS
In this section, we prove the effects and benefits of our
method via ablation study and comparisons with other face
image detection methods.

A. DATASET
To show the discrimination ability of our method between
real and fake images, we use FaceForensics++ [10] and

CelebA-HQ [24] for training and evaluating our detector
shown in Fig. 1.
The FaceForensics++ dataset includes manipulated and

authentic face images. For manipulating the authentic
images, Deepfake, Face2Face and Faceswap methods are
exploited. For 1k pristine videos, 509,914 pristine images
are captured. Then, these images are manipulated by apply-
ing those methods, and in total 1.5 million images are
contained in the dataset. Each image is labeled with
DeepFake, Face2Face, Faceswap, Pristine (i.e. real image)
according to their origin and the applied manipulation
method.

In addition, the image quality in the dataset can be cate-
gorized into raw, HQ (high quality) and LQ (low quality).
In the raw images any compression is not applied, whereas
H.264 coding with 23 and 40 constant quantization rates is
used for generating HQ and LQ compression images, respec-
tively. For the ablation study discussed in Sec. IV-C, we only
use the raw images as a train set. However, we use all the
raw, HQ, and LQ images for training when comparing our
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FIGURE 4. (a) The overall structure of a discriminator Dsn for pre-training
our G1, and (b) A residual block used for our discriminator.

method with other methods on the benchmark challenge as in
Sec. IV-D.

We also use a CelebA-HQ [24] dataset for generating high
quality synthesis face image as done in PGGAN [24]. We use
the 30k images of 1024× 1024 resolutions for pre-training.

B. IMPLEMENTATION DETAILS
In our experiments, we use three discriminators and two gen-
erators. ResNet-101 [26]1, DenseNet-121 [25] 2 and VGG-19
[34] 3 are used as our discriminators in our detector.
The network structure of two generators is based onResNet

of SNGAN [17] for generating 128× 128 resolution images
as shown in Fig. 2. The training procedures of both generators
are described in Algorithm 1.

In the step 1, G1 pre-trained on CelebA-HQ dataset can
generate diverse synthetic face images similar to the conven-
tional GAN. Therefore, we first train G1 during Tstep14 on
the CelebA-HQ dataset. For this training, as a discriminator
(Dsn), we use the same network presented by SNGAN [17]
using the spectral normalization as described in Sec. III-B.2.
Dsn consists of a 3× 3 convolutional layer, 5 residual blocks
and a FC layer. Figure 4 shows the overall architecture ofDsn.
Then,Dsn is adversrially learned to distinguish between target
dataset and generated samples from G1 by maximizing the
hinge loss in Eq.(2), and G1 is trained over this discriminator

1ResNet-101 is available at https://github.com/tensorflow/models/
tree/master/research/slim

2DenseNet-121 is available at https://github.com/pudae/tensorflow-
densenet

3VGG-19 is available at https://github.com/tensorflow/models/tree/
master/research/slim

4Tstep1 and Tstep2 are epoch number×total image number
batch size . The details are

given in Sec. IV-C and IV-D.

Algorithm 1 The Proposed Generative Adversarial
Ensemble Learning Algorithm

Input : Mini batch of noise samples {zi}mi=1 and
data samples
{XF , {XC ,XG1}, {XC ,XG2}} = {Xj}

TD
j=1,

Xj = {xi}mi=1
1 //Step1: pre-training G1 on CelebA-HQ
2 for kstep1 = 1,..., Tstep1 iterations do
3 //update Dsn
4 for kDsn = 1,..., TDsn iterations do
5 gDsn ← ∇θDsn

1
m

∑m
i=1HDsn (Dsn,G1) using

Eq. (2)
6 θDsn ← Adam(gDsn , θDsn , η1, βstep1, β2)
7 end
8 //update G1
9 for kG1 = 1,..., TG1 iterations do
10 gG1 ← ∇θG1

1
m

∑m
i=1HG1 (Dsn,G1) using

Eq. (3)
11 θG1 ← Adam(gG1 , θG1 , η1, βstep1, β2)
12 end
13 end
14 //Step2: generative adversarial ensemble learning on

FaceForensics++ and CelebA-HQ
15 for kstep2 = 1,..., Tstep2 iterations do
16 //Update D on FaceForensics++ only:
17 for kF = 1, ..., TF iterations do
18 X← XF

19 gD← ∇θD 1
m

∑m
i=1 V (D,G1,G2) using

Eq. (1)
20 θD← Adam(gD, θD, η2, βstep2, β2)
21 end
22 //Update D on FaceForesics++, CelebA-HQ, G1

and G2:
23 for kD = 1, ..., TD iterations do
24 X← XkD
25 gD← ∇θD 1

m

∑m
i=1 V (D,G1,G2) using

Eq. (1)
26 θD← Adam(gD, θD, η2, βstep2, β2)
27 end
28 //Update G2

29 gG2 ← ∇θG2
1
m

∑m
i=1 V (D,G1,G2) using Eq. (1)

30 θG2 ← Adam(gG2 , θG2 , η1, βstep2, β2)
31 if kstep2 == 1

2Tstep2 then
32 η2← 0.94×η2
33 end
34 end

by minimizing the hinge loss in Eq. (3).

max
Dsn

HDsn (Dsn,G1) = Ex∼pdata[min(0,−1+ Dsn((x))]

+Ez∼pz [min(0,−1− Dsn(G1(z)))]

(2)
min
G1

HG1 (Dsn,G1) = −Ez∼pz [Dsn(G1(z))] (3)
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For training Dsn and G1, we set TDsn = 5 and TG1 = 2
as done in [17] within step 1 of Algorithm 1. Therefore,
Dsn and G1 are updated five and two times per each training
iteration (kstep1), respectively. We use the Adam optimizer
[35] with βstep1 = 0.5 and β2 = 0.999, and fix a learning
rate to η1 = 10−4.

In the step 2, we adversarially train the ensemble discrimi-
nator D and G2 from scratch during Tstep2 while freezing the
learned parameters ofG1.D is trained by maximizing the loss
Eq. (1) over the real and fake images from FaceForensics++
(i.e. real and fake), CelebA-HQ (i.e. real), and generated
images (i.e. fake) by G1 and G2. Subsequently, we train G2
by minimizing Eq. (1) with the feedbacks of D.
For adversarial learning, it is known that more training of

a discriminator than a generator [2] gives the better results.
In addition, the parameters of our ensemble discriminator
D are much more than those of G2. For this reason, we set
TD = 3 within step 2 of Algorithm 1.

More specifically, a mini-batch set X for updating D
comes from three types of real and synthetic image sub-
sets, XF , {XC ,XG1}, and {XC ,XG2}. Here, XF and XC are
real images of FaceForensics++ and CelebA-HQ, but XG1

and XG2 are generated images by G1 and G2, respectively.
In our experiments, the size (m) of each subset is fixed
by 16. Therefore, XF , {XC ,XG1} and {XC ,XG2} contain 16
FaceForensics++ images, 8 CelebA-HQ images and 8 gener-
ated images byG1, and 8 CelebA-HQ images and 8 generated
images by G2, respectively. Then, D can be updated three
times iteratively by changing training sets.

The Adam optimizer with βstep2 = 0.9 and β2 = 0.999
is also used. For training D, we set the initial learning rate
to η2 = 10−4, and decay the rate by a factor of 0.94 after
5 epoch. When training G2, we fix the learning rate to 10−4.
We summarize this generative ensemble adversarial learning
algorithm in Algorithm 1.

We use the Tensorflow [36]. All our experiments are con-
ducted on a NVIDIA TITAN Xp GPU and an Intel Xeon
E5-2640-v4 CPU.

C. ABLATION STUDY
In this evaluation, we use 398, 908 images captured only from
the raw videos of the FaceForensics++ dataset for train-
ing our detector. In this case, there exist 134, 197 Pristine,
57, 063Deepfake, 116, 132 Face2Face and 91, 516 Faceswap
images. Since the number of fake images is two times more
than that of pristine images, we handle this data imbalance by
replicating each pristine image. For extracting a face region
within an image, we use the face recognition library5 which is
based on the face landmark estimation. Because the detected
face region is tight somewhat, we enlarge the face crop area
by 1.4 times centered on the extracted region.

We also use the 30k images of the CelebA-HQ dataset for
training G1, D and Dsn. Since the center-aligned images are
provided, we only resize them to 128 × 128. In addition,

5Code is available at https://github.com/ageitgey/face_recognition

the whole input images used for training all the networks are
normalized to become zero mean and unit variance. We also
use zero-padding to fit each image size to the input size of D
(224× 224× 3).
We set Tstep1 and Tstep2 to 18,750 and 333,191. In addition,

we do not pre-train D on FaceForensics++ in step 2 of
Algorithm 1 (i.e. TF = 0). Once a detector is trained, we eval-
uate it on a test set. This set contains 700 images encoded
by raw, HQ, and LQ. As an evaluation metric, we also use
the classification accuracy as also used in other works [10].
However, we emphasize that we evaluate the classification
rates of the test images via the benchmark server 6 since their
GT is unavailable.

1) GENERATIVE ENSEMBLE LEARNING
To verify the effects of the generators G1 and G2, we imple-
ment different versions of ensemble detectors D. We use
ResNet-101, DenseNet-121 and VGG-19 as our discrimina-
tors as described in Sec. IV-C. As shown in Algorithm 1,
we can define the training phases as step 1 and step 2, and
the description of the trained D is given as:

(M1) D without any generators;
(M2) D with G1, where G1 is trained in step 1, but G1 is

not fine-tuned further in step 2;
(M3) D with G1, where G1 is trained in both steps;
(M4) D with G1, where G1 is trained from scratch in

step 2;
(M5) D with G1 and G2, where G1 and G2 are trained in

step 1 and step 2, respectively;
(M6) D with G1 and G2, where G1 is trained in step 1,

but G2 is trained in step 1 and step 2.
In Table 1, we compare these detectors (M1-M6) with

different generative ensemble learning methods. We confirm
that (M5) using our proposed learning method shows the
best rate. This also proves that our method is effective to
discriminate between authentic and manipulated images.

In addition, (M2) and (M6) also show the high performance
for the classification of manipulated images by Deepfake
and Face2Face. This indicates that exploiting G1 for generic
fake image generation is an better way to improve our D
more. In addition, we find that (M3) and (M4) show the
high accuracy on Pristine images. In return, they show the
low accuracy on the fake image classification. Therefore,
G2 trained in step 2 contributes to improve the manipulated
image detection more. It supports our argument in Sec III-C
that G1 is trained to generate a generic fake image, but G2 is
trained to generate a fake image excluding synthetic artifacts.

From these comparisons, we verify that our generative
ensemble learning is indeed beneficial for the discrimination
between pristine andmanipulated images. In addition,G1 and
G2 can contribute differently to fake image detection by the
proposed learning method.

6FaceForensics Benchmark is available at http://kaldir.vc.in.tum.de/
faceforensics_benchmark/
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TABLE 1. Comparison with training manners of generators. In the model of G1 and G2, Pre-trained and Scratch mean that using pre-trained generator on
CelebA-HQ and training the generator from scratch, respectively. In the training of G1 and G2, Training and Fixed represent that updating and freezing
parameters of the generator during training, respectively.

2) DISCRIMINATOR ENSEMBLE
To find out the best ensemble combination among
DenseNet-121, ResNet-101, and VGG-19 discriminators,
we train detectors (S1)-(S5) with different D, and evaluate
them on the FaceForensics++ test images. Here, we fix gen-
erators as (M5) which achieves the best score as in Table 1.
The details of the implemented (S1)-(S5) are given in Table 2.

The results are also evaluated on FaceForensics++ test
images in terms of the classification accuracy. As shown,
the (S4) and (S5) using multiple discriminators also achieve
the better rate than (S1)-(S3) with a single discriminator.
However, it turns out that (S3) with VGG-19 is too biased
to the fake image classifications. This implies that a discrim-
inator with few layers and parameters can be easily fooled by
generators. Therefore, it is very crucial to balance between a
discriminator and a generator to prevent this problem. Due to
this reason, (S4) without VGG-19 also is superior to (S5).

D. COMPARISON ON FACEFORENSICS BENCHMARK
CHALLENGE
To prove the benefit of our method, we have participated in
the FaceForensics Benchmark challenge, and compared our
method with other state-of-the-art fake image detectors.

For this challenge, we use the recently updated
FaceForensics++ dataset [12]. This updated dataset contains
new videos manipulated by the NeuralTextures [37] method,
and the videos also consist of raw, HQ and LQ compressed
videos as mentioned in Sec. IV-A. The NeuralTextures can
change a facial expression of a source image with an expres-
sions of a target image while keeping its identity. To this
end, it first generates a rendering map (i.e. UV map) and a
Neural Texture map with the identity of a target image and
expression of a source image. Then, it feeds a target image
background, the UV map, and the Neural Texture map to
a rendering network for generating a photo-realistic image.
However, in NeuralTexutres videos on the FaceForensics++
[12] dataset, the facial expressions around mouth regions
are manipulated only although this method can change the
expression of eyes. In addition, [12] detects faces of source
and target images using the Face2Face face track model, and
use the PatchGAN [38] as a discriminator of the rendering

FIGURE 5. The first frame images captured from several Pristine and
NeuralTextures videos are shown. Because the NeuralTextures images are
generated by modifying the facial expression of the corresponding
Pristine images only, it is very challenging to discriminate both images.

network of the NeuralTextures. Figure 5 shows some Neural-
Textures images.

As NeuralTextures videos are included, an additional
change of this challenge is that only videos are provided
instead of images and videos. For 1k pristine videos, manipu-
lated and HQ/LQ compressed videos are generated by Deep-
fake, Face2Face, Faceswap, and NeuralTextures methods.
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TABLE 2. Comparison between different discriminator combinations. Here, the G1 and G2 using (M5) are used as generators.

TABLE 3. Comparison with state-of-the-art forensic detectors on the FaceForensics benchmark challenge. More details can be found in the FaceForensics
benchmark website. The standard deviation (Std. Dev.) scores are also calculated with the accuracies of all the 5 sets.

As a result, a total of 15k videos are contained in the dataset.
We have then captured 20 images per video, and extracted
face landmarks using the same face recognition library as
discussed in Sec. IV-C. We enlarge a face crop region by
1.3 times centered on the extracted region as done in [12].
To handle the imbalance between pristine and fake images,
we reuse each pristine image 4 times. As a result, we use
240k Pristine, 60k Deepfake, 60k Face2Face, 60k Faceswap
and 60k NeuralTextures images for training our detector.

As discriminators, we use pre-trained DenseNet-169 and
ResNet-152 on ImageNet [39]. We set Tstep1 and Tstep2 to
18,750 and 300,000. For training our discriminators, we set
TF = 8 within step 2 of Algorithm 1. Therefore, we first
train them only with the images of FaceForensics++ for
9 iterations (i.e. when kF = 1, . . . , 8 and kD = 1) Subse-
quently, they are trained with generated images by G1 and
G2. The main reason of this training strategy is to improve
the discriminability more on the FaceForensics++ dataset.
When trainingD, we set the initial learning rate to η2 = 10−5,
and decay the rate by a factor 0.94 after 5 epoch. Other hyper
parameters and training manners for learning D and G are
same as mentioned in Sec. IV-C.

We evaluate our trained detector on the benchmark test set.
This set contains 1k pristine andmanipulated images encoded
by raw, HQ, and LQ. As described in Sec. IV-C, we evaluate
detection accuracy from the benchmark server. We determine
whether each image is real or fake by comparing a confidence
(or output) score of our detector and a threshold 0.5. Once
uploading the predicted classes for all the test images to the
server, it provides detection accuracy.

In Table 3, we compare our ensemble detector with other
recent detectors. Even though two detectors [8], [33] show the
better performance, our detector is superior to most detectors
[29]–[33]. Especially, the accuracy of our method shows
almost similar to it of MesoNet [8]. However, [8] achieves
the performance by designing the specialized network for
fake image detection, but we achieve it without modifying
the base networks (i.e. ResNet and DenseNet). In addition,
for the NeuralTextures and Face2Face sets our detector is
better than [8]. As mentioned, it is more difficult to detect
fake images within both sets because the facial expression is
modified only.

In addition, for Pristine our method has the better accuracy
than other methods [29]–[33]. Remarkably, the most of them
in Table 3 show biased accuracies toward real or fake sets.
To show this problem clearly, we calculate the standard devi-
ation (Std. Dev.) of each method with the accuracy scores of
all the image sets. Here, a lower variance indicates less biased
to a specific set. As shown, our method achieves the lowest
score. It means that our detector has high generality.

V. CONCLUSION
In this paper, we have proposed the generative adversarial
ensemble learning for improving discriminability of manip-
ulated face images. We present a novel ensemble forensic
detector that consists of two different discriminators and two
same generators. Based on the prediction of the combined
discriminators, we can enhance forensic detection results.
In addition, we improve its discriminability using the syn-
thetic face images generated by the generators that can

VOLUME 8, 2020 45429



J.-Y. Baek et al.: Generative Adversarial Ensemble Learning for Face Forensics

produce different types of images. In order to train our detec-
tor in the adversarial manner, we also present our generative
adversarial ensemble learning algorithm and the adversarial
ensemble loss function.

In general, the purpose of conventional adversarial learning
is to improve a generator. In this learning, the discriminator
cannot discriminate both distributions between real and fake
images further if the generator captures the source data dis-
tribution completely.

On the other hand, our generative ensemble learning can
improve the discrimination ability. To this end, we make the
network structure of two generators and two discriminators
asymmetry. In specific, we use the ensembled model of
ResNet and DenseNet as a discriminator. Therefore, the dis-
criminator has a deeper structure than it of the generator, and
this sustains the discrimination ability of the ensemble one
during adversarial learning.

We have verified the effectiveness of the proposed meth-
ods throughout extensive ablation study. We show that our
proposed generator learning method can improve the detec-
tion rate by implementing and comparing different generator
learning methods. Then, we also prove that our ensemble
discriminator with DenseNet-121 and ResNet-101 is superior
to other single discriminators and other ensemble discrimina-
tors.

We further compare our detector with state-of-the-art
detectors on the FaceForensics benchmark challenge. Our
detector has showed the comparable performance with the
recent detectors. In particular, our detector shows the lowest
bias on several types of real and fake image sets. From these
results, we confirm that our generative adversarial ensemble
learning is indeed beneficial to improve the accuracy of a face
forensic detector.

To sum up, we have confirmed that our method shows
two main advantages. The first one is that our generative
adversarial ensemble learning can improve the discrimination
ability indeed. The other one is that our method is to alleviate
the problem, which recent works tend to be biased toward
real or fake classes. Moreover, our learning method does
not depend on a network architecture. Then, it can be easily
applicable for the existing detectors.

In addition, we expect that ourmethod can be used for other
domain image forensic (e.g. passport, driver licence, ID card
and SNS) that can cause social issues.
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