
Received February 17, 2020, accepted February 29, 2020, date of publication March 4, 2020, date of current version March 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978399

A Universal Approximation Method and
Optimized Hardware Architectures
for Arithmetic Functions Based
on Stochastic Computing
ZIDI QIN 1, YUOU QIU1, MUHAN ZHENG1, HONGXI DONG1,
ZHONGHAI LU 2, (Senior Member, IEEE), ZHONGFENG WANG 1, (Fellow, IEEE),
AND HONGBING PAN 1
1School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
2School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

Corresponding author: Hongbing Pan (phb@nju.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61376075 and Grant 41412020201.

ABSTRACT Stochastic computing (SC) has been applied on the implementations of complex arithmetic
functions. Complicated polynomial-based approximations lead to large hardware complexity of previous
SC circuits for arithmetic functions. In this paper, a novel piecewise approximation method based on Taylor
series expansion is proposed for complex arithmetic functions. Efficient implementations based on unipolar
stochastic logic are presented for the monotonic functions. Furthermore, detailed optimization schemes are
provided for the non-monotonic functions. Using NAND and AND gates as main computing elements,
the optimized hardware architectures have extremely low complexity. The experimental results show that a
broad range of arithmetic functions can be implemented with the proposed SC circuits, and themean absolute
errors can achieve the order of 1 × 10−3. Compared with the state-of-the-art works, the approximation
precision for some typical functions can be increased by more than 8× with our method. In addition,
the proposed circuits outperform the previousmethods in hardware complexity and critical path significantly.

INDEX TERMS Stochastic computing, arithmetic functions, approximation, VLSI architecture.

I. INTRODUCTION
Stochastic computing (SC) is an attractive approximate com-
puting method which performs basic computing operations
based on probabilities [1]–[3]. Using very simple and low-
cost arithmetic units, SC circuits have been exploited inmany
applications, such as neural networks [4]–[8], image process-
ing [9] and low-density parity check (LDPC) decoding [10].
However, the computation based on probabilities can cause
performance degradation, so SC is suitable for applications
with low requirement of numerical precision.

SC uses the probability of one’s occurrence in a bit-stream
to represent the value of a number, and processes ran-
dom bit-streams called stochastic numbers (SNs) instead of

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Huo .

deterministic numbers. To represent a real number x,
a stochastic number generator (SNG) is required to produce
a random sequence X of length K , and there are K1 ones in
X . In unipolar format, the value of x equals px = K1/K and
x ∈ [0, 1], where px is the probability of ones in the sequence
X . In bipolar format, the value of x is represented with 2px−1
and x ∈ [−1, 1].
Since traditional binary arithmetic is converted into proba-

bility calculation of SNs, complex arithmetic operations can
be performed with very simple logic circuits in SC [11].
In unipolar format, the multiplication of two SNs can be
implemented by using a single AND gate instead of a com-
plex multiplier. Additions can be performed by multiplex-
ers (MUXs), but the outputs from MUXs are scaled results
which have some precision loss. ANOT gate is used to imple-
ment 1 − x in unipolar format. A NAND gate can perform

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 46229

https://orcid.org/0000-0003-1778-0640
https://orcid.org/0000-0003-0061-3475
https://orcid.org/0000-0002-7227-4786
https://orcid.org/0000-0002-7181-8278
https://orcid.org/0000-0003-3924-227X

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

FIGURE 1. Basic components in SC circuits. (a) stochastic number
generator (b) NOT gate: y = 1− x (c) AND gate: y = x1x2 (d) NAND gate:
y = 1− x1x2 (e) Multiplexer: y = (x1 + x2)/2.

y = 1− x1x2 in unipolar format. These simple logic comput-
ing elements can significantly save hardware resources and
power consumption in digital systems.

Transforming deterministic numbers into random bit-
streams [12], [13], SNGs are important components in SC
circuits. The hardware implementations of SNGs can influ-
ence the computing accuracy and hardware complexity of
SC systems [14]. A typical architecture of an SNG is shown
in Fig.1 (a). By comparing an m-bit binary number x with a
series of m-bit random numbers, an SNG can produce an SN
of length N . A linear feedback shift register (LFSR) and a
comparator are the basic components in an SNG. The LFSR
can generate pseudo randomnumbers for comparisonswith x.
In every clock cycle, if x is bigger than a pseudo random num-
ber, 1 is generated as one bit of the output. To represent the
computing results with high precision, long bit-streams are
usually required, which can lead to long computing latency.

Taking advantage of the above-mentioned features of
SC, complex arithmetic functions can be implemented by
using low-complexity circuits. In [11], based on finite-state
machines (FSMs), the stochastic implementation method for
exponential and hyperbolic tangent functions has been pro-
posed. In [15], [16], FSM-based method has been further
explored to synthesize more types of arithmetic functions.
Higher approximation precision can be achieved by increas-
ing the state numbers of FSMs. However, the hardware com-
plexity increases in proportion to the state numbers. Bernstein
polynomials have been employed for the approximation and
stochastic implementations of arithmetic functions [17], [18].
The approximation accuracy of this method is related to
the degrees of Bernstein polynomials. Higher degrees can
improve approximation accuracy, but lead to a significant
increase in hardware complexity. On the basis of truncated
Maclaurin series polynomials and Horner’s rule, complex

arithmetic functions can be implemented with multiple levels
of NAND gates [19]. The method in [19], however, requires
complicated polynomial expansions or factorizations, which
leads to large hardware complexity. Recently, [4], [20] used
stochastic circuits to implement piecewise linear (PWL)
approximation of arithmetic functions. To implement the
functions with simpler stochastic circuits, [20] proposed to
transform the approximated linear functions by analyzing
the values of parameters in different segments. However,
the method in [20] is only suited for a narrow range of
functions, because the transformations are constrained by the
values of parameters.

This paper provides a novel approximation method and
low-complexity hardware architectures for arithmetic func-
tions. The main contributions of this paper are as follows.

1) On the basis of piecewise approximations, truncated
Taylor expansion is used to formulate the approximate com-
putation of arithmetic functions. To simplify the hardware
implementations, universal equations based on unipolar for-
mat are further developed for different kinds of functions.

2) Using NAND and AND gates as the basic computing
components, very low-complexity hardware architectures are
provided for different kinds of arithmetic functions.

3) The optimized implementation schemes for non-
monotonic functions are investigated in detail. An efficient
scheme for improving the approximation precision is further
presented. We have verified the proposed method on a wide
range of arithmetic functions, some of which are investigated
for the first time.

The rest of this paper is organized as follows. Section II
introduces the proposed method for arithmetic functions
approximation in SC. Section III provides the efficient hard-
ware architectures for arithmetic functions. Experimental
results are introduced in Section IV. Comparisons with pre-
vious works are presented in Section V. Finally, we conclude
this paper in Section VI.

II. PROPOSED APPROXIMATION METHOD FOR
ARITHMETIC FUNCTIONS BASED ON
STOCHASTIC LOGIC
In this section, the basic approximation method for arithmetic
functions is introduced. On the basis of truncated Taylor
expansion and piecewise approximation, an approximation
scheme is derived for continuously differentiable arithmetic
functions. Then stochastic implementation schemes are fur-
ther provided for the functions using stochastic unipolar
format.

A. THE BASIC APPROXIMATION METHOD
Assume that a continuously differentiable function f (x) is
approximated by f ∗(x), and the input x is in the interval
[α, β]. Firstly, we divide input range [α, β] into S equal sub-
intervals. Thus, the length of each sub-interval is h = |α −
β|/S. In [α, β], the first sub-interval is denoted by [α0, α1]
and the ith sub-interval is denoted by [αi−1, αi], where i is
the index of a sub-interval, i = 1, . . . , S.

46230 VOLUME 8, 2020

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

In the unipolar format, the input range and output range in
SC are both [0, 1], so the functions to be approximated should
satisfy these conditions. In the following, we only discuss the
functions owning the input range and output range of [0, 1].

In the PWL method [20], the original function is approxi-
mated by a linear function in each segment. The straightfor-
ward way is to determine the approximated linear function as
y = aix + bi, where i denotes the ith segment. The detailed
scheme of how to determine parameters of the functions is
introduced in [20].

We propose a novel approach based on truncated Taylor
expansion to approximate the curves in each sub-interval.
According to the Taylor series expansion, f (x) can be
expanded at x = x0 as follows:

f (x) = f (x0)+ f ′(x0)4x +
1
2!
f ′′(x0)(4x)2 + . . .

+
1
n!
f n(x0)(4x)n, (1)

where 4x = x − x0.
In a small interval, a function can be approximated by

Taylor series expansion with high precision. When S is large,
the length of a sub-interval can be very small. For instance,
when S is 16 for the range [0, 1], the length of a sub-
interval is 0.0625. Higher order expansion can provide better
approximation performance, but can also increase hardware
complexity significantly. Plus, when 4x is small, the high
order terms in Eq. (1) can only bring trivial improvement in
precision.

To achieve a balance between hardware complexity and
precision, we use the first order Taylor expansion in a small
sub-interval. Then f ∗(x) in a sub-interval can be expressed as
follows:

f ∗(x) = f (x0)+ f ′(x0)4x = f (x0)+ f ′(x0)(x − x0). (2)

In a sub-interval [αi−1, αi], we set x0 = αi−1, and put
αi−1 = (i− 1)× h and αi = i× h into Eq. (2):

f ∗(x) = f (αi−1)+ f ′(αi−1)4x

= f (αi−1)+ f ′(αi−1)(x − αi−1)

= f ((i− 1)h)+ f ′(αi−1)(x − (i− 1)h). (3)

For an arbitrary input x, as long as index i is determined,
Eq. (3) can be used for approximating f (x). The correspond-
ing value of index i can be determined by Eq. (4):

i = bx/hc + 1, (4)

where bx/hc is the integer part of x/h and is denoted by p.
Furthermore, when the length of [αi−1, αi] is small,

the segment in this sub-interval can be seen as a straight line.
Thus, the gradient f ′(x) can be approximated as a constant.
We propose to approximate the gradient f ′(αi−1) by the fol-
lowing equation:

f ′(αi−1) ≈
f (αi)− f (αi−1)

h
≈
f (ih)− f ((i− 1)h)

h
. (5)

Then Eq. (3) can be transformed into:

f ∗(x)= f ((i−1)h)+
f (ih)−f ((i−1)h)

h
(x−(i−1)h). (6)

As i = p+ 1, Eq. (6) can be further simplified into:

f ∗(x) = f (ph)+ (f ((p+ 1)h)− f (ph))(
x
h
− p). (7)

Then we denote that

λ = f (ph), (8)

µ = f ((p+ 1)h)− f (ph), (9)

and

q =
x
h
− p, (10)

where q is the decimal part of x/h and p = 0, 1, . . . , S − 1.
Thus, Eq. (7) can be expressed by

f ∗(x) = λ+ µ× q, (11)

where the values of λ, q and |µ| belong to [0, 1]. Eq. (11)
is the basic approximation equation. However, it cannot be
implemented with unipolar stochastic logic directly, because
the value of µ can be negative when f ((p+1)h) < f (ph). The
monotonicity of f (x) in [0, 1] determines whether the value
of µ is positive or not. Thus, we further propose optimized
implementation schemes according to the monotonicity of
target function in [0, 1].

B. UNIVERSAL IMPLEMENTATIONS FOR MONOTONIC
FUNCTIONS BASED ON STOCHASTIC COMPUTING
In input range [0, 1], target functions can be divided into three
types, monotonically decreasing functions, monotonically
increasing functions and non-monotonic functions. Thus,
approximation equations for these three kinds of functions
are presented in the following.

1) MONOTONICALLY DECREASING FUNCTIONS
Assume that f (x) is a decreasing function, and we further
transform Eq. (7) into:

f ∗(x) = f (ph)[1− (1−
f ((p+ 1)h)
f (ph)

)(
x
h
− p)]. (12)

Since (p + 1)h > ph, f ((p + 1)h) < f (ph). It can be derived
that f ((p+ 1)h)/f (ph) and 1− f ((p+ 1)h)/f (ph) both belong
to range (0, 1]. We denote φ = 1 − f ((p + 1)h)/f (ph) and
then can get

f ∗(x) = λ× (1− φ × q). (13)

In SC circuits, 1− φ × q can be implemented with only one
NAND gate, and the multiplication between 1− φ × q and λ
can be performed with only one AND gate in unipolar format.

When the number of segments, S, is determined, λ and φ
are fixed values, so they can be computed in advance. Plus,
to simplify the implementation of f ∗(x), S can be chosen as
2m, where m is a positive integer. Thus, x/h = x × 2m can be
computed with shift operations in hardware implementations.

VOLUME 8, 2020 46231

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

FIGURE 2. Examples of non-monotonic functions. (a) g0(x) = sin(πx)/π and its extreme point (b) g4(x) = 0.5xsin(2πx)+ 0.5 and its extreme points
(c) g5(x) = cos(3πx)/π + 0.5 and its extreme points.

The number of segments determines the approximating
precision of the proposed method. The more segments are
used, the higher precision can be achieved. For most func-
tions, 8 or 16 segments are balanced choices between preci-
sion and hardware complexity.

2) MONOTONICALLY INCREASING FUNCTIONS
For increasing functions, Eq. (13) cannot be directly used,
because φ < 0 and f (x) cannot be computed with unipolar
format. To compute f ∗(x) with unipolar format, we propose
some transformation to Eq. (2):

f ∗(x) = f (x0)+ f ′(x)4x = f (x0)− f ′(x)(x0 − x), (14)

where 4x is substituted with −4x. In a sub-interval
[αi−1, αi], we set x0 as αi and we can get

f ∗(x) = f (αi)− f ′(x)(αi − x)

= f (αi)−
f (αi)− f (αi−1)

h
(αi − x). (15)

Then put ai = ih, i = p + 1 and q = x/h − p into Eq. (15)
and we can get

f ∗(x) = f ((p+ 1)h)− [f ((p+ 1)h)− f (ph)](1− q). (16)

To make the computation of Eq. (16) suitable for unipolar
format, we further do some transformation as follows:

f ∗(x) = f ((p+ 1)h)[1− (1−
f (ph)

f ((p+ 1)h)
)(1− q)], (17)

where f ((p+ 1)h) is denoted by λ′, 1− f (ph)/f ((p+ 1)h) is
denoted by φ′. Then we can get

f ∗(x) = λ′ × (1− φ′ × (1− q)), (18)

where φ′ ∈ (0, 1], λ′ ∈ [0, 1] and q ∈ [0, 1).
In SC circuits, 1−q can be implemented with a NOT gate.

1 − φ′ × (1 − q) and the multiplication of 1 − φ′ × (1 − q)
with λ′ can be performed with a NAND gate and an AND
gate, respectively. When the number of segments, S, is deter-
mined, λ′ and φ′ are fixed values, which can be computed as
parameters in hardware implementations.

C. IMPLEMENTATION SCHEMES FOR NON-MONOTONIC
FUNCTIONS BASED ON STOCHASTIC COMPUTING
Non-monotonic functions have more than one monotonic
intervals in [0, 1]. When dealing with a non-monotonic func-
tion, its extreme points should be found first to determine
the monotonic intervals, where coordinates of the extreme
points are denoted by ε0(x0, y0), ε1(x1, y1), . . ., εj(xj, yj). Then
choose a suitable length of h and divide the range [0, 1] into
S = 2m segments. Notably, the length of a sub-interval
should be shorter than that of a monotonic interval. Next,
observe the positions of the extreme points. The abscissa of
an extreme point may locate on the dividing points between
two sub-intervals or inside a sub-interval. Here, we denote
the functions owning no extreme points inside a sub-interval
as Type I, and the functions owning extreme points inside a
sub-interval as Type II.

The examples of several non-monotonic functions are
shown in Fig. 2, where the input range [0, 1] is divided
into 16 segments. g0(x) = sin(πx)/π has an extreme point
(0.5, g0(x)), and the abscissa of (0.5, g0(x)) is an integer
multiple of 1/S = 1/16. Thus, g0(x) belongs to Type I.
g4(x) = 0.5xsin(2πx) + 0.5 and g5(x) = cos(3πx)/π + 0.5
belong to Type II, because they all have extreme points inside
the sub-intervals, which are shown in Fig. 2 (b) and (c). In the
following, the detailed approximation schemes are discussed
with some examples of Type I and Type II.

1) SCHEMES FOR NON-MONOTONIC
FUNCTIONS OF TYPE I
For functions of Type I, the curve in every sub-interval
is monotonic, so Eq. (13) or Eq. (18) can be applied in
each sub-interval according to the monotonicity flexibly. We
take some non-monotonic functions as examples to illus-
trate the method in detail. The investigated functions include
g0(x) = sin(πx)/π , g1(x) = 0.25sin(2πx/3), g2(x) =
xln(0.5x)+ 1, g3(x) = cos(πx − 0.6)/π + 0.4.
First, we take g0(x) = sin(πx)/π as an example to explain

how to use the proposed method. g0(x) is an increasing func-
tion in the input range [0, 0.5) and a decreasing function in the

46232 VOLUME 8, 2020

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

input range [0.5, 1]. Thus, we can use Eq. (18) in the range
[0, 0.5) and Eq. (13) in the range [0.5, 1]. Then g0(x) can be
approximated by the following function:

g∗0(x) =

{
λ′ × (1− φ′ × (1− q)), 0 ≤ x < 0.5, (19a)

λ× (1− φ × q), 0.5 ≤ x ≤ 1. (19b)

In hardware implementations, the computations in the
range [0, 0.5) and [0.5, 1] can reuse the same NAND gates
andANDgates, so Eq. (19) requires nearly the same hardware
complexity with the monotonic functions. g0(x) is symmetric
with respect to x = 0.5, so λ equals λ′, and φ equals
φ′. Therefore, only half of the parameters are required in
hardware implementation.

The computations of g1(x) = 0.25sin(2πx/3) and g2(x) =
xln(0.5x) + 1 are similar to g0(x), but g1(x) and g2(x) have
different monotonic intervals. g1(x) is an increasing function
in [0, 0.75) and a decreasing function in [0.75, 1]. Therefore,
the approximation function of g1(x) is as follows:

g∗1(x) =

{
λ′ × (1− φ′ × (1− q)), 0 ≤ x < 0.75, (20a)

λ× (1− φ × q), 0.75 ≤ x ≤ 1. (20b)

g2(x) = xln(12x) + 1 is a decreasing function in [0, 0.75)
and an increasing function in [0.75, 1]. Therefore, the approx-
imation function of g2(x) is as follows:

g∗2(x) =
{
λ× (1− φ × q), 0 ≤ x < 0.75, (21a)

λ′ × (1− φ′ × (1− q)), 0.75 ≤ x ≤ 1. (21b)

The hardware implementations of g1(x) and g2(x) are
similar to g0(x), but the values of λ, φ, λ′ and φ′ cannot
be reused. Assume that S = 16. When p = 0, 1 . . . 11,
g1(x) and g2(x) are approximated by Eq. (20a) and Eq. (21a),
respectively; When p = 12, 13 . . . 15, g1(x) and g2(x) are
approximated by Eq. (20b) and Eq. (21b), respectively. As a
result, multiplexers are required to choose 1−q or q according
to the value of p in hardware implementations. The detailed
hardware architectures are provided in Section III.

2) SCHEMES FOR NON-MONOTONIC
FUNCTIONS OF TYPE II
For functions of Type II, the sub-intervals owning extreme
points are not monotonic intervals. We provide two available
schemes to deal with this case. As shown in Fig. 3 (a),
Scheme I approximates the special sub-interval with a mono-
tonic function directly.

For example, g3(x) = cos(πx − 0.6)/π + 0.4 has
an extreme point [0.19, g3(0.19)]. When S = 16 and
h = 0.0625, 0.19 is not the integer multiple of h, so g3(x)
belongs to Type II. p = b0.19/hc = 3, so the extreme point
locates in the range [3h, 4h]. Then compare the values of
g3(3h) and g3(4h). g3(3h) > g3(4h), so we approximate the
segment in [3h, 4h] with a decreasing function. As a result,
g3(x) is approximated as an increasing function in [0, 0.1875)

FIGURE 3. Proposed schemes for non-monotonic functions of type II.
(a) Scheme I for the example function (b) Scheme II for the example
function.

and a decreasing function in [0.1875, 1]. The approximation
function of g3(x) is as follows:

g∗3(x) =
{
λ′ × (1−φ′ × (1− q)), 0 ≤ x < 0.1875, (22a)

λ× (1−φ × q), 0.1875 ≤ x ≤ 1. (22b)

Then we give another example: g4(x) = 0.5xsin(2πx) +
0.5. g4(x) has three monotonic intervals in [0, 1], which is
shown in Fig. 2 (b). When S = 16 and h = 0.0625,
the extreme points locate in [5h, 6h] and [12h, 13h]. Then
we approximate the segments in [5h, 6h] and [12h, 13h]
with decreasing functions, because g4(5h) > g4(6h) and
g4(12h) > g4(13h). Therefore, g4(x) can be approximated
by

g∗4(x) =


λ× (1− φ × q), 0 ≤ x < 0.375, (23a)

λ′×(1−φ′×(1−q)), 0.375≤x<0.75, (23b)

λ× (1− φ × q), 0.75 ≤ x ≤ 1. (23c)

Applying Scheme I for functions of Type II, the hardware
implementations of g3(x) and g4(x) are similar to functions
of Type I.

3) SCHEME II: OPTIMIZATION SCHEME FOR
NON-MONOTONIC FUNCTIONS OF TYPE II
Scheme I is a direct way to implement functions of Type II.
However, in some sub-intervals, the gradient of a function
changes fast and one segment may be not enough to achieve

VOLUME 8, 2020 46233

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

FIGURE 4. Arch A: Proposed architecture for monotonically decreasing
functions (16 segments).

the required approximation precision. In addition, increasing
the total numbers of segments of the whole input range will
lead to larger hardware complexity. As a result, to improve the
approximation precision, we propose to partition this kind of
sub-intervals into more segments and further approximate the
segments with the proposed equations.

For example, g5(x) = cos(3πx)/π + 0.5 is a function of
Type II and has three monotonic intervals in [0, 1]. As shown
in Fig. 2 (c), when S = 16 and h = 0.0625, an extreme point
(0.33, g5(0.33)) is in the sub-interval [5h, 6h]. As shown
in Fig. 3 (b), adopting Scheme I in [5h, 6h] can bring much
approximation errors, so we use Scheme II to improve the
approximation precision and partition the interval accord-
ing to the position of the extreme point. Then the segment
in [5h, 0.33) is approximated as a decreasing function and
the segment in [0.33, 6h] is approximated as an increasing
function. In [10h, 11h], there is an another extreme point,
[0.66, g5(0.66)]. Scheme II is also applied in this sub-interval
and we can get the approximation function of g5(x) as
follows:

g∗5(x) =


λ× (1− φ × q), 0 ≤ x < 0.33, (24a)

λ′ × (1−φ′×(1−q)), 0.33≤x<0.66, (24b)

λ× (1− φ × q), 0.66 ≤ x ≤ 1. (24c)

Compared with Scheme I, the hardware implementation
of g5(x) requires additional two segments, which leads to
slightly larger hardware complexity. The detailed architecture
of Scheme II is presented in Section III-C.

III. THE PROPOSED HARDWARE ARCHITECTURES
In this section, the hardware architectures for the three kinds
of arithmetic functions are introduced in detail.

A. HARDWARE ARCHITECTURE FOR DECREASING
FUNCTIONS
For decreasing functions, the architecture denoted by Arch
A is shown in Fig. 4, where 16 segments are used. Firstly,
according to Eq. (12), a shift operation is performed on the
input value x to compute x

h = x× 2m, where the shift bits are
decided by the number of segments.

Next, the result of x × 2m is divided into an integer part
p and a decimal part q, where p is a 4-bit number and q is a
6-bit number. According to Eq. (13), p is sent to λ-generating
unit (λ-GU) and φ-generating unit (φ-GU) to generate corre-
sponding λ and φ, respectively. In the generating units, each

FIGURE 5. Arch B: Proposed architecture for monotonically increasing
functions (16 segments).

bit of the outputs is computed by the logic expressions of
input bits, and implemented with combinational logic cir-
cuits. Then λ, φ and q are sent to SNGs to generate stochastic
bit-streams.

The NAND gate is used to implement the expression
y = 1− φ × q. Then the AND gate is adopted to implement
the multiplication between 1− φ × q and λ. Finally, the bit-
stream from the AND gate will be converted to a 10-bit binary
number by a counter.

B. HARDWARE ARCHITECTURE FOR INCREASING
FUNCTIONS
For increasing functions, the architecture denoted by Arch
B is shown in Fig. 5. The overall architecture to imple-
ment Eq. (17) is similar to that of decreasing functions.
λ′-generating unit (λ′-GU) and φ′-generating unit (φ′-GU)
are used to generate corresponding λ′ and φ′, respectively.
The only difference is that the bit-stream of q should be
sent to a NOT gate to realize the computation of 1 − q.
Then the NAND gate is used to implement the expression
y = 1− φ′ × (1− q).

C. HARDWARE ARCHITECTURES FOR
NON-MONOTONIC FUNCTIONS
In this section, we present the hardware architectures for non-
monotonic functions. Respective architectures are developed
for implementations with Scheme I and II.

1) HARDWARE ARCHITECTURE FOR SCHEME I
For Scheme I, the hardware architecture is denoted by Arch C
and shown in Fig. 6 (a). The input x is first processed by a shift
operation to compute x/h = x × 2m, where the integer part
and the decimal part of x × 2m are p and q, respectively. p is
sent to λ/λ′-generating unit (λ/λ′-GU) and φ/φ′-generating
unit (φ/φ′-GU) to compute corresponding λ/λ′ and φ/φ′,
respectively. p denotes the sub-intervals in which x is located,
so λ/λ′ and φ/φ′ are generated according to the value of p.
To generate a selecting signal Sel for the MUX, p is sent

to the selection-generating unit (Sel-GU). Sel is generated
according to the value of p and is used for choosing q or 1−q.
When Sel = 1, the output of the MUX is q. When Sel = 0,
the output of the MUX is 1− q.
For example, according to Eq. (19), the computing of

sin(πx)/π uses different equations in the range [0, 0.5) and
the range [0.5, 1], respectively. As the point (0.5, g(0.5)) is

46234 VOLUME 8, 2020

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

FIGURE 6. Proposed architectures for non-monotonic function
(16 segments). (a) Arch C: architecture based on Scheme I (b) Arch D:
architecture based on Scheme II.

TABLE 1. Logic expressions of Sel for different functions. p3 is the MSB
of p.

the symmetric point of sin(πx)/π , the first eight sub-intervals
are in range [0, 0.5), when S = 16. p[p3 : p0] is a 4-bit
number, where p3 is the most significant bit (MSB). Then p3
can be used to determine whether x is in the range [0, 0.5)
or not. If MSB of p is 0, x is in the range [0, 0.5); If MSB
of p is 1, x is in the range [0.5, 1]. Notably, only half of
the parameters are required to be generated because of the
symmetric characteristics of sin(πx)/π , which can reduce the
hardware resources.

For different functions, the main difference is the design
of Sel-GU, and the structure of Sel-GU should be designed
specially. The logic expressions of Sel for g1(x), g2(x), g3(x)
and g4(x) are presented in Table 1. As can be seen, Sel
can be generated by simple combinational logic of different
bits of p.

2) HARDWARE ARCHITECTURE FOR SCHEME II
For Scheme II, the proposed hardware architecture is denoted
by Arch D and shown in Fig. 6 (b). Compared with Arch
C, the main differences are the designs of Sel-GU and
generating units. Take g5(x) = cos(3πx)/π + 0.5 as an
example. As described in Section II-C3, the sub-intervals,
[5h, 6h] and [10h, 11h], have extreme points: (0.33, g5(0.33))

and (0.66, g5(0.66)). Two more segments are required for
the sub-intervals, so there are total 18 segments in the input
range, when S = 16. In the Sel-GU, the Sel signal can be
generated according to the values of p and q. If p = 5 and
q < 0.015625, Sel = 1; If p = 5 and q > 0.015625, Sel = 0,
where 0.015625 = 0.328125 − 5h. Similarly, if p = 10 and
q < 0.03125, Sel = 0; If p = 10 and q > 0.03125, Sel = 1,
where 0.03125 = 0.65625− 10h. When Sel = 1, the output
of the MUX is q. When Sel = 0, the output of the MUX
is 1 − q. Next, the values of λ/λ′ and φ/φ′ are generated
according to the values of p and Sel in the generating units.

IV. EXPERIMENTAL RESULTS
In this section, we present the experimental results of the
proposed approximationmethod and corresponding hardware
implementations based on SC.

To prove the universality of the proposed method,
we have investigated multiple kinds of arithmetic func-
tions. We have selected representative arithmetic functions
which are decreasing functions, increasing functions or non-
monotonic functions in the input range [0, 1]. If outputs of the
investigated functions belong to [0, 1], the functions can be
implemented with the unipolar format directly. If the outputs
of a function do not locate inside [0, 1], the function can
be scaled into range [0, 1] by simple multiplications and
additions, and the scaled version of the function can be imple-
mented with the proposed method. For example, the values
of cos(πx) are in range [−1, 1], so we implement the scaled
version of cos(πx): 0.5cos(πx)+0.5. Scaled versions are also
used for other functions such as arccos(x), sinh(x), sec(x),
cosh(x), arcsin(x), arctan(x) and so on.
MATLAB is used to simulate the proposed hardware

implementations, where hardware truncation errors are taken
into consideration. In our simulations, the inputs of target
functions and other parameters (φ, φ′, λ and λ′) are all 10-bit
numbers. The simulation results of precision are evaluated
with output mean absolute error (MAE) results, which are
acquired by using Monte Carlo experiments for different
inputs. For each input, 1000 Monte Carlo runs were per-
formed. A 10-bit LFSR is used and the length of stochastic
bit streams is 1024.

The investigated functions are implemented by the pro-
posed architectures which are presented in Section III. The
hardware architectures have been implemented in Verilog
HDL and synthesized using the Synopsys Design Com-
piler (DC) under the TSMC 40 nm CMOS technology.
A frequency of 500 MHz has been achieved.

The approximation precision, hardware complexity, criti-
cal path delay and power results for different kinds of func-
tions are shown in Table 2, 3 and 4. The hardware complexity
is evaluated by the cell area which is given in terms of
equivalent numbers of 2-input NAND gates. All SNGs and
counters are included in synthesis, and we also synthesize the
architecture of an SNG. The cell area, critical path delay and
power of an SNG are 101, 0.79 ns and 36µW , respectively.

VOLUME 8, 2020 46235

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

FIGURE 7. Simulation results for example functions, where the number of segments is 16. (a) Simulation results of cos(x) (b) Simulation
results of sin(x) (c) Simulation results of g0(x) = sin(πx)/π (d) Simulation results of g1(x) = 0.25sin(2πx/3) (e) Simulation results of
g2(x) = xln(0.5x)+ 1 (f) Simulation results of g3(x) = cos(πx − 0.6)/π + 0.4 (g) Simulation results of g4(x) = 0.5xsin(2πx)+ 0.5.

TABLE 2. MAE results and hardware implementation results of
decreasing functions using the proposed method. The functions are
implemented with Arch A.

A. ANALYSIS OF MONOTONIC FUNCTIONS
Table 2 shows the approximation precision and correspond-
ing synthesis results of decreasing functions. The functions
in Table 2 are all implemented with Arch A in Fig. 4.
It can be seen that using 16 segments for approximation can
achieve slightly higher precision than using 8 segments. We
take cos(x) as an example to show the simulation results
in Fig. 7 (a), where 16 segments are used in the simulation,
and the absolute error is magnified by 10×.
Table 3 shows the approximation precision and corre-

sponding synthesis results of increasing functions. The func-
tions in Table 3 are all approximated with Eq. (18) and

implemented with Arch B in Fig. 5. Similarly, using 16 seg-
ments for approximation can improve the precision slightly
compared with using 8 segments. The simulation results of
sin(x) is shown in Fig. 7 (b), where 16 segments are used in
the simulation, and the absolute error is magnified by 10×.
As can be seen from Table 2 and 3, three SNGs occupy

about 303 cells, which dominates the hardware complexity
of the proposed architectures. For most of the functions,
the hardware complexity increases when 16 segments are
used, because more parameters require to be generated. The
number of segments, however, does not have clear influence
on the critical path delay and dynamic power. The critical path
delays of the functions with different segments are almost
the same. The dynamic power of the implementations using
8 segments are usually slightly lower than those using 16
segments.

B. ANALYSIS OF NON-MONOTONIC FUNCTIONS
Table 4 shows the approximation precision and corre-
sponding synthesis results of non-monotonic functions.
As described in Section II-C, we approximate the functions
including g0(x), g1(x), g2(x), g3(x) and g4(x) with Scheme I,
and implement them with Arch C in Fig. 6 (a). g5(x) is
approximated with Scheme II, and implemented with Arch
D in Fig. 6 (b). The simulation results of g0(x), g1(x), g2(x),
g3(x) and g4(x) are shown in Fig. 7 (c), (d), (e), (f) and (g),
respectively. The simulation results of g5(x) is shown in
Fig. 8 (a). For comparisons, we give the simulation result
of g5(x) using Scheme I in Fig. 8 (b). In the simu-
lation, 16 segments are used and the absolute error is
magnified by 10×.
It can be seen from Table 4 and Fig. 7, increasing the

number of segments leads to significant improvement in
approximation precision of the non-monotonic functions,
especially for functions such as g4(x) and g5(x). As shown

46236 VOLUME 8, 2020

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

TABLE 3. MAE results and hardware implementation results of increasing
functions using the proposed method. The functions are implemented
with Arch B.

in Fig. 8, the proposed Scheme II can improve the approxima-
tion precision of g5(x) in the sub-intervals owning an extreme
point. For g5(x) based on Scheme I, the MAE and max
absolute error in [5h, 6h] are 0.0071 and 0.1559, respectively.
When scheme II is used, the MAE and max absolute error in
[5h, 6h] can be reduced to 0.0068 and 0.1334, respectively.
As a result, Scheme II is an efficient way to improve the
precision. If higher precision is required, Scheme II with
more segments can be used in the intervals owning large
approximation errors.

As can be seen from Table 4, different non-monotonic
functions have similar hardware complexity, and the hard-
ware complexity increases slightly, when more segments
are used. Compared with other functions, the hardware

TABLE 4. MAE results and hardware implementation results of
non-monotonic functions using the proposed method.
g5(x) = 1

π cos(3πx)+ 1
2 is implemented with Arch D and the other

functions are implemented with Arch C.

FIGURE 8. Comparisons between Scheme I and Scheme II. (a) Simulation
results of g5(x) using Scheme I (b) Simulation results of g5(x) using
Scheme II.

complexity of g5(x) based on Scheme II is the largest, but the
critical path delay and dynamic power have little changes.

V. COMPARISONS WITH RELATED WORKS
In Section IV, we have investigated many functions to prove
the universality of the proposed approximation method and

VOLUME 8, 2020 46237

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

TABLE 5. MAE results of stochastic implementations for arithmetic functions using the proposed method, PWL-based method, Horner’s Rule-based
method and FSM-based method.

hardware architectures. Functions which can be realized
by the proposed method are not limited in the functions
in Section IV. Some of the functions have been imple-
mented in existing works, but some of them have not
been mentioned in previous works. We use the imple-
mentation results of the functions which have been inves-
tigated in the existing works to make fair comparisons.
The implementation results of these functions should be
enough for us to make sufficient comparisons. In this section,
we compare the experimental results of performance test and
hardware implementations with previous works. Results of
PWL-based method [20], Horner’s Rule-based method [19]
and FSM-based method [15], [16] are used for comparisons.

A. APPROXIMATION PERFORMANCE COMPARISONS
Table 5 shows the comparisons with previous methods in
terms of MAE results. In general, the MAE results of the pro-
posed method are around 1× 10−3, which can be considered
as high-precision approximations for many applications.

Compared with FSM-based method, the approximation
precision of our method is higher for most of the func-
tions except for sin(x). For sin(πx)/π , the precision can be
improved by 188× with our method. As described in [15],
the precision of FSM-based method can be improved by
increasing state numbers. However, the hardware complexity
will increases in proportion to the state numbers of FSM.
The 8-state FSM is a balanced choice between accuracy
and hardware complexity. Thus, compared with FSM-based
method with 8 states, high-precision approximations can be
implemented with less hardware complexity.

For ln(1+x), tanh(x), tanh(4x), sigmoid(x) and sin(πx)/π ,
the proposed method achieves higher approximation

precision than Horner’s Rule-based method [19]. In Horner’s
Rule-based method, some arithmetic functions can be imple-
mented by using multiple levels of NAND gates based on
Horner’s rule. This method, however, has its limitations.
For example, functions like tanh(4x) cannot be implemented
directly using Maclaurin expansion, when a is greater than 1.
Thus, tanh(4x) is implemented based on the circuits of e−2ax

and a JKflip-flop [19], leading to larger approximation errors.
The precision of tanh(4x) can be improved by 8× with the
proposed method.

For sin(x), ln(1 + x) and tanh(x), the approximation pre-
cision of PWL-based method is slightly higher than our
method. For functions such as e−2x and sin(πx)/π , the pre-
cision can be increased by 25× and 11.5×, respectively.
In [20], to avoid using the scaled version of additions,
the approximated function, f ∗(x) = aix+bi, are transformed
according to the relationships of ai and bi. However, the trans-
formations are limited by the relationships of ai and bi. For
example, when the absolute value of ai is much larger than
bi, the implementations of approximated functions require
subtractions, which can cause more precision loss. As a
result, the method in [20] has poor approximation precision
for e−2x . Compared with PWL-based method, our method
has universal equations rather than analyzing the parame-
ters of each segment. In addition, the proposed method can
implement high-precision approximations for more kinds of
functions.

B. HARDWARE COMPLEXITY AND CRITICAL PATH
DELAY COMPARISONS WITH RELATED WORKS
Table 6 shows the hardware complexity, delay and power
comparisons with other works. The hardware complexity is

46238 VOLUME 8, 2020

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

TABLE 6. Hardware complexity and critical path delay of stochastic implementations for arithmetic functions using the proposed method, PWL-based
method, Horner’s Rule-based method and FSM-based method. The clock frequency of the proposed circuits is 500 MHz , [20] and [19] do not provide the
information of the clock frequency.

given in terms of equivalent numbers of 2-input NAND gates.
The results of other works are given in [20] under 65 nm
CMOS technology, so we scale the results of delay and power
to 65 nm for fair comparisons.

To achieve the same order of precision, FSM-basedmethod
and Horner’s Rule-based method require more SNGs for
generating parameters. Using a 8-state FSM, the FSM-based
method requires at least 10 SNGs, a MUX with 8 inputs, and
more than 8 delay elements. For the functions in Table 6,
Horner’s Rule-based method requires 4 or 5 SNGs, and sev-
eral delay elements for square operations. As only 3 SNGs are
required, our circuits can achieve lower hardware complexity.
With less gates in the critical path, the proposed circuits
have shorter critical path than these two works. The FSM-
based implementations contain longer computations inside
feedback loops. Thus, compared with FSM-based method,
46% of critical path delays can be saved on average with
our method. Horner’s Rule-based method has a comparator
and more than 5 level of NAND gates in the critical path,
which is in proportion to the Maclaurin polynomial’s order.
Compared with Horner’s Rule-based method, 49% of critical

path delays can be saved on average. The detailed work
frequency has not been given, so it is unfair to compare the
power numbers according to the synthesis results. Since more
SNGs are required, more dynamic power should be consumed
in Horner’s Rule-based and FSM-based methods than the
proposed method. Plus, the critical path of our method is
significantly shorter than these two works. As a result, lower
power consumptions can possibly be achieved, if the pro-
posed circuits work under a lower supplied voltage.

The hardware complexity of our work is at the same order
of magnitude as PWL-based method in [20]. For some func-
tions such as sin(πx)/π , by taking advantage of the func-
tions’ symmetry, less parameters are required to be generated.
Thus, for this kinds of functions, our method is superior
than the work in [20]. In terms of critical path, our method
has clear advantages than PWL-based method. The critical
path of our method can be further reduced by pipelining
technique. The detailed work frequency has not been given
in [20], so it is unfair to compare the power according to the
synthesis results. With the same numbers of SNGs, the power
of PWL-based method and our method should be at the

VOLUME 8, 2020 46239

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

same order. Notably, the critical path of our method is shorter
than that of PWL-basedmethod, so lower power consumption
can possibly be achieved, if the proposed circuits work under
a lower supplied voltage.

In general, our method has significant advantages in crit-
ical path. SNGs occupy about 75% of the total area and
about 85% of the total power in the proposed circuits.
To decrease power consumptions and area, schemes such as
LFSR-sharing can be further applied for optimizing SNGs.
The optimization schemes are beyond the discussion range
of our work and the details can be found in [12], [22], [23].

VI. CONCLUSION
Based on PWL technique and truncated Taylor expansion,
a novel approximation method for arithmetic functions has
been presented in this paper. The detailed approximation
equations have been derived for monotonic functions and
non-monotonic functions. For different types of functions,
optimized hardware architectures have been developed. The
proposed circuits can implement a broad range of arith-
metic functions using unipolar stochastic logic. According
to the experimental results, high-precision approximations
for arithmetic functions can be implemented with low-
complexity circuits. Compared with the previous PWL-
based method, our method can be generalized for many
other functions. Compared with the FSM-based and Horner’s
Rule-based methods, the proposed circuits has significant
advantages in computation delay and hardware complexity.

REFERENCES
[1] M. Alawad and M. Lin, ‘‘Survey of stochastic-based computation

paradigms,’’ IEEE Trans. Emerg. Topics Comput., vol. 7, no. 1, pp. 98–114,
Jan. 2019.

[2] S. Abdallah, A. Chehab, I. H. Elhajj, and A. Kayssi, ‘‘Stochastic hard-
ware architectures: A survey,’’ in Proc. Int. Conf. Energy Aware Comput.,
Dec. 2012, pp. 1–6.

[3] J. P. Hayes, ‘‘Introduction to stochastic computing and its challenges,’’ in
Proc. 52nd Annu. Des. Autom. Conf. (DAC), Dec. 2015, pp. 1–3.

[4] V.-T. Nguyen, T.-K. Luong, H. Le Duc, and V.-P. Hoang, ‘‘An effi-
cient hardware implementation of activation functions using stochas-
tic computing for deep neural networks,’’ in Proc. IEEE 12th Int.
Symp. Embedded Multicore/Many-Core Syst. Chip (MCSoC), Sep. 2018,
pp. 233–236.

[5] J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper, and Y. Wang,
‘‘Hardware-driven nonlinear activation for stochastic computing based
deep convolutional neural networks,’’ inProc. Int. Joint Conf. Neural Netw.
(IJCNN), May 2017, pp. 1230–1236.

[6] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
‘‘VLSI implementation of deep neural network using integral stochastic
computing,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 10, pp. 2688–2699, Oct. 2017.

[7] T. Hirtzlin, B. Penkovsky, M. Bocquet, J.-O. Klein, J.-M. Portal, and
D. Querlioz, ‘‘Stochastic computing for hardware implementation of
binarized neural networks,’’ IEEE Access, vol. 7, pp. 76394–76403,
2019.

[8] Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper, B. Yuan, J. Tang,
Q. Qiu, and Y. Wang, ‘‘HEIF: Highly efficient stochastic computing-
based inference framework for deep neural networks,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 8, pp. 1543–1556,
Aug. 2019.

[9] A. Alaghi, C. Li, and J. P. Hayes, ‘‘Stochastic circuits for real-time image-
processing applications,’’ in Proc. 50th Annu. Des. Autom. Conf. (DAC),
May 2013, pp. 1–6.

[10] I. Perez-Andrade, S. Zhong, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo, ‘‘Stochastic computing improves the timing-error tolerance and
latency of turbo decoders: Design guidelines and tradeoffs,’’ IEEE Access,
vol. 4, pp. 1008–1038, 2016.

[11] B. D. Brown and H. C. Card, ‘‘Stochastic neural computation. I. Com-
putational elements,’’ IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905,
Sep. 2001.

[12] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, ‘‘Compact and
accurate stochastic circuits with shared random number sources,’’ in Proc.
IEEE 32nd Int. Conf. Comput. Des. (ICCD), Oct. 2014, pp. 361–366.

[13] A. Alaghi and J. P. Hayes, ‘‘Fast and accurate computation using stochastic
circuits,’’ in Proc. Des., Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2014,
pp. 1–4.

[14] A. Alaghi and J. P. Hayes, ‘‘Survey of stochastic computing,’’ ACM Trans.
Embedded Comput. Syst., vol. 12, no. 2, pp. 1–19, May 2013.

[15] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, ‘‘The synthesis of
complex arithmetic computation on stochastic bit streams using sequential
logic,’’ in Proc. Int. Conf. Comput.-Aided Des. (ICCAD), Nov. 2012,
pp. 480–487.

[16] P. Li, W. Qian, and D. J. Lilja, ‘‘A stochastic reconfigurable architecture
for fault-tolerant computation with sequential logic,’’ in Proc. IEEE 30th
Int. Conf. Comput. Des. (ICCD), Sep. 2012, pp. 303–308.

[17] W. Qian and M. D. Riedel, ‘‘The synthesis of robust polynomial arithmetic
with stochastic logic,’’ inProc. 45th Annu. Conf. Des. Autom. (DAC), 2008,
pp. 648–653.

[18] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, ‘‘An archi-
tecture for fault-tolerant computation with stochastic logic,’’ IEEE Trans.
Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011.

[19] K. K. Parhi and Y. Liu, ‘‘Computing arithmetic functions using stochastic
logic by series expansion,’’ IEEE Trans. Emerg. Topics Comput., vol. 7,
no. 1, pp. 44–59, Jan. 2019.

[20] T.-K. Luong, V.-T. Nguyen, A.-T. Nguyen, and E. Popovici, ‘‘Efficient
architectures and implementation of arithmetic functions approximation
based stochastic computing,’’ in Proc. IEEE 30th Int. Conf. Appl.-Specific
Syst., Archit. Processors (ASAP), Jul. 2019, pp. 281–287.

[21] K. K. Parhi, ‘‘Stochastic logic implementations of polynomials with all
positive coefficients by expansion methods,’’ IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 65, no. 11, pp. 1698–1702, Nov. 2018.

[22] F. Neugebauer, I. Polian, and J. P. Hayes, ‘‘Building a better random
number generator for stochastic computing,’’ in Proc. Euromicro Conf.
Digit. Syst. Des. (DSD), Aug. 2017, pp. 1–8.

[23] K. Kim, J. Lee, and K. Choi, ‘‘An energy-efficient random number gener-
ator for stochastic circuits,’’ in Proc. 21st Asia South Pacific Des. Autom.
Conf. (ASP-DAC), Jan. 2016, pp. 256–261.

ZIDI QIN received the B.S. degree in telecommu-
nication engineering from Chongqing University,
Chongqing, China, in 2015. She is currently pursu-
ing the Ph.D. degree with the School of Electronic
Science and Engineering, Nanjing University,
China. Her current research interests include net-
work compression and hardware acceleration for
deep learning algorithms, VLSI design, and recon-
figurable computing.

YUOU QIU received the B.S. degree in electronic
information science and technology from Nanjing
University, Nanjing, China, in 2018, where she is
currently pursuing the master’s degree with the
School of Electronic Science and Engineering.
Her current research interests include digital inte-
grated circuit design, reconfigurable computing,
and VLSI implementation of neural networks.

46240 VOLUME 8, 2020

Z. Qin et al.: Universal Approximation Method and Optimized Hardware Architectures for Arithmetic Functions

MUHAN ZHENG received the B.S. degree in
electronic information science and technology
from Nanjing University, Nanjing, China, in 2019,
where she is currently pursuing the master’s
degree with the School of Electronic Science
and Engineering. Her current research interests
include digital integrated circuit design and VLSI
implementations of neural networks.

HONGXI DONG received the B.S. degree in elec-
tronic information engineering from the Nanjing
University of Aeronautics Astronautics, Nanjing,
China, in 2019. She is currently pursuing the mas-
ter’s degree with the School of Electronic Science
and Engineering, Nanjing University, Nanjing.
Her current research interests include digital inte-
grated circuit design, reconfigurable computing,
and VLSI implementation of machine learning
algorithms.

ZHONGHAI LU (Senior Member, IEEE) received
the B.S. degree in radio and electronics from Bei-
jing Normal University, Beijing, China, in 1989,
and the M.S. degree in system-on-chip design and
Ph.D. degree in electronic and computer system
design from the KTH Royal Institute of Tech-
nology, Stockholm, Sweden, in 2002 and 2007,
respectively. He was an Engineer in electronic and
embedded systems, from 1989 to 2000. He is cur-
rently a Professor with the School of Electrical

Engineering and Computer Science, KTH Royal Institute of Technology.
He has authored more than 180 peer-reviewed articles. His current research
interests include interconnection networks, computer architecture, design
automation, and real-time systems.

ZHONGFENG WANG (Fellow, IEEE) received
the B.S. and M.S. degrees from Tsinghua Uni-
versity, and the Ph.D. degree from the University
of Minnesota, Minneapolis, in 2000. He worked
with Oregon State University and National Semi-
conductor Corporation. He was with Broadcom
Corporation, CA, USA, from 2007 to 2016, as a
Leading VLSI Architect. He has been working
with Nanjing University, China, as a Distinguished
Professor, since 2016. He is a World-Recognized

Expert on Low-Power High-Speed VLSI Design for Signal Processing
Systems. He has published over 200 technical articles with multiple best
paper awards received from the IEEE technical societies, among which is
the VLSI Transactions Best Paper Award of 2007. He has edited one book
VLSI and held more than 20 U.S. and China patents. His current research
interests include optimized VLSI design for digital communications and
deep learning. In the current record, he had many articles ranking among top
25 most (annually) downloaded manuscripts in the IEEE TRANSACTIONS ON

VLSI SYSTEMS. In the past, he has served as an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS I, T-CAS-II, and T-VLSI SYSTEMS for
many terms. He has also served as a TPC Member and various chairs for
tens of international conferences. Moreover, he has contributed significantly
to the industrial standards. So far, his technical proposals have been adopted
bymore than 15 international networking standards. In 2015, he was elevated
to the Fellow of IEEE for contributions to VLSI design and implementation
of FEC coding.

HONGBING PAN received the B.S. degree in
applied physics and Ph.D. degree in microelec-
tronics and solid state electronics from Nanjing
University, Nanjing, China, in 1994 and 2005,
respectively.

From 2006 to 2012, he was an Associate Pro-
fessor with the Institute of VLSI Design, Nanjing
University. Since 2013, he has been a Professor
with the School of Electronic Science and Engi-
neering, Nanjing University. He is the author of

more than 40 articles. His research interests include VLSI design, CMOS
sensors, reconfigurable computing, and artificial intelligence.

VOLUME 8, 2020 46241

	INTRODUCTION
	PROPOSED APPROXIMATION METHOD FOR ARITHMETIC FUNCTIONS BASED ON STOCHASTIC LOGIC
	 THE BASIC APPROXIMATION METHOD
	UNIVERSAL IMPLEMENTATIONS FOR MONOTONIC FUNCTIONS BASED ON STOCHASTIC COMPUTING
	MONOTONICALLY DECREASING FUNCTIONS
	MONOTONICALLY INCREASING FUNCTIONS

	 IMPLEMENTATION SCHEMES FOR NON-MONOTONIC FUNCTIONS BASED ON STOCHASTIC COMPUTING
	SCHEMES FOR NON-MONOTONIC FUNCTIONS OF TYPE I
	SCHEMES FOR NON-MONOTONIC FUNCTIONS OF TYPE II
	SCHEME II: OPTIMIZATION SCHEME FOR NON-MONOTONIC FUNCTIONS OF TYPE II

	THE PROPOSED HARDWARE ARCHITECTURES
	HARDWARE ARCHITECTURE FOR DECREASING FUNCTIONS
	HARDWARE ARCHITECTURE FOR INCREASING FUNCTIONS
	HARDWARE ARCHITECTURES FOR NON-MONOTONIC FUNCTIONS
	HARDWARE ARCHITECTURE FOR SCHEME I
	HARDWARE ARCHITECTURE FOR SCHEME II

	EXPERIMENTAL RESULTS
	ANALYSIS OF MONOTONIC FUNCTIONS
	ANALYSIS OF NON-MONOTONIC FUNCTIONS

	COMPARISONS WITH RELATED WORKS
	APPROXIMATION PERFORMANCE COMPARISONS
	HARDWARE COMPLEXITY AND CRITICAL PATH DELAY COMPARISONS WITH RELATED WORKS

	CONCLUSION
	REFERENCES
	Biographies
	ZIDI QIN
	YUOU QIU
	MUHAN ZHENG
	HONGXI DONG
	ZHONGHAI LU
	ZHONGFENG WANG
	HONGBING PAN

