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ABSTRACT This paper builds on and extends the Channel-SLAM algorithm which exploits a multipath
radio channel for the position estimation of mobile receivers. Channel-SLAM treats Multipath Components
(MPCs) as Line-of-sight (LoS) signals originating from Virtual Transmitters (VTs) and estimates the
positions of VTs and receiver simultaneously based on Bayesian filtering. The current Channel-SLAM
implementation does not involve the retracking of previous MPCs or VTs. Therefore, when the tracking
of an MPC is lost and, subsequently, regained, the corresponding VT is initialized without any prior
information. Incorporating a stochastic data association algorithm extends Channel-SLAM and enables the
retracking of VTs even when the MPC has been lost. The proposed algorithm increases positioning reliability,
decreases computation complexity, and improves the precision of Channel-SLAM. Additionally, this paper
presents a novel transition model using inertial sensors for a hand-held device for moving pedestrians. The
developed positioning algorithm is evaluated based on measurement data obtained in an indoor scenario
using an off-the-shelf Ultra-WideBand (UWB) module. Evaluations show that accurate position estimation
can be done using only one physical transmitter and without requiring any knowledge of the physical
transmitter position.

INDEX TERMS Channel-SLAM, data association, navigation, multipath assisted positioning, multipath

channels, particle filters, pedestrian navigation, ultra wideband technology.

I. INTRODUCTION

Knowing the precise position of an object has always been
a huge advantage in many human endeavors. With the suc-
cessful launch of the Sputnik 1 satellite, the Soviet Union
initiated a new era of navigation. Shortly thereafter, William
H. Guier and George C. Weiffenbach used the Doppler shift
of Sputnik’s signal to obtain the position of the receiver. Their
groundbreaking work gave birth to the Global Position-
ing System (GPS) which was the first Global Navigation
Satellite System (GNSS) [1]. Today, most smartphones are
equipped with GNSS receivers which allow applications on
smartphones to be used for navigation and provide suffi-
cient position accuracy for mass-market applications in open
sky conditions. However, in indoor environments, received
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GNSS signals may be blocked, degraded by Non-line-of-
sight (NLoS) propagation or received with low power. Hence,
rather than relying on GNSSs in indoor environments, differ-
ent methods and sensor systems are used to obtain a position
estimate. Currently, Wireless Local Area Network (WLAN),
Bluetooth Low Energy (BLE), and UWB are commonly used
for indoor navigation. Using WLAN for indoor positioning is
a common approach because WLAN infrastructure is widely
deployed. Most WLAN position estimation algorithms use
Received Signal Strength Indication (RSSI) from different
WLAN transmitters. Positioning systems relying on BLE
for indoor positioning use RSSI and the new techniques of
Angle of Arrival (AoA) and Angle of Departure (AoD) [2].
UWB positioning systems use a high bandwidth to obtain
distance estimates at the cm level to allow positioning
accuracy in the cm domain to be obtained in indoor
environments.
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All the systems mentioned above also suffer from signal
blockage and degradation by NLoS propagation. A common
problem in an indoor scenario is multipath propagation of
the radio signal. This effect is caused by reflection and the
scattering of the transmitted radio signal. Hence, the received
signal does not consist only of the direct, LoS, signal, but also
of multiple delayed NLoS replicas with different complex
amplitudes and delays. The radio channel model linked with
this form of signal distortion is called a multipath radio chan-
nel and each of the signal replicas in the received transmission
is called an MPC.

A delay estimation problem arises when MPCs degrade
the ability of the system to determine the delay of the
LoS path. If the differences in propagation time between
MPC:s are less than the reciprocal of the transmission band-
width, the MPCs are observed as the envelope of their sum.
Standard distance estimation methods cannot resolve mul-
tipath propagation and are biased in multipath propagation
environments.

The positioning error caused by multipath propagation
effects have led to the development of a method called finger-
printing which is based on a database of signal measurements
and corresponding positions. Thus, when a receiver is moving
in an area with a premeasured database, the receiver compares
its signal observation with the database and provides an esti-
mated position according to the closest fit. One of the earliest
works dedicated to this technique was based on an RSSI and
Signal-to-Noise Ratio (SNR) measurement in a WLAN radio
network with multiple transmitters [3]. The authors of [4], [5]
used multipath fingerprinting for positioning.

Fingerprinting-based positioning methods require an
extensive measurement campaign to obtain a database of a
transmitter position or fingerprint data for its functionality.
Also, each change in the environment, e.g., change of trans-
mitter position, or rearrangement of the interior, requires the
database to be updated.

However, some multipath assisted positioning algorithms
do not require a fingerprinting database, e.g., the authors
of [6] show that a non-static UWB radar can be used to
estimate the surroundings. The extension in [7] shows that
the extracted features from the environment can be further
utilized for positioning using Simultaneous Localization And
Mapping (SLAM). Multipath assisted positioning algorithms
presented in [8]-[13], where the authors exploited MPCs
for positioning using transmitter mirroring, together with a
known room geometry and transmitter position using a sim-
ilar principle. Transmitter mirroring is explained using the
concept of the VT described in Section II-B.

Nevertheless, two techniques that do not require finger-
printing data, room geometry, nor transmitter position are
at work in a multipath radio channel. The common idea
of both algorithms is to assume MPCs as an LoS signal
originating from so-called VTs, including the LoS signal. The
only required prior information, according to SLAM theory,
is the initial position of the receiver because our receiver and
VT position uncertainty cannot be estimated better than the
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initial uncertainty of the receiver position [14]. The concept
of VTs will be further explained in Section II.

The first algorithm working in a multipath radio channel
is a belief propagation based on an algorithm extending the
JPDA-MINT algorithm [11] which estimates user position
and performing Joint Probabilistic Data Association (JPDA)
of MPCs with VTs concurrently. The algorithm presented
in [15] uses a SLAM technique to allow the algorithm to esti-
mate receiver position with no knowledge of the floor plan.
The JPDA-MINT (JPDA-MINT) assumes LoS and reflected
signals on a wall-like obstacle while ignoring the existence of
MPCs caused by the scattering of the transmitted signal. This
system is modeled as a factor graph using the sum-product
algorithm described in [16].

Our work is based on the Channel-SLAMchslam intro-
duced in [17]-[20]. As with JPDA-MINT, it also uses MPCs
as independent LoS signals propagating from VTs towards
the receiver. On top of the JPDA-MINT algorithm, the VT
model used in Channel-SLAM also includes scattering of
the transmitted radio signal. In contrast to the JPDA-MINT
algorithm, the estimation of position in Channel-SLAM is
based on a Bayesian filtering technique. There are only two
conditions that need to be fulfilled for the Channel-SLAM
algorithm to converge, the existence of the static multipath
radio channel environment and a moving receiver.

In this article, we propose a novel Channel-SLAM imple-
mentation for the indoor positioning of pedestrians carrying
a hand-held device equipped with an Inertial Measurement
Unit (IMU) and a UWB tag. It will be shown that this new
approach can estimate a position accurately with only one
UWRB anchor by using MPCs for positioning. Compared to
work before [20], we propose a Multiple Hypothesis Tracking
(MHT) [21] -based data association algorithm capable of
associating reappearing MPCs with corresponding VTs after
an outage. The data association algorithm will be shown to
improve overall precision.

The second significant change introduced in this article
is a new movement model for Channel-SLAM. It expands
the idea of using IMU data to improve the capability
of the algorithm introduced to Channel-SLAM in [20].
A self-learning pedestrian movement model, based on a gyro-
scope and accelerometer measurements, will be presented.
As we assume for hand-held devices, movement models for
pedestrian navigation are to be utilized where the distance
walked is estimated by counting steps, e.g., [22]-[24]. The
proposed model is based on this technique and exploits
the inference in Bayesian networks to adapt its parameters
according to all available measurements. This sensor fusion
helps to overcome the volatility of the model caused by
random changes of step length and walking pace.

The article is structured as follows. Section II defines
the signal and measurement model and describes the basic
concept of the Channel-SLAM algorithm based on VTs.
Section III contains the derivation of the Channel-SLAM
algorithm, including data association, the incorporation of the
inertial sensors’ measurements into the state evolution model,
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and the description of the positioning algorithm implemen-
tation. Section IV provides an experimental evaluation of
the proposed algorithm precision based on simulation and
measurement. We compare the proposed algorithm with the
state-of-the-art Channel-SLAM algorithm [20]. The article
concludes in Section V.
Throughout the paper, we use the following notations:
« ()T stands for matrix (or vector) transpose.
« Matrices are denoted by bold letters.
e Ay, and Ay, represent the submatrix and element
of 3-D matrix A, respectively.
« Vector is a special case of 1-D matrix.
« 17 denotes the [-th element of vector x.
« |x| denotes the cardinality of vector x.
o 4(-) represents Dirac distribution.
e a~N (/La, 03) denotes the Gaussian distributed ran-
dom variable a with mean y, and variance o2,
o p(a) denotes a Probability Density Function (PDF) or
Probability Mass Function (PMF) of random variable a
o 1: kstands for all integer numbers starting from 1 to k,
thus1,2,...,k.
e Z1.; 1S a concatenation of elements into vector
[x1,22,..., :L“k]T
o cg is the speed of light in a vacuum.
o Zdenotes the estimation of z.
o o stands for proportional.
. {z‘if)}fj‘-}: 1 defines the set consisting of two subsets for
mijwithizl,...,f,andj: 1,...,J.
o 715 defines the subset {z‘(k)}szl.

Il. CONCEPT OF CHANNEL-SLAM

A. MULTIPATH PROPAGATION

The behavior of the multipath radio channel can be described
mathematically by the causal time-variant Channel Impulse
Response (CIR). According to [25], the CIR can be assumed
to be time-invariant for a short time interval 6; = T;41 — T
and can be defined as a discrete function in time as

N
he (1) = ) o - 8 — T, M

=1
where N; is the number of MPCs, 7/, and «y; are the delay
and complex amplitude of the ¢-th MPC at time ¢. Finally,
8(-) stands for the Dirac distribution [26]. By assuming that
the transmitted signal s(7) is band-limited with bandwidth B
and time-limited with a length smaller than 7', the signal
received at time ¢ sampled with rate B, bin indices m =

0,...,M — 1 and the delay 1,, = % can be expressed as
N;
Fout = Y @uS(Tn = Ter) + Ny, 2
=1

where n,, denotes white, circular symmetric normal dis-
tributed receiver noise with variance o2 Using vector nota-
tion we obtain

rl:[r‘f()l‘7~"ar‘[mta"'7r‘[M711] (3)
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from (2). The CIR of (3) is represented as the sum of the
delayed and weighted Dirac distributions, each represent-
ing an individual MPC with a sparse structure. However,
the sparse structure of the received measured signal r; is
degraded by additive noise and the band-limitation of the
physical transmitter and receiver hardware. To obtain the
sparse structure of the CIR from r;, super-resolution multi-
path radio channel estimation algorithms are necessary.

The dynamic measurement scenario considered in this
paper, with a moving receiver and a static physical trans-
mitter, allows propagation paths to be observed for a certain
time duration. This time duration depends on the physical
transmitter, receiver positions, and the surrounding environ-
ment. Thus, we use a dynamic multipath radio channel esti-
mator named Kalman Enhanced Super Resolution Tracking
(KEST) [27] for estimating and tracking multipath radio
channel parameters. KEST allows the evolution of CIR to be
estimated over time, which is essential for Channel-SLAM,
see Section II-B. KEST consists of Kalman Filters (KFs) esti-
mating the complex amplitude oy, and delay ¢, of each MPC
with respect to Maximum Likelihood (ML). The number of
MPCs needs to be determined for the successful estimation
and tracking of the radio channel parameters. This is known
as amodel order determination [27] and it is part of the KEST
algorithm. KEST is using a penalized quality function, which
describes the ratio between the residuals and the received
signal, to decide if the model order should remain the same,
should be increased, or decreased. The initial number of
MPC:s is obtained using the successive interference cancel-
lation scheme similar to [28]. For further details about KEST
see [27].

B. CONCEPT OF VIRTUAL TRANSMITTERS
To use the tracked delays for positioning, a model describing
the delays 74 dependent on current user position Xpy; is
derived in [19]. We consider a static environment with a fixed
physical transmitter and a receiver moving along an arbitrary
trajectory. Fig. 1 shows an example of a measurement sce-
nario where a receiver moves along the red dotted line and
receives three replicas of the transmitted signal at each time
step:

o The direct path shown by the solid purple lines.

o The path caused by the reflection on a wall-like obstacle

indicated by the blue dashed line.
o The path linked to the scattering of the transmitted signal
on an obstacle marked by the green dashed line.

Hence, the parameters of three MPCs are expected at the
output of the KEST algorithm. In the case of the reflected
path, the transmitted signal is reflected on a reflecting surface
indicated by the solid black line. When the receiver moves,
the reflection point on the reflecting surface moves as well,
but if we mirror the physical transmitter position along the
reflecting surface, we obtain position Xtx 2; of VT, which is
static during the receiver movement. The distance between
VT, and the receiver is equivalent to the propagation time of
the reflected signal multiplied by the speed of light. Hence,
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XTX,?t

XTx,lt

FIGURE 1. The concept of the Virtual Transmitters. The LoS between the
physical transmitter xyy ; + and user trajectory in two time instances xgy o
and xgy ¢ is shown by solid purple lines. The MPCs caused by a reflection
on a wall-like obstacle can be interpreted as an LoS signal propagated
from VT, at position xyy 5 ¢ The position of xyy ¢ is obtained by
mirroring the physical transmitter position along the reflecting surface.
The real ray-like propagation is shown by the blue dashed line, while the
LoS interpretation is shown by the blue dotted line. Additionally,

the transmitted signal is scattered and VT; is defined at the position of
the scatterer xy, 3+ and the delay of the corresponding MPC is defined as
an LoS shown by the green dashed lines, with an additional propagation
length by 3¢ shown by the orange dash-dotted line.

the reflected signal can be interpreted as a direct signal propa-
gated from VT3 to the receiver Xgrx ; shown by the blue dotted
lines.

Additionally, Channel-SLAM exploits the scenario where
the signal is scattered, as shown by the orange dash-dotted
and green dashed lines. The propagation effect of scattering
occurs if an electromagnetic wave impinges on an object
(scatterer), and the energy is spread out in all directions [29].
Geometrically, the effect of scattering can be described as a
fixed point at the scatterer’s position in the pathway of the
transmitted signal. We define VT3 at the position of scatterer
XT1x,3: Which is constant for all receiver positions during the
movement. Further, we treat by 3, > 0, the constant distance
between the physical transmitter and scatterer indicated by
the dash-dotted orange line, as a constant propagation length
offset associated with VT3. Hence, the scattered signal can
be interpreted as a direct signal from VT3 to the receiver,
however, with the constant propagation length offset by 3;.

The concept of VT can be extended to a multiple reflec-
tion scenario and combinations of reflections and scatterings,
see [19], [20]. For each of the described propagation mech-
anisms the ¢-th MPC delay can be equivalently described
as a direct path between the VT,’s constant position Xtx ¢/
and the receiver’s position Xrx ; plus an additional constant
propagation length by ¢ . Hence,

der = T - €0 = ||XRx,r — X1x, 04| + bvoesr 4

where Xty ¢ is the position of the £-th VT. The position of the
VTs and the additional propagation lengths are constant over
time, however, for notational convenience, a time dependence
on ¢ is introduced here. The additional propagation length is
zero, i.e., by ¢; = 0, only if reflections occur on the pathway
between the physical transmitter and receiver or greater than
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zero, i.e., by ¢; > 0, if the MPC interacts with at least one
scatterer. In general, by ¢/co can be interpreted as a clock
offset between the ¢-th VT and the physical transmitter [19],
[20]. The model of the VTs also holds for the physical trans-
mitter. Hence the physical transmitter is also interpreted as a
VT with unknown location.

Thus, all VTs are static while the receiver is moving, which
fulfills both conditions required by the Channel-SLAM
algorithm.

Ill. ALGORITHM DERIVATION

In this section, we outline the essential steps of the proposed
algorithm derivation whose goal is to estimate the position
of user Xrx,0;. To do so, we first define the state of the
user as a concatenation of the user’s position and other state
parameters @ which will be defined in Section III-B. So,
the user state vector is

T
Xu,0:r = I:ng,O:t’ 0(1;:t:| : ®)

To benefit from a multipath radio channel, the VT posi-
tions and the constant propagation length offsets have to be
estimated simultaneously. Thus, we concatenate the position
of L VTs with the corresponding constant propagation length
offsets to obtain the VTs’ system state

T
T
Xv,1:L0:t = I:XTX’];L();tv bv,l:LO:z] . (6)

The whole system is the concatenation of a receiver state with
all of the VTs states denoted as

T
_[or T
X0:r = I:Xu,O:t’ Xv,l:LO:ti| . (7)

Assuming that the current state is dependent on the previ-
ous states, in time step ¢ we need to estimate the PDF of state
x; given all previous Xq.,— states and all collected evidence,
also known as a posterior PDF. In our work we assume two
sources of evidence: the parameters of the MPCs estimated
by KEST from rj.; concatenated in measurement vector

VAR S L (8)

and the output of the inertial sensors after calibration and
processing which is then used as a control signal uy.; as
described in Section III-B. Furthermore, association variable
n;., is used, which matches the individual MPCs with the
corresponding VTs in the system state. Otherwise stated,
the association variable n;, is an integer linking measurement
Zir with Xy ,,, ;. Assume, for example, that the measurement
vector consists of three delays z; = [1.4, 2.5, 4417, and the
Channel-SLAM currently consists of five VTs. If the first
delay is associated with the second VT in Xy ;, the second
delay with the fifth VT, and the third delay with the first VT,
the association variable would be n, = [2, 5, 1]T.

The problem of estimating the PDF of state xp.; at the
same time as the data association results in calculating a
Joint Probability Density Function (JPDF) conditioned on the
collected evidence

Z1y = [T01:4s -5 T 1t -

P (X0:, Dy | 21, 0yy) 9
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FIGURE 2. Graphical representation of the Rao-Blackwellized Particle
Filter, where user state x,, ; is represented by superordinate PF, while for

each user state particle x5 there is a set of independent subordinate
PFs representing the state 'of the individual VTs. The state of the p-th

particle of the ¢-th VT linked with k-th user particle is given by x‘(,kl‘;).

sometimes referred to as a posterior, or belief function
bel (xo:7, ny:).

The derivation of the proposed positioning algorithm is
based on previous work [19]. The difference is that we are
using the IMU-based control signals uy.; and data associa-
tion nj,, directly during the whole derivation which will be
exploited for our data association algorithm and movement
model. This approach results in a slightly different derivation,
but the main ideas of Channel-SLAM are preserved.

The first step during the derivation is to factorize the state
posterior defined in (9) as

data association posterior state posterior

p My | X0:5 Z1:r, W1) P (X0t | Z12r, UL)

data association posterior user state posterior

= p (nyy | X0, Z1:1, W) P (Xu,O:t | Ziy, ul:t)
< [Ip (xv.eo | Xu0:- 210 1) (10)

£-th VT state posterior

In the beginning, the posterior is separated into the data
association posterior and the state posterior using the prod-
uct rule. The later posterior is further modified using the
same rule to separate the state posterior into the user’s Xy o:s
and VTS’ Xy 1.0, posteriors. The last product term in (10)
is obtained using the independence between the individual
MPC:s in the wireless channel. We can exploit this conditional
independence to represent the user’s state by a superordinate
Particle Filter (PF) and each of the virtual transmitters by
the set of subordinate PFs. This concept is shown in Fig. 2
where each of the K particles representing X, ; is assigned
with the set of subordinate PFs representing L VTs. This
separation into the set of conditionally independent posteriors
is also known as a Rao-Blackwellized Particle Filter (RBPF).
For further information about the RBPF in Channel-SLAM
see [19].
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Now, if we look closely at the first two terms on the r.h.s.
of (10), we notice that it is actually a product of a data
association and user state beliefs. If we use Bayes’ rule and
the product rule, we obtain the term above as

bel (ny.;) bel (Xu,04) = 7p (z | 0, X)) p (0 | My_1)
p (2 | Xuro2i—1) P (Xur | Xu—1, 0r)
bel (1) bel (xy,0:—1) , (11)

where 7 is a normalizing constant given by the measurement
prior. It will be sufficient to perform normalization to obtain 1
as described in Section III-C. During the derivation, we used
the assumption that the current measurement vector z; is
statistically independent of all previous system states Xg.;—1
and data associations ng.;_. Also, we assume a first order
Hidden Markov Model (HMM), hence the current state Xy ;
only depends on Xy ;—; and the current control signals u,.
Similarly, the actual data association n, only depends on
the previous association n;_1. Following these assumptions,
we obtain from (11) the belief in sequential form

bel (xu,0:1) = 7p (%u.0) [ | P (*u.i | Xuim1. w)

i=1:t
p (Zi ‘ Xu,0:i Zl:ifl) , o (12)

where the belief of the whole trajectory bel (Xu’():,) is obtained
as a product of beliefs in all time steps.

Usually, we cannot calculate the most recent belief exactly,
but according to [30] we can approximate the desired poste-
rior PDF function by a posterior PMF composed of samples
from a PDF with assigned weights

bel (xur) ~ 3 w5 (0 —x). (13)
k

where § () is a Dirac delta function. The weights wfk) can be

obtained as a division of the target PDF and importance PDF
as

T X(k) Y/ u n
(k) u,t 1:25 Wl:p, MY
Wit = —— : (14)
q (Xu,t Ziy, Uy, nl:z)

where the nominator is the target PDF we desire to approxi-
mate by particles, and the denominator is the importance PDF
the particles are sampled from.

Based on the Generic Particle Filter [30], our algorithm
shows how to calculate the position and data association
beliefs jointly. Using (11) as a target PDF, and

MPC tracking

—_——~
p@ |0, x)p(m | m_1)p (Xu,t | Xu,r—15 ut) (15)

Data association PDF

User state evolution PDF
as an importance PDF, the weight at time # is proportional to

ky _ (k) (k)
Wie—1 =Wt Wi q—2> (16)

where we obtain the weights sequentially by setting

k k
wit X 21). a7

O(p(z,
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and

k
Wiy, _y ocbel (1) bel (xu,011) - (18)
The likelihood in (17) can be interpreted as a marginal PDF
over transmitters Xy 1.z, and by directly using the indepen-
dence between the individual MPCs and the product rule,
the marginal PDF can be written as

p (Zz Xl(ft), thl) & 1_[/13 (Zz
¢
(k)
p (Xv,et
As in [19], we obtain from (19)

(k) (kp) (k) kp)
Wii—1 & l_[ ZWZt—llt—Zp (Zt ‘ Xu,1> Xv,lt) . (20)
)

where the measurement likelihood function is calculated

using samples approximating the transmitter position x&p)

v, 0t
weighted by wékt’i )1 according to the multivariate PDF with a

specified kernel function as in the regularized PF in [30].

v,0t°

k k
xfm),x( ) szl)

k k
Xz ) ax) (19)

A. DATA ASSOCIATION

In the previous section, we derived a PF-based approxima-
tion of a position and data association joint belief. However,
it must be stressed that this approximation only fits when
we sample from the importance PDF defined by (15) where
the last term is linked with the movement model and will be
addressed in Section III-B. In this section, we focus on the
first two terms, p (z; | ny, X;), and p (n; | n;_1), and propose
a method to realize sampling from JPDF

P | m,x)p (0 [mp). 2

The terminology used in this work is related to [21] where
the reader can find a comprehensive description of the data
association problematic, including practical examples. For
the sake of thoroughness, we briefly define the terminology
used in this section.

The measurement is assumed to be information provided
by a detector when a detection condition is fulfilled. Thus,
it is not the whole set of measured values, only its subset
which fulfils certain conditions, e.g., the strength of the signal
or the number of occurrences in the number of consecutive
measurements (m-of-n). In our case, the KEST algorithm
serves as a detector and tracker providing us with estimations
of MPC parameters. We use measurement vector z, defined
in (8) as measurements.

However, even after being processed by the detector, some
of the values in z; can be caused by undesirable effects such
as the thermal noise of the receiver, or interference with
other systems operating in the same radio frequency band.
Such values of z, are called false alarms. As the detection
is assumed only when such a value of z; is provided by a
detector and, at the same time, is not a false alarm. In other
words, the detection is a measurement which is caused by
the target. The target is observed as an MPC caused by an
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LoS signal, or a wall reflection, or a scatterer. The continuous
observation of the target is called track. Finally, the set of false
alarm measurements is called clutter.

The proposed algorithm assumes an unknown number of
targets and is based on the MHT data association algorithm.
The premise of the MHT is to assume data association as
a random variable and to filter it using Bayesian filtration
techniques. However, it requires an exhaustive search over
the entire space of possible associations. The number of pos-
sible associations increases exponentially with an increasing
number of targets which renders the MHT computationally
infeasible in general. The derivation of the MHT can be found
in [21]. Hence, we only outline the MHT algorithm derivation
to demonstrate how our data association algorithm is similar
to MHT, how the reduction of computational complexity is
achieved, and how much it costs.

First, we define several statistics based on data associa-
tion n;, which will be advantageous for further derivations:

e The track indicator

b if z;; is caused by a tracked MPC 22)
' 0; otherwise

is used to indicate that the i-th element of the mea-
surement vector z;; originates from one of the already
observed MPCs.

o The new target indicator

if z;; is caused by a new MPC 23)
otherwise

indicates that z;, originates from a MPC which was not

yet observed, and we need to establish a new track.
o The detection indicator

1:
Se=1"
s

provides us with information telling us whether the MPC
linked with VT, is detected in current measurement
vector z;.

Note that sums 7 = Y, 7;, and v = ), v; provide the
number of targets in z;. Then the number of false alarms is
denoted by

if x is detected at ¢
e (24)
otherwise

¢=lz|-T—v. (25)

To derive the data association posterior PDF of (10), we use
the product rule and conditional independence to obtain

p My | Xo:, Z1y, Wiy) = P (20 | Dy, X)) p (M [ Dy—1)
bel (ny;;—1), (26)

where we drop the independent variables assuming first order
HMM. Notice also that we have ended with the exact same
equation as association belief bel (n;.;) from (11).

The first PDF on the right hand side (r.h.s.) of (26)
is the likelihood function and can be evaluated using
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indicators (22), (23), and (24) as

|z |
p(z | ng, %) = Ve HP zi)" [p (Zir | Xu, 15 Xv,n,-,t)]Ti )
i=1
27

where n;; is used to index the £-th VT. In cases when
zi¢ 1s not associated with the £-th VT, the likelihood is given
by a uniform PDF in a volume of interest V. Thus, for an
unassociated element of z;, the likelihood is 74t

The likelihood of a newly established VT is given as a prior
measurement given by 1/4/2m Q, where Q is the measure-
ment covariance. This idea can be intuitively viewed as the
likelihood of a newly initialized transmitter Xy ;41, since
its prior state is generated to have zero residuals, as will be
further addressed in the algorithm implementation section.

The second term p (n; | n;—1) in (26), which can be inter-
preted as the evolution of a data association state, is assumed
to be independent of the previous step p (n; | n;—1) = p (n;),
when the KEST labels are not available. In this case, only the
prior probability of data association p (n;) can be calculated.

When the data association algorithm obtains a measure-
ment vector of cardinality |z, it needs to label each delay
in z; as either one of the previously observed VTs, or newly
observed VT, or false alarm.

Each of the possible label assignments, how to assign |z;|
measurements with |z;| — ¢ VTs,' are equally probable.
However, we need to calculate how many of these unique
label assignments is possible to compose to calculate the
value of p (ny).

Using the summed indicator functions 7', v, and ¢, and the
fact they are fully defined by n;, according to Section 6.3 [21]
we can rewrite

pm) =pm, T (n),v(my),¢m))
=pm | T (m),v(m), ¢ (m))
p(T (m),v(my),dmy)), (28)

where the conditional term in (28) is calculated based on
combinatorics. The number of possibilities of how to assign
|z;| measurements with T previously observed targets is the
number of permutations. The remaining possibilities are the
combinations of how to label the remaining v + ¢ measure-
ments as either a new track or a false alarm. Finally, the last
term in (28) is modeled using clutter models.

Howeyver, since we have the KEST-based labels available,
we can use

p(m; [ n_y) (29)

in our data association algorithm to greatly decrease the
computational complexity. The idea is to use the label of
the MPC provided by the KEST algorithm as a simple hard
decision data association and use the soft decision data asso-
ciation algorithm only to resolve newly occurring MPCs,

INote that if the number of false alarms in measurement vector z; is ¢
then the number of VTs in z; is |z;| — ¢.
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or re-occurring MPCs after the KEST outage. The KEST
algorithm tracks the MPCs. However, individual MPCs might
not always be visible. This causes some of the MPCs to
disappear, or new MPCs to appear during the tracking. When
a new MPC appears, the KEST algorithm initializes a new
track and creates a unique label for this MPC. Since KEST
does not assume re-tracking when a tracked MPC disappears,
KEST removes such a track from its state. It also removes the
associated label and never uses it again. We refer to removing
the MPC from a KEST state as the KEST outage. The most
common cause of the KEST outage is shadowing of the signal
path or the signal propagation distance greater than the range
of the transmitter. For details on how the KEST algorithm
decides which MPC to remove, see [27].

It is not possible to use the MPC label directly as a data
association for two reasons:

o After an outage in KEST the label of MPC is dropped
and when the MPC originating from the same VT reap-
pears, it is assigned a new label. Hence, we would be
initializing a new VT despite the fact that the same VT
has already been observed.

e Due to the ‘“natural” data association used in
KEST [27], the measurement can be assigned an incor-
rect KF causing an association error. Every error in
KEST’s association would cause a hard decision error
leading to the divergence of the positioning algorithm.

Hence, we use the KEST-based association to shape the
p (ny | ny,_1), which would be otherwise independent of his-
tory n;—1 [21]. When the label of the i-th MPC provided by
KEST is the same as the label which was previously linked
with any of the VTs, we again link it with the same VT. This is
assured by setting p (n; | n;—1) = 0 otherwise. We illustrate
this in an example: Vector z;_; consists of three measure-
ments with labels L, 1 = [11, 22, 33]. The measurements
were assigned as VT two, three, and one; n,_; = [2, 3, 1].
In the following timestep, z; consists of four measurements
with L, = [11,44,55,22]. Since labels 11 and 22 were
observed in the previous timestep and are still observed in
the current timestep, we trust the KEST algorithm and set
niy = 2, and ng; = 3. The probability of any n, violating
the previous association is assumed zero. Hence, we do not
need to calculate (26) for associations, where n;; # 2 and
na; # 3, which greatly reduces computational complexity.

Hence, using the KEST labels significantly decreases the
number of possible n, for which (26) needs to be calculated.
Only the newly occurring labels need to be handled. At this
moment we abandon the optimal approach because we are
approximating the small probability that KEST is tracking an
errant path by zero. For this reason, we additionally propose
an algorithm resolving errors in the KEST labeling at the end
of this section.

Finally, we can describe the algorithm used to associate the
remaining unassociated measurements contained in a subset
of z;, indicated by z;, with the corresponding VTs. As shown
in our PF derivation in Section III, we are able to perform

46741



IEEE Access

R. Karasek, C. Gentner: Stochastic Data Association for Multipath Assisted Positioning Using a Single Transmitter

an estimation of joint PDF of the system state and data
association by sampling from (15), hence we need to obtain
samples from

p@ | n,x)pm; | m_y). (30)

Now, if we assume that all elements of z, labeled with
the same label as the previously observed VTs are already
assigned together, then (30) will be proportional to

p(z | nj.x})p(n}), 31)

where we have also omitted VTs associated with elements
of z; from x; to obtain subsets marked by an apostrophe
excluding already assigned data. Because of this, the remain-
ing associations are independent of history and p (n; | n;—1),
becomes an association prior p (n;)

Essentially, the number of elements in z, is usually zero
and only rarely is it greater than one. This means that, in most
cases, data association is resolved solely by KEST. When we
need to perform association according to (31), its complexity
is, in most cases, reduced to assigning only one measurement
with one of the set of currently unassigned VTs from x],
with a new VT while creating Xy 7.+1/, or with a false alarm.
However, when }z;] > 1, we resolve elements of z; one after
another which decreases the size of the space to search for
each resolved element of z,.

The optimal way would be to resolve all new occurrences
jointly using the optimal MHT filter, but we have chosen the
suboptimal method to decrease the computational complexity
of the data association algorithm. Our method is to assign one
measurement to one of the unassigned VTs, to anew VT, or to
a false alarm. When more than one unassigned measurement
is present, we apply the data association method for each
measurement separately. The motivation for this is to limit the
number of hypotheses under consideration. In other words,
we obtain a subset of the most likely n; for which we evalu-
ate (26), while setting p (n;) = O for all others n;. Since this
approach is performed for each superordinate particle sepa-
rately, we obtain a soft decision data association algorithm
related to the MHT filter where the reduction of the number
of hypotheses is also known as pruning [21].

Since we are associating a single element of z;,, the sam-
pling from (31) is done as follows. First, we calculate

p(Z:'t | ”;t,X;)P(”;t) (32)

for every possible value of n}, = 1 : L', where L is the num-
ber of unassociated VTs. Then, we sample the desired number
of particles from this PMF using a systematic resampling
scheme [31]. Then we omit z;, and x| , , from z; and x;.

This process is repeated while ‘z}! > 0.

To evaluate (32), we still need to show the solution for
P (n:t) This solution can be found in [21] but, in our case,
where we are not calculating associations jointly, we can
model the prior as uniformly distributed for association with
one of the older, currently unassociated VT. Then, the prob-
ability that the z}, is a false alarm is given by a constant
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probability of false alarm Pga. Similarly, the PDF of a new
target occurrence is the probability of new target Pn. This can
be written as

Pra; i=-—1
Px; =
POi) =11 py _ Py 0 (33)
—_— else.
|z,|

If we would like to perform data association jointly,
we would need to model the false alarm and the new target
occurrence as Poisson distributed random variables. Also,
the number of possible associations would increase exponen-
tially with the number of elements of z, rendering the joint
data association into an extremely computationally demand-
ing algorithm.

Finally, we address the situation where the KEST
algorithm can make an incorrect data association. A KEST
association error occurs when different targets cause almost
identical observations. This situation typically occurs when
the user is moving close to a wall, corners, or scatterer.
Then the LoS delay is almost identical to the delay of MPC
caused by the reflection from a nearby obstacle. This prob-
lem is especially severe if AoA information is not available.
The algorithms e.g., [32], and [33] can resolve overlapping
MPCs delays using AoA information. For these methods
the data association provided by KEST labeling is suffi-
cient, and the approximation used for KEST associated data,
p (ny | n,—1) = 0 1is nearly true.

Unfortunately, the proposed algorithm uses low-cost hard-
ware without AoA capability. Thus, we need to address this
situation and suggest a solution to the KEST association error.
We perform statistical testing to keep the associated track and
discard the tracks with the probability of an association error

(kp) _

P
1
e (z
Perr pmp:lp '

xflkt), x(kp)) s (34)

v, et

where P is the number of particles used to approximate the
£-th transmitter Xy ¢ ;, and Q is the delay measurement covari-
ance matrix. Note that this solution uses only the current time
step likelihood since all track likelihood information is lost
due to the weight normalization necessary in RBPF. This can
result in a rather pessimistic value of error probability, but
since we are performing MHT, we can decrease the number
of discarded tracks using the power operation in the track
discard condition

w< (p8) w~uo, (35)

where u is a number generated from a uniform distribution
U (0, 1) on the interval from zero to one, and cerr iS a con-
stant providing the robustness of the algorithm without the
necessity of increasing the number of particles.

B. MOVEMENT MODEL
In this section, we derive a novel movement model for
hand-held devices which incorporates IMU measurements.
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Research in this area provides us with some models and tech-
niques for using the acceleration measurement to improve
position estimation. Plenty of transition models exist in the
literature [20], [22], [34], [35], however they do not fit the
application in question. Considering a hand-held device, it is
not possible to double integrate body movement acceleration
to calculate position because, while hand-holding, the pedes-
trian is accelerating the sensor in many directions which
influences the measurement more than the actual pedestrian’s
movement. This problem is addressed, e.g., in [23], and [24]
where step detection and step duration is used for position-
ing. This approach requires the creation of a step length
estimator which can be done using a Bayesian framework
and/or usually a nonlinear regression-based approximation of
a feature function using, e.g., Support Vector Machine (SVM)
or Artificial Neural Network (ANN).

In our approach, we utilize raw IMU measurements of
angular velocities and accelerations, perform sensor calibra-
tion and extract yaw rate W, and the estimation of a Standard
Deviation (STD) of acceleration 8. The derivative of 8, with
respect to time, can be used to detect changes in walking
style, especially if the pedestrian is standing still, increasing
or decreasing the walking pace. Finally, the step frequency
o based on a peak/valley step detector [24] is used with step
length y, to calculate the distance walked.

The novel idea presented in this work is that we can approx-
imate not only position state vector X, ; but also control
signals uy, by a set of particles sampled from its prior. This
idea allows us to incorporate IMU measurements directly
into the movement model as stochastic control signals and
better approximate the time evolution PDF. This idea presents
a general approach allowing us to use a highly nonlinear
movement model without linearization and approximation
by Gaussian distributions. Moreover, since we are already
using PF to calculate (11), the incorporation of u,; does
not increase the computational complexity of the algorithm,
while a better estimate of importance PDF greatly improves
the performance of the whole positioning system.

The state vector is defined as

T
Xu,t = [xt,)’t’ Vlﬂ"plﬂblil,p Vt,bu,t] ) (36)

where x; and y; are coordinates of a receiver in a 2D Carte-
sian coordinate system, v, is the magnitude of a transmitter
velocity vector in m/s, W, is the yaw of a user in radians, b\i,’,
is a yaw rate bias in rad/s, y; is a step length in meters, and
the bias of a receiver clock after multiplying by the speed of
lightis in by ;.

The control signal vector is defined as

u; = [‘i[t’atv/ét’Stagt]T’ (37)

where W, is yaw rate in rad/s, o, is the stepping frequency in
Hz, B, is a derivative of B with respect to time, & is a flag
providing a binary estimation of whether the pedestrian is
moving (1) or standing still (0). This ismoving flag is esti-
mated according to the STD of accelerometer measurements.
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The last of the control signals, &;, is a flag indicating the
validity of the control signals.

The state evolution step p (xu,, | Xu.r—1, u,) is defined as
a nonlinear vector function which is possible to separate
into a set of equations, each corresponding to one variable
from a state vector (36). The set of state equations is defined
by (38)-(44).

The model used for position (38), (39), and velocity (40),
as shown at the bottom of the next page is, essentially, the
White Noise Acceleration (WNA) model [36] in 2D with the
only difference being that velocity is modeled as a magnitude
of velocity and angle in the direction of movement. In the
beginning, the white noise samples for every particle are
obtained from the Gaussian distributions with variances (TV%X
and av%,v for the x and y axes, respectively. Then, the generated
values serve as a point-wise approximation of a Gaussian
distribution. The variances are obtained from the expected
dynamics of a system and sampling period using the relation

Av = /802 , (45)

where Av is the maximal expected velocity difference
between two measurements, and §; is the duration of a time
step. Then, the expected covariance of a WNA model is
obtained automatically because we are performing a simu-
lation of this stochastic process using an approximation by
particles.

Next, the velocity is calculated by two possible relations
separated by validity flag ¢; in (40). If the data provided by
a step detector are not valid, then the term (1 —¢&) = 1,
and the future velocity is given by the previous velocity
and the influence of random acceleration. The second case,
when the pedometer data are valid, i.e., & = 1, the future
velocity is given by step length y,_1, step frequency oy,
the ismoving flag &, and again by acceleration noise. Note
that the measured values provided in the control signals are
also represented as samples from their prior PDFs, similar to
the acceleration noise in the movement model. This doubling
of the velocity update equation allows us to predict the PDF
of velocity even if the data provided by the IMU are not valid.

The prediction of yaw is given by (41), as shown at the
bottom of the next page. It is based on a Micro-Electro-
Mechanical System (MEMS) gyroscope measurement model
using Angle Random Walk (ARW) and Bias Stability (BS)
[37] to sample from its prior PDF. The ARW represents the
STD of angle noise after the integration, usually in °/ Vhr.
This value is provided by the manufacturer of the sensor. Then
the prior PDF of the angular velocity measurement ¥, in (41)
is given by

v

. T 1
U, =0, +—— — N (0,0%w), 46
L 1804/3600 V3, ( ARW) (46)

where the W, is the measured yaw rate value in rad/s obtained
from a gyroscope after the sensor calibration. The check
symbol “is used to mark values provided by the IMU after
calibration. The BS, the second parameter of the gyroscope
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measurement model, is included in a yaw rate bias estimator
in (42), as shown at the bottom of the this page. If we
assume that the calibration took place at the beginning of
a measurement, we can also assume that the calibrated bias
of a yaw rate is a zero-mean random number with Gaussian
distribution and the STD ogs in rad/s.

The estimation of step length is provided in (43), as shown
at the bottom of the this page, where the prediction of the
step length in the following time step is modeled as a random
variable given by the old value y;_1, and Gaussian zero mean
distributed noise with the STD +/3;0,,. The last part of the
step update equation is linked with the IMU measurement and
walking pace estimation [24] where ,B't is obtained as

b= i+ 5N (0.03). @7

where o is chosen high enough to cover the errors of B

which is the estimated derivative of B, provided by the step
counting algorithm as
b= PPt 48)
Ly
where function B, is an estimation of the acceleration STD
obtained by filtering the measured acceleration by a low pass
Butterworth filter.

We model the change of step length in (43) as a value
proportional to the change of acceleration STD with pro-
portionality constant cg. This simplification, of an unknown
dependence between the accelerometer measurement and the
actual change of the step length, is possible when we assume
a random distribution of the error of such mapping, as shown
in (47).

Finally, the time bias of a receiver is predicted by (44),
as shown at the bottom of the this page. The receiver bias
is modeled as a Wiener process with an STD A/8:10Rx.

The velocity update (40) used information extracted from
the IMU measurement but its PDFs had not yet been pro-
vided. The measured step frequency «; is a Gaussian dis-
tributed random number defined as

o =d +N (o, ag) , (49)

where &; is a step frequency value provided by the step
counter algorithm.

The PMF of a validity flag is binomial because there is a
nonzero probability that an error in a step detector algorithm
was made and the flag should be inverted with probability ps.
Then this PMF can be expressed as

a=w<ps)—é&l; u~UQO1, (50)

where £ is the validity flag provided by the step counting
algorithm and u is a uniformly distributed random number
on the interval from zero to one.

Finally, the ismoving flag PMF is obtained as

&=l (w<pe) =Gl Cer: w~u© D, 6D

where E, is a moving condition flag provided by the step

counter algorithm, ) is logical or operator, and ! is logical

not operator. {; is equal to one if the actual set of peaks
and valleys detected in the measured acceleration was in the
process of forming a sequence peak-zero-valley which was
then evaluated as a valid step. However, the & flag is not valid
when the user is standing still. For this reason &, is given as a
binomial distribution of ¢ with a probability of error p, only

. 8
5 = it + 8yvimi008 (Wit + 8 (B +by 1))+ TN (0.02,), (38)
, i 5 2
o = yiet + Syviisin (Wi + 8 (B + by 1))+ TN (0.7 ). (39)

. 2
Ve = (1 — 8;) \/I:th]COS (\Iltfl + 81‘ (\Ijt + b\i/,l‘—l)) + \/EN (O, U\/%X)]

+‘Pﬁ—1ﬁn(qﬁ—1-F5tCbt*‘b¢J—1))*'VQ;Af(O’a%)]2

. 2
ory [ 108 (11 48 (4 by, 1) + VBN (0.03)]

+ [Greuvimasin (Vo1 + 8 (¥ + by, 1)) + VBN (0, 65},)]2, (40)

U =W+ 8 (U +by, ), (41)
by = by + N (0.03s) (42)
Ve = vit + cpdir + VEN (0.02). (43)
by = bus1 + /SN (o, aﬁx) . (44)
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FIGURE 3. Block diagram of the proposed multipath assisted positioning
algorithm.

when the control signal is valid (¢; = 1). The ismoving flag
is raised otherwise.

C. IMPLEMENTATION OF THE POSITIONING ALGORITHM
This section aims to address practical problems which
need to be solved for the implementation of the pro-
posed Channel-SLAM algorithm. Also, we show the pseu-
docode of a proposed implementation in Algorithm 1, and
the pseudocode for a proposed data association method in
Algorithm 2. The principle of the algorithm is illustrated
by Fig. 3.

Algorithm 1 describes the proposed Channel-SLAM
implementation running from initial time Theg given by time
index t = 1 up to time Tepg given by time index fepg. The
initial set of K particles is drawn from a prior PDF p (xu,o).
The gyroscope offset by, (, is set to zero because we calibrate
the IMU sensor at the beginning of a measurement. The initial
step length yp is normally distributed with a mean value
corresponding to the walk of an average person. The initial
receiver time bias by o is assumed to be normally distributed
with a zero mean.

After the initialization of the user state, the while loop
in Algorithm 1 Line 2 is entered. The user state is
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predicted in Line 4 using the derived movement model
described by (38)—(44). If the measurement vector z; is not
an empty vector, we enter the for loop performing the data
association in Lines 6-15 as described in Section III-A.
The weight calculation described in Section III is applied to
Lines 17-23. Finally, the resampling in Lines 26 and 32 is
performed using a systematic resampling scheme [31]. This
Jforloop is executed for all of the user particles independently.

The steps of data association in Algorithm 1 proceed as
follows:

o The MPC labels provided by KEST are associated with
VTs with the same label.

« The remaining unresolved measurements z; are handed
over to the data association routine Algorithm 2 which
associate z;, with:

— False alarm if n](t) < 0.

— A new VT which will be initialized if n (k) =0.

- x(k 1(,5) if n(k) > 0.
This routine is done independently for each of the user state
particles. If any of the elements in z, are labeled as a false
alarm, it will be omitted from z, for the corresponding user
state particle.

The initial state of a p-th particle of an £-th virtual trans-

mitter x f t) is obtained by sampling a position uniformly

dlstrlbuted inside the radius r = z;, + 34/Q with the center
in xfl t) to assure that the true propagation distance is lower
than r with a probablhty higher than 99.7 %. The additional
propagation length pk ez is sampled as a normally distributed

variable with covariance Q and the mean value calculated as

k (kp) k
'U“h(k[”) =73~ ”Xiix)t’ XTxpét“ - bl(l f)’ (52)
v,bt
to support the existence of scatterers. The norm

||X](£() . X(Tkxp 2 ;I denotes a physical distance between the user

and virtual transmitter position in Carte51an coordinates. The
act of sampling the values of bV ep ; from a normal distri-
bution assures the 1ndependence of the VT prior PDF and
the concrete realization of z”. Thus, the influence of the
distance measurement error is marginalized when initializing
the VT, assuming b( p ) to be a random variable. The number
of particles necessary to initialize the transmitter state can
be obtained from Gauss’s circle problem [38]. If a new
transmitter is initialized, we initialize the set of initial weights
as

k
w;g’LIH =1/{/270. (53)

Now, when all elements of z; are either associated with a
transmitter or treated as a false alarm, we can proceed to the
weight calculation step. The weights of virtual transmitter
particles are calculated in Algorithm 1 Line 17. The likeli-
hood function is evaluated assuming a normal distribution of
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a z;; error with covariance Q as

2
k k k
(s -0, )
(kp) 1 - 20 . (54)
w = e .
n,q:) t 27T Q

The main problem is the fact that we are not able to normal-
ize weights associated with virtual transmitters, i.e., to sum up
to the unit, because in that case the differences between the
likelihoods of individual VTs would be lost. The next idea
might be to omit the normalization for weight calculation and
normalize it only for the resampling step. However, in this
case, we would face a numerical instability problem, since
the weights are always lower than one if covariance Q >
1/ (27) and, thus, all weights would geometrically converge
to zero. The multiplication in (16) causes this vanishing of
weights.

We solve the weight normalization problem using a for-
getting scheme given in Algorithm 1 Line 18. Details on
forgetting, in approximate Bayesian filtering, can be found
in [39]-[41], and [42] where the forgetting is used for RBPF.
The motivation for our square root forgetting is to ensure
numerical stability for high Q while preserving properties of
the individual virtual transmitters and how strongly it should
influence the user position weights calculated in Algorithm 1
Line 22.

If the KEST algorithm associates one or more MPCs with
a wrong label it would cause an incorrect association of one
or more elements in z, with VTs resulting in the corruption of
position estimation, and since we trust the provided labels as
described in Section III-A, we would not be able to recover
from it by resampling. The proposed solution enables the pro-
vided labels with a probability proportional to the likelihood
of the VT to be forgotten. The VTs with a lower likelihood
have a higher probability that an incorrect association will
occur. This step is done in Algorithm 1 Line 20.

At the end of this section, we mention that the number of
virtual transmitter state particles P is not fixed and decreases
as the estimated variance of a transmitter position decreases.
This concept allows us to save memory and computational
resources while the algorithm precision remains unchanged.
To implement this, the mean and variance of a user and a
transmitter state must be estimated. Note that the estimation
of the first two moments does not provide complete informa-
tion, but we use them to estimate characteristics as a Root-
Mean-Square Error (RMSE) of the position estimation, and
the required number of particles to sufficiently approximate
the state of the VTs. The estimation of the expected value in
PF is straightforward. Since the weights assigned to particles
represent the PMF approximation of the PDF, the expected
value of the user state is approximated as

~ k k
Mxy, = (k) ng\t) 1XEI t) (55)
%: tlr—1
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The estimation of a VT expected state is done in two steps as

. 1 (kp) _(kp)

M« z) = *p) Z Werr—1%v,e1> (56)
Zwmz 1 p
P

fix,,, = (k) Zw,l, ) (57)

Zwm 1

to allow the dynamic number of the particles for each of the
subordinate PFs separately. The VT’s expected state estima-
tion is used to estimate its second central moment

1
A2 (kp) (kp)
04 = = Gp 2 Weri-1 <Xv,£t -

X
v Z Werli—1 p

1
52— (k) A2
O%ver = ® sz\z—laxac) : (59)
%Wﬂ[—l k v, Lt

2
i) o

The number of particles in subordinate PF is proportional to

= Cp,| (‘7 *) ) (60)
XTx, 01

with a proportionality constant cp. The summation is per-
formed over the dimensions of a VT’s position X(TkX) ot

IV. EVALUATION OF THE PROPOSED ALGORITHM
PRECISION

A. MEASUREMENT ENVIRONMENT AND EQUIPMENT

The measurements were conducted using a UWB system
based on the Decawave DWM1000 chip using a two-way-
ranging method, see e.g., [43]. The precision of the Decawave
DWM 1000 Time of Arrival (ToA) estimation is 10 cm. The
measurement setup consists of one static UWB anchor and
a hand-held device carried by a walking pedestrian. The
hand-held device includes a UWB tag, an Xsense IMU
(MTI-G-700) and a laptop which stores the IMU and UWB
measurement data. For the measurements, the UWB system
is configured to a bandwidth of [S00] MHz and a carrier
frequency of [3.5] GHz. The Decawave DWMI1000 chip
can provide, in addition to the ranging information, the
measured CIR.

The measurement was performed in a rectangular room
with support pillars on one side. Two different volunteers per-
formed the experiment. Both volunteers were changing speed
and completely stopped, at least once for a short period during
the walk. The duration of each experiment was 140 seconds.
Fig. 4 shows the environment layout, the ground truth of the
pedestrian movement, the UWB anchor position indicated by
VT, and the VT positions VT2—VTg.

We used a Vicon motion capturer to track the movement
of the pedestrians, hence, to obtain the ground truth of the
pedestrian movement. The Vicon motion capture system is
capable of tracking the motion of the Vicon reflective marker
in a room with a ground area of approximately 7 m by
4 m within an accuracy below 1 cm. The Vicon reflective
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Algorithm 1 Channel-SLAM

Algorithm 2 Data Association

1 Initialize K particles from PDF p (xu, tzo); t=1;
2 while t < tepg
3 (fork=1:K

s | |x8) = Updatestare(x{)_.ui) 1/ see (38)-(44)

ut 1°
5 if zZ, =0
6 fork=1:K
7 Associate using KEST labels // see (29)
e/
8 ifz; #0
9 fori=1:|z]
. /
10 j = argmax (z, == z},)
// Associate z;, using
Algorithm 2
11 j]f) _Avmciaze( x{lk,) xi}kllLPt) n;k) Q,-)
12 if n](k) =—1
13 ‘Omlt zZ;, from z;
14 else if njlt‘) ==0
// Section III-C
(k 1:P) (k)
15 B Initialize x ', /', using X, ;
16 fori=1:|z]|
17 (l‘(lf)) 7evalL1kelzhoud<z,, x(k’ X‘(/kp()k) >// see (54)
it My
(k p) (kp) (kp)
18 )
unl(];)l\l 1 " (l‘)l 1]t— ZVn(k)
19 u =rand (0, 1)
(k ) Cerr
1 P
20 if u < P\/F ;1 n(k)t\t l // see (34)
(klP) () (k1:P) (k)
21 E{emove X (k) , from Xy M
(k) 2| (k p) // 20
2 Wie—1 = 1_[ Z Werle—1 see (20)

X —1
(LK) __ (1K) (k)
S Wir—1 = Wir—1 (Z th—l)

// superordinate PF resampling

2
(k)
A ”Eff =K Z ( z|z71>

25 if nef < nsuppp
26 resumpleSR([ a: K),x\(llilli(Ll;P)] ;ﬂtk) K) // see [31]
27 W(l K) _ L
MWi-1 = ¥
// subordinate PF resampling
28 fork=1:K
29 fori=1:|z]|
2
(kp)
30 ”Eff =P Z (k) _
tlt—1
31 if neg < nSubPF
32 resampleSR(x(k 1(P>) (’EAI)P) Pncw) // see [31]
v,n; t tt—
(k 1:P)
33 w WO = 1/«/271
(LK 1:P) (1K 1: P)
MWl G =Wt =1+ 1
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k) _(k1:P) _(k
Input: z;;, x fl,),x\(/le,ng),Q

Output: n

1 fort=—1:L

2 |ifl == -1

3 | |pe=Pra

4 |elseif ¢ ==

5 | |pe=Pn/V270

6 |elseif ngkt) ==

7 pe = 1=Py f’] evulLikelihuod(z,',, xu’,.xy‘czl;P)) // see (54)
=

8 sz
9 forZ_O L

10 @e =npe (1 — Pga)
nn={-10;...;L}
12 n = resampleSR(n, p, 1)

// see [31]

_10 T T
—— Ground truth 1
VT3x Ground truth 2
x VT
5| i
)
0 |
VT6® VT5® VTIES O VT4X
| \VT2X | |
—10 -5 0 5 10
y [m]

FIGURE 4. The environment layout with the ground truth of the
pedestrian movement during the performed experiments. The cross and
arrow mark the beginning and end of the experimental trajectory,
respectively. The blue crosses mark the positions of six virtual
transmitters. VT, is the position of the physical transmitter. VT,-VT, are
caused by the reflections from the room walls. VT5-VTg are caused by the
scattering of the transmitted signal on the room support pillars.

marker which was tracked by the Vicon motion capturer, was
attached to the hand-held device.

During the experiment, the ground truth of the pedestrian
movement, the IMU measurements, and the CIR provided
by the target UWB anchor were captured online while the
pedestrian was walking. The positioning was carried out
offline using the collected data.

B. EVALUATIONS OF PRECISION BASED

ON A SIMULATION

The simulation is performed to show the performance of
the proposed algorithms. Hence, the simulation assumes one
physical transmitter, three wall reflections, and two scatterers.
Based on the geometry, the positions of the VTs can be
obtained as described in II-B. The measurement vector z;.;
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TABLE 1. Parameters used for the evaluation of the simulations.

K 2000 cp 1000
Q 0.36 m? ow, 0.15m/s3/2
Ow, 0.15m/s3/2 ops 10deg/h
oy 5-1073m/s?/2  opy 1-1073m/s1/2
TARW 100/\/5 0’[} 1~10*4m/s4
Co 1-10~*Hz pe 1-1073
P¢ 1- 10_3 Cerr 3.8

is simulated as a noisy signal propagation distance between
the VT and the ground truth position XS,L including the
additional propagation length by ; for scatterers VT5—VTe.
The assumed noise of z;.; is normally distributed with STD
o = 0.1 m, corresponding to the precision of the UWB
system based on the Decawave DWM 1000 chip.

As with the real experiment, we assume outages in the
MPCs observations in the simulation. Similarly, in an actual
KEST-based estimation, the simulator generates a new KEST
label after an outage. The probability of the MPC outage is
selected for each MPC separately to achieve visibility for
a desired percentage of the time. When an outage occurs,
the outage duration is generated as a uniformly distributed
random number between zero and 10 seconds ¢/ (0, 10). The
percentage of visibility was selected 0.8, 0.7, 0.6, 0.5, 0.4, and
0.3 for MPC|—MPCg respectively.

The movement model uses the recorded IMU measure-
ments as input because creating an IMU measurement sim-
ulator for a walking pedestrian is not part of this work. The
IMU measurements serve as control signals for the move-
ment model, see Section III-B. The trajectory recorded by
the Vicon motion capturer was used as a ground truth of
the pedestrian movement xlﬂ:t for the simulation of zj.,
and for the precision evaluation. By this approach, we show
the performance of the proposed Channel-SLAM algorithm,
including the data association, compared to the state-of-the-
art approach presented in [20].

Table 1 summarizes the values of the parameters used in
the simulation. The parameters of the movement model are
set to fit all the measured scenarios.

The STD of the Decawave DWM 1000 chip ToA estimation
is 10 cm. However, the STD of the MPC delay estimate is
higher due to a low SNR of the reflections. We set the MPC
variance Q = 0.36 m? for our experiments. Therefore, we use
the same value for simulations.

The bias stability of the Xsense IMU (MTI-G-700) gyro-
scope is 10°/h, which is directly used as the movement
model parameter ops. Similarly, the noise density of the IMU
gyroscope is 0.01°/s/+/Hz, which corresponds to the angular
random walk 6° /h when a 100 Hz bandwidth is assumed. The
parameter tuning showed that the increased value oaArw =
10°/ Vhr yields better performance.

The parameters influencing the pedestrian velocity
(O, » Owys Oys O, and o) are set to envelope the walking
dynamics similar to the WNA model [36]. However, when
the choice is too large, the deviation of the superordinate
particles is also large, resulting in a high number modes of

46748

llovee /21
0 01 02 03 04 05 06 07 08

25 I I
- x- MPC,
- A~ MPCsy
20 MPCjy
. - o- MPCy
| o, - %- MPCjs
= 15 \‘& RO /}
=i £ ; x, 9l -
T N .-'p . \(.> @' e 2y,
e W PN P M P
O]t TR o Ky
N [ % I TorT Jé{ 4*[ i
5 N # - _AX 3 ¥ Sy o,
oy ,ﬁﬁ*ﬁ" Q:, , e ‘?(/ *\)g N
RNt X Ay
b o
0
0 20 40 60 80 100 120 140
t[s]

FIGURE 5. The simulated CIR with ground true MPCs for the scenario
number one. The MPC outage is designed to achieve the time percentage
of visibility 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3 for MPC; -MPCg, respectively. The
magnitude of the estimated impulse response |« | is not assumed in
the simulation.

10°

RMSE [m]

—»— Proposed algorithm B
IMU movement model

—B— State-of-the-art
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FIGURE 6. Comparison of the simulated RMSE of the proposed
Channel-SLAM algorithm and the state-of-the-art Channel-SLAM [20]. The
achieved precision of the IMU-based movement model without using the
Channel-SLAM is shown by the orange line. The solid and dotted lines
illustrate the first and the second scenarios, respectively.

the estimated posterior PDF, which significantly decreases
the precision.

Fig. 5 shows an example of the simulated CIRs for recorded
scenario number one. The random outages of the noisy MPC
observations provide a short time track similar to a real MPC
parameter estimation provided by KEST. Since the amplitude
of the MPC is not included in the proposed Channel-SLAM,
we simplify the simulation by setting a constant amplitude for
all MPCs.

Fig. 6 compares the performance of the proposed
Channel-SLAM  algorithm with the state-of-the-art
approach [20] for each simulation. The solid and dotted lines
illustrate the first and second scenarios, respectively. The
RMSE of the proposed algorithm never exceeds 1 m for
either scenario. The IMU movement model RMSE illustrates
the advantage of using a step-based movement model where
using just this movement model can outperform the state-of-
the-art approach using the Rician movement model.
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FIGURE 7. The empirical CDF of the RMSE ¢ over the runs of the
simulation. The proposed Channel-SLAM algorithm with data association
provides significantly better performance than the state-of-the-art
Channel-SLAM. The achieved precision of the IMU-based movement
model without using the Channel-SLAM is shown by the orange line. The
solid and dotted lines illustrate the first and the second scenarios,
respectively. The additional grid lines mark the 90% confidence interval
of the RMSE for each plot.

The empirical Cumulative Distribution Functions (CDFs)
in Fig. 7 shows the overall comparison of the proposed
Channel-SLAM algorithm with the state-of-the-art approach.
The precision of the proposed algorithm outperforms the
state-of-the-art approach in each simulated experiment. Also,
we show the performance of the standalone IMU-based
movement model to illustrate how the Channel-SLAM algo-
rithm corrects movement model errors.

The additional grid lines mark the 90% confidence inter-
val of the RMSE for each plot. For the first scenario,
the 90% confidence interval of the proposed algorithm’s
RMSE is £0.58 m, whilst for state-of-the-art it is £1.32m,
and £1.21 m is achieved using only the IMU-based move-
ment model. For the second scenario, the 90% confidence
interval of the proposed algorithm’s RMSE is 40.67 m,
whilst for state-of-the-art it is £1.05m, and £1.03m is
achieved using only the IMU-based movement model.

The computational complexity of the algorithms not only
depend on the setting of the algorithm parameters, but also
on the number of the MPCs, parameters of the MPCs, and the
number of KEST outages. Based on a desktop computer using
MATLAB R2018b implementation, we obtain the average
duration of one run for the first scenario as 96.6 min for
the proposed, and 91.3 min for the state-of-the-art algorithm,
and for the second scenario 73.4 min and 71.5 min for the
proposed and the state-of-the-art algorithm, respectively.

The comparison of the proposed Channel-SLAM algo-
rithm with the state-of-the-art approach shows that the data
association capability proposed in this work yields signifi-
cantly better performance of the position estimation.

C. EVALUATIONS OF PRECISION BASED ON
MEASUREMENT

The MPCs extracted from the CIRs using the KEST algorithm
are used as an input for the evaluation of the Channel-SLAM
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FIGURE 8. The layout of testing scenario number one with ground truth
of the pedestrian movement and one realization of a proposed
positioning algorithm with data association. The crosses mark the
positions of four virtual transmitters. VT, is the position of the physical
transmitter. Other VTs are caused by reflections from the room walls.
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FIGURE 9. The layout of testing scenario number two with ground truth
of the pedestrian movement and one realization of a proposed
positioning algorithm with data association. The crosses mark the
positions of four virtual transmitters. VT, is the position of the physical
transmitter. Other VTs are caused by reflections from the room walls.

precision. Since we use the same recorded ground truth of the
pedestrian movement together with the IMU data, we are able
to compare the simulation with the performance achievable
using low-cost hardware in a real scenario.

Fig. 8 and Fig. 9 show the recorded ground truth of the
pedestrian movement and one realization of position estima-
tion of measurement scenarios one and two, respectively. The
values of the parameters used in the experiment are the same
as the parameters used for the simulation, given in Table 10.

Fig. 10 shows the output of the KEST algorithm estimating
the parameters of the MPCs from the recorded CIR during
experiment scenario number one. The scatter plot color map
indicates the estimated MPC magnitude. Additionally, based
on the ground truth of the pedestrian movement, we show the
calculated theoretical delay of the MPCs MPC|-MPCg orig-
inating from VT|-VTe, respectively. The scatter plot shows
more than the six MPCs. Those additional MPCs might be
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FIGURE 10. Comparison of the estimated CIR with the ground truth MPCs
originating from VTs for scenario number one. The magnitude of the
estimated CIR |« || is shown by the scatter plot color. The receiver
provides the amplitude measurement as a 16-bit number. The individual
MPCs can be easily lost due to shadowing by the user’s body and by
other obstacles.

caused by multiple reflections of the transmitted signal, and
by other scatterers. For the sake of plot readability, we show
only MPC|-MPCg¢. However, the positioning algorithm is
utilizing all of the available MPCs.

We can see that the calculated theoretical delay indicated
by the dashed lines in Fig. 10 match the KEST estimate, when
detectable. However, the MPCs are often distorted and cannot
be tracked reliably all the time. Hence, the algorithm has to be
robust to deal with outages that are occurring even more often
when low-cost hardware is used compared to the professional
broadband channel sounder used in [20].

Additionally, KEST may associate incorrect MPCs during
the tracking. This is visible e.g., at t = 35's, where MPCj3 is
wrongly assigned and its delay continues to decrease. Since
only MPC; and MPC3; are observed, this faulty assignment
would cause significant positioning error by steering the
estimated position sideways.

However, this wrongly tracked MPC is successfully rec-
ognized by the KEST error detection algorithm described in
Section III-A, and the KEST-based association is dropped.
The effect of this algorithm is apparent in scenario one,
marked using solid lines, in Fig. 11, where the RMSE of the
state-of-the-art algorithm starts to increase, while the RMSE
of the proposed data association algorithm starts to decrease
shortly after.

The proposed Channel-SLAM algorithm improves the pre-
cision of the position estimation, as already mentioned in the
previous paragraph. This is depicted in Fig. 11 where the
comparison of the state-of-the-art approach with the proposed
Channel-SLAM approach is illustrated using the RMSE. The
solid and dotted lines illustrate the first and the second sce-
narios, respectively. The RMSE of the proposed algorithm
never exceeds 1 m for both scenarios unlike the state-of-the-
art approach exceeding 1 m in both scenarios. The IMU-based
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FIGURE 11. Comparison of the RMSE of the proposed Channel-SLAM
algorithm and the state-of-the-art Channel-SLAM [20]. The achieved
precision of the IMU-based movement model without using
Channel-SLAM is shown by the orange line. The solid and dotted lines
illustrate the first and the second scenarios, respectively.
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FIGURE 12. The empirical CDF of the RMSE ¢ of the user position
estimation. The proposed Channel-SLAM algorithm with data association
provides significantly better performance than without the data
association, or when using only the IMU-based movement model or the
state-of-the-art Channel-SLAM. The values of maximal error for 90%
probability interval are shown in the figure.

movement model RMSE illustrates how well the movement
model inaccuracy is corrected using the CIR measurements.

The empirical CDFs in Fig. 12 show the overall com-
parison of the proposed Channel-SLAM algorithm with the
state-of-the-art approach. The precision of the proposed
algorithm outperforms the state-of-the-art approach in each
experiment. Also, we show the performance of the standalone
IMU-based movement model to illustrate how the
Channel-SLAM algorithm corrects the movement model
inaccuracy.

The additional grid lines mark the 90% confidence interval
of the RMSE for each plot. For the first scenario, the 90%
confidence interval of the proposed algorithm’s RMSE
is £0.81m, whilst for state-of-the-art it is +1.31 m, and
+1.21 m is achieved using only the IMU-based movement
model. For the second scenario, the 90% confidence interval
of the proposed algorithm’s RMSE is +0.80 m, whilst for
state-of-the-art is £1.50 m, and +1.03 m is achieved using
only IMU-based movement model.
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The average duration of one run for the first scenario
is 54.5 min for the proposed, and 48.1 min for the state-of-
the-art algorithm, and for the second scenario 59.2 min and
53.9 min for the proposed and the state-of-the-art algorithm,
respectively.

The comparison of the proposed Channel-SLAM algo-
rithm with the state-of-the-art approach shows that the data
association capability proposed in this work yields signifi-
cantly better precision of the position estimation.

When the low-cost UWB anchor is used, the MPCs are
observed for a lower percentage of the time, and the out-
age can last longer compared to the professional broadband
channel sounder used in [20]. During the KEST outage,
the variance of user position increases, and when the MPCs
re-occur, the initialization process creates new subordinate
particle filters to start estimating the VT again. However,
the variance of the user position is reflected in the variance
of the VT via the initialization process. Thus, re-occurring
VTs cannot improve the position estimation when the state-
of-the-art approach is used for positioning. On the other hand,
if the data association is performed, and some of the user posi-
tion particles are associated with a previously observed VT,
the variance of the position estimation decreases immedi-
ately. This process can recover the precision after an MPC
outage.

The experiments were performed in a room with smooth
walls and round scatterers. We do not expect the perfor-
mance of the proposed algorithm to be negatively affected
by an environment with rough walls and different shapes of
scatterers. The experiment described in [19] was performed
in an environment combining a lobby with glass walls and
a meeting room with many edges around windows, which
supports our belief.

V. CONCLUSION

In this paper, we have proposed an improvement for
the state-of-the-art Channel-SLAM algorithm and performed
simulations and experiments using low-cost hardware to
demonstrate the robustness of the proposed methods. It has
been shown how the fusion of all available data provided by
the IMU and signal measurement in a multipath radio channel
allows positioning with only a single receiver and transmitter.
On top of this, we can map the position of the physical trans-
mitter, virtual transmitters, and scatterers. Finally, we com-
pare our method with the state-of-the-art approach showing a
substantial improvement of the precision.

The main improvements of the Channel-SLAM algorithm
are a new movement model and a data association algorithm.
The movement model, which incorporates the IMU measure-
ments presented in Section III-B, increases the robustness of
the algorithm when only a low number of MPCs are observed.
The proposed data association method allows us to reuse
the previously observed VTs and to provide a tool to deal
with errors in the KEST labeling of MPCs. We also show a
derivation of the Channel-SLAM algorithm jointly with data
association. An interesting output of the derivation is the data

VOLUME 8, 2020

association method, which is similar to the MHT obtained
naturally during the derivation.

There are still open problems we need to address in future
work. The low-cost UWB hardware has a low update rate
causing changes of distance between measurements compa-
rable with the wavelength of the carrier frequency, hence
the linear model assumption used in KEST is violated for
phase tracking. This nonlinearity causes the KF to be inca-
pable of tracking the phase of the MPCs, which increases
the probability of the KEST association error. Resolving this
problem may be possible using a tight fusion of the UWB
measurement with Channel-SLAM.
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