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ABSTRACT Accurate remaining useful life prognosis of bearings in wind turbines can effectively help
to schedule maintenance strategy and reduce operational costs at wind farms. Unscented particle filter is
good at state tracking in nonlinear problem. A robust model-based approach based on improved unscented
particle filter is presented to deal with bearing life prognosis in wind turbines, which involves: (1) The mean
of sigma points after unscented Kalman transform is regarded as the particles in particle filter to guarantee
the particles aggregation; (2) Several past measurements are utilized to estimate the likelihood function
of current step; (3) Uniform distribution is adopted for resampling particles to make them diversity. The
presented remaining useful life prognosis approach depends more on the measurement, rather than the initial
parameters of degradation model, which makes it practicable for the on-site wind turbines. Three life-cycle
bearings from wind turbine high-speed shafts demonstrate the effectiveness of the proposed approach.

INDEX TERMS Remaining useful life, prognosis, bearings, wind turbines, improved unscented particle
filter.

I. INTRODUCTION
Wind energy has rapidly developed in the past decade world-
wide. In China, by the end of 2018, over 221.6 GW of
installed capacity of wind energy has been put into opera-
tion [1], contributing about 6% of the total power supply.
Wind turbine is the key equipment converting stochastic wind
energy into electric power. Rolling bearings are extensively
equipped in wind turbine drivetrain to support the rotating
parts. Due to harsh operational environment, bearings in wind
turbines are subject to fail, causing long shutdown and high
cost. A series of worse consequences could be generated by
the failed bearings, e. g., the scuffing of generator between
stator and rotor, the damage of wind turbine gearbox.

On the basis of the current and former health states of rotat-
ing machinery, or the failure law of congeneric subassem-
blies, the technique of remaining useful life (RUL) prognosis
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enables tendency prediction of health indicator representing
the deterioration process of faulty wind turbines, and com-
putes the time when the predicted indicator will arrive at
failure threshold. After incipient faults are detected, RUL
prognosis can tell operators when the faulty subassembly
will fail and how long the spare part should be prepared in
advance. Therefore, accurate RUL prognosis is significant in
scheduling maintenance plan and reducing operational cost at
wind farms.

Numerous RUL prediction approaches can be categorized
into three types according to their principles: data driven
approach, model-based approach, and the combination of
the above two methods [2]. Data driven prognosis first con-
structs multiple failure models on the basis of historical data.
Through comparing the similarity between the online indi-
cator and the historical models, the predicted machinery is
assumed to complywith the failure law of the historicalmodel
with the largest similarity, and RUL can be calculated accord-
ing to this model. Unfortunately, data driven approach needs
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abundant historical life-cycle data that is hardly acquired
in industrial applications. Moreover, the assumption of the
predicted machinery complying with the failure law of the
historical model with the largest similarity is not rigorous
because congeneric machineries may work under different
operational conditions. Model-based approach assumes the
failure process obeying some physical law with a specific
mathematic formula, e. g., fatigue cracks complying with
Paris-Erdogan model [3], fatigue of coil spring with Good-
man formula [4], and laser device with inverse Gaussian
degradation model [5].

Particle filter is a model-based algorithm widely applied
in object tracking under non-Gaussian and nonlinear con-
ditions [6]–[8]. Compared with Kalman filter [9] and its
variants, particle filter has a better performance for deal-
ing with non-Gaussian and nonlinear problems. Because
of these properties, particle filter has been utilized in the
RUL prediction of various devices. Lei et al. [10] used the
maximum-likelihood estimation to initialise model parame-
ters and particle filter to predict the RUL of bearings. Zio
and Peloni [11] proposed a methodology for the estimation
of the remaining useful life of component based on particle
filter. Chen et al. [12] proposed a machine remaining use-
ful life prediction approach based on adaptive neuro-fuzzy
inference systems and high order particle filter. Fan et al. [13]
made an approach on long-term lumen maintenance life pre-
diction based on particle filter. Raghavana and Frey [14]
used particle filter to predict lifetime of microelectronic
devices. Orchard and Vachtsevanos [15] proposed a parti-
cle filtering-based framework for real-time fault diagnosis
and failure prognosis in turbine engine. Deutsch et al. [27]
integrated deep belief network and particle filter for RUL
prediction of hybrid ceramic bearings. For the application of
RUL prediction in wind turbine systems, Cheng et al. devel-
oped enhanced particle filtering algorithm [28] to predict the
remaining useful life of a bearing in a 2.5 MW wind turbine.
They also defined noise-to-signal ratio as the fault-related
feature for fault prognosis, and used adaptive neuro-fuzzy
inference system and particle filtering to predict the RUL
of wind turbine gearbox [29]. Djeziri et al. [30] proposed a
hybrid method of a wind turbine fault prognosis, involving a
physical model, cluster and geolocation principle.

Unscented particle filter (UPF) combines unscented
Kalman transform and particle filter to deal with nonlinear
tracking problem [16]. Unscented Kalman transform enables
the nonlinear transfer of the mean and variance of parti-
cles, which generates proposal distributions that match the
true posterior closely. With these advantages, Acuña and
Orchard [17] proposed a particle filter based failure prognosis
via sigma points application to lithium-Ion battery state-of-
chargemonitoring. Zheng and Fang [18] integrated unscented
Kalman filter and relevance vector regression for the lithium-
ion battery remaining useful life and short-term capacity
prediction. Another significant work in RUL prognosis is
the construction of health indicator. A quantitative degrada-
tion assessment of bearings was fulfilled by calculation of

minimum quantization error of the new measurement data
to a trained Self Organizing Map (SOM) neural network
using normal operation data sets [19]. The combination of
SOM and other methods were developed for health trend
prediction of rotating bearings [20], [21]. For the bearings
RUL prognosis in wind turbines, Teng et al. [22] selected
root mean square and frequency spectrum energy as health
indicators. Guo et al. [23] adopted recurrent neural network
with feature selection technique to build the health indicator.

In this paper, a robust model-based approach on the basis
of improved unscented particle filter is presented to predict
the remaining useful life of bearings in wind turbines. Three
key points are involved: (1) The mean of the particles in
unscented Kalman transform is used as the particles in par-
ticle filter, making a favorable particles aggregation; (2) The
past several measurements are utilized to calculate the like-
lihood function of current step; (3) To overcome the particle
unicity, a modified resampling method using uniform distri-
bution is presented. The presented approach depends more
on the measurements rather than the initial parameters, and
has no requirement for the complex construction technique
of health indicators. Three life-cycle bearings from on-site
wind turbine high-speed shafts verify the effectiveness of the
approach.

II. UNSCENTED PARTICLE FILTER
A. PARTICLE FILTER
Particle filter is an extension of Kalman filter to realize
nonlinear tracking. It no longer assumes the state or noise dis-
tribution obeying the Gaussian case [6]. A dynamic nonlinear
system can be described as the state space (1) and (2)

xk = f (xk−1, vk−1) (1)

zk = h(xk ,υk ) (2)

where Eq. (1) is state model and Eq. (2) is measurement
model. xk and zk are system state and measurement at thek th

step. f and h are state and measurement function. vk−1is state
noise at the (k-1)th step and υk is measurement noise at the
k thstep.

The aim of particle filter is to get the posterior density dis-
tribution p(x0:k |z1:k ) through the known measurements z1:k .
To get a recursive expression, p(x0:k |z1:k ) is first analyzed.
Theoretically, if enough particles obeying p(x0:k |z1:k ) can
be drawn, with reasonable weights wk , p(x0:k |z1:k ) could be
approximated as

p(x0:k |z1:k ) ≈
Ns∑
i=1

w(i)
k δ(x0:k − x

(i)
0:k ) (3)

where Ns is the number of particles, w(i)
k is the weight of the

ith particle, and x(i)0:k is the particle state from initial to the
k th step. In fact, the p(x0:k |z0:k ) is unknown, thus a proposal
density function q(x0:k |z0:k ) is used to sample the numerous
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particles. Then, the weightw(i)
k has the following relationship:

w(i)
k ∝

p(x(i)0:k |z1:k )

q(x(i)0:k |z1:k )
(4)

q(x0:k |z1:k ) is called importance density and it can be factor-
ized as

q(x0:k |z1:k ) = q(xk |x0:k−1, z1:k )q(x0:k−1|z1:k−1) (5)

here q(x0:k−1|z1:k−1) equals to q(x0:k−1|z1:k ) considering the
concrete physical meaning. Then,

p(x0:k |z1:k )

=
p(zk |x0:k , z1:k−1)p(x0:k |z1:k−1)

p(zk |z1:k−1)

=
p(zk |x0:k , z1:k−1)p(xk |x0:k−1, z1:k−1)

p(zk |z1:k−1)
p(x0:k−1|z1:k−1)

=
p(zk |xk )p(xk |xk−1)

p(zk |z1:k−1)
p(x0:k−1|z1:k−1)

∝ p(zk |xk )p(xk |xk−1)p(x0:k−1|z1:k−1) (6)

where p(zk |z1:k−1) denotes the correlation between the cur-
rent measurement and previous ones. Since themeasurements
can be measured, their correlation is explicit and can be
modelled by time series methods, so p(zk |z1:k−1) is regarded
as a normalizing constant. Then sample some particles and
substitute Eq. (5) and (6) into Eq. (4), the weight w(i)

k can be
updated as

w(i)
k = w(i)

k−1

p(zk |x
(i)
k )p(x(i)k |x

(i)
k−1)

q(x(i)k |x
(i)
0:k−1, z1:k )

(7)

In common case, q(x(i)k |x
(i)
0:k−1, z1:k ) is replaced by

q(x(i)k |x
(i)
k−1, zk ) because p(xk |z1:k ) is recursively required at

each step. So w(i)
k is rewritten as

w(i)
k ∝ w(i)

k−1

p(zk |x
(i)
k )p(x(i)k |x

(i)
k−1)

q(x(i)k |x
(i)
k−1, zk )

(8)

If the importance density q(x(i)k |x
(i)
k−1, zk ) is chosen as

p(x(i)k |x
(i)
k−1) [6] considering the computational cost, w(i)

k is
simplified as

w(i)
k ∝ w(i)

k−1p(zk |x
(i)
k ) (9)

The above filtering procedure is named as sequential impor-
tance sampling (SIS) Filter. The posterior density p(xk |z1:k )
is estimated as

p(xk |z1:k ) ≈
Ns∑
i=1

w(i)
k δ(xk − x

(i)
k ) (10)

B. UNSCENTED PARTICLE FILTER
Unscented particle filter (UPF) consists of an unscented
Kalman filter and a particle filter. In unscented Kalman trans-
form, each particle with the sigma points at the (k-1)thstep is
processed by nonlinear state model and measurement model,
which provides the estimation of proposal density function
at the k th step. Due to the introduction of new arrival mea-
surement in unscented Kalman transform, the estimation of
proposal density function approximates well to the posterior
probability density.

For any particle vector x(i)ak−1 = [x(i)Tk−1 v
(i)T
k−1υ

(i)T
k−1]

T consist-
ing of particle state, state noise and measurement noise at the
(k-1)th step, the sigma points are calculated as [16]

X (i)a
k−1 = [x̄(i)ak−1 x̄

(i)a
k−1 ±

√
(na + λ)P

(i)a
k−1] (11)

where x̄(i)ak−1 is the mean of the particle vectors, P(i)a
k−1

is the covariance of the particle vectors. X (i)a
k−1 =

[(X (i)x
k−1)

T (X (i)v
k−1)

T (X (i)υ
k−1)

T ]T , λ is composite scaling param-
eter. na is the dimension of particle vector, which is the sum of
the dimension of particle state, state noise and measurement
noise, na = nx + nv+ nυ . There are 2na+ 1 sigma points for
each particle.

The time updating process is as following:

X (i)x
k|k−1 = f (X (i)x

k−1,X
(i)v
k−1)

x̄(i)k|k−1 =
2na∑
j=0

W (m)
j X (i)x

j,k|k−1

P(i)
k|k−1 =

2na∑
j=0

W (c)
j [X (i)x

j,k|k−1 − x̄
(i)
k|k−1][X

(i)x
j,k|k−1 − x̄

(i)
k|k−1]

T

Z(i)
k|k−1 = h(X (i)x

k|k−1,X
(i)υ
k−1)

z̄(i)k|k−1 =
2na∑
j=0

W (m)
j Z (i)

j,k|k−1 (12)

Measurement update equations are:

Pz̃k z̃k =
2na∑
j=0

W (c)
j [Z(i)j,k|k−1 − z̄

(i)
k|k−1][Z

(i)
j,k|k−1 − z̄

(i)
k|k−1]

T

Pxk zk =
2na∑
j=0

W (c)
j [X (i)

j,k|k−1 − x̄
(i)
k|k−1][Z

(i)
j,k|k−1 − z̄

(i)
k|k−1]

T

Kk = Pxk zkP
−1
z̃k z̃k

x̄(i)k = x̄(i)k|k−1 +Kk (zk − z̄
(i)
k|k−1)

P(i)
k = P(i)

k|k−1 −KkPz̃k z̃kK
T
k (13)

Kk is Kalman gain, the weights of sigma points are computed
as:

W (m)
0 = λ/(na + λ)

W (c)
0 = λ/(na + λ)+ (1− α2 + β)

W (m)
j = W (c)

j = 1/{2(na + λ)}, j = 1, 2, . . . , 2na (14)
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FIGURE 1. Comparison of particle distribution: a) initial particles; b)
particle distribution of conventional particle filter; c) particle distribution
using replacement method.

The proposal density function is estimated as
q(x(i)k |x

(i)
k−1, zk ) = N (x̄(i)k , P(i)

k ). New particles are randomly
drawn from this proposal function, and the transition prior
p(x(i)k |x

(i)
k−1) and the likelihood p(zk |x

(i)
k ) are calculated. The

weights of particles are updated as Eq. (8).

III. IMPROVED UPF FOR BEARINGS RUL PROGNOSIS IN
WIND TURBINE
A. IMPROVED UNSCENTED PARTICLE FILTER
Three improvements are implemented in this Section to make
UPF practical for bearings RUL prognosis in wind turbines.

1) REPLACING PARTICLES BY THE MEAN IN UNSCENTED
KALMAN TRANSFORM
UnscentedKalman transform in Eq. (12) absorbs the informa-
tion of both state and measurement model. Since it is under
the framework of particle filter, numerous of particles already
exist, which enables to guarantee the particle diversity. Thus,
to reduce the uncertainty of random samples from the esti-
mated proposal density q(x(i)k |x

(i)
k−1, zk ) , only the unscented

transformed mean x̄(i)k is utilized as new particle at the k thstep.
The conventional SIS particle filter is still adopted in the RUL
prediction with x(i)k replaced by x̄(i)k , and the weight Eq. (9) is
rewritten as

w(i)
k ∝ w(i)

k−1p(zk |x̄
(i)
k ) (15)

Fig. 1 shows the comparison of particle distribution during
one RUL prediction between conventional particle filter and
replacement method. The two methods use the same initial
particles shown in Fig. 1a. At the end of the RUL prediction,
in Fig. 1c the particle distribution through replacing particles
by the mean in unscented Kalman transform, shows prefer-
able concentration than the distribution using conventional
particle filter in Fig. 1b.

FIGURE 2. Stratified resampling.

2) LIKELIHOOD CALCULATION
In Eq. (15), to update the weights, the density function
p(zk |x̄

(i)
k ) should be given or could be measured. However

in RUL prognosis, only the measurement zk at each step is
measured, and the relationship between xk and zk in Eq. (2) is
unknown. Here, to fully consider the effect of measurements,
p(zk |x̄

(i)
k ) is approximated as

p(zk |x̄
(i)
k ) ∼ N

(
abs(zk − x̄

(i)
k ), σ 2(zk−N : k )

)
(16)

whereN denotes normal distribution, σ 2(zk−N : k )denotes the
variance of the measurements from the (k-N)thto k th step, and
N is the number of previous steps used for the estimation of
the probability density function p(zk |x̄

(i)
k ).

3) IMPROVED RESAMPLING TECHNIQUE
Particle degeneracy is an inevitable phenomenon in parti-
cle filter due to the iterative calculation of particle weights.
To overcome this, some resampling methods are applied to
resample the particles during iterative calculation, including
multinomial resampling, residual resampling and stratified
resampling [24] etc. Considering its uniformity and ran-
domicity, stratified resampling is adopted in this paper. As
show in Fig. 2, the cumulative sum of the current weights is
divided into Ns equal sections, and one particle is randomly
selected from each section. This guarantees that each particle
is between 0 and 2/Ns apart.
The effective sample size Neff is computed to decide

whether the resampling is triggered. Neff is approximated
as [6]

Neff ≈ 1/
Ns∑
i=1

w(i)
k (17)

If Neff < Ns/2, the stratified resampling is triggered.
To avoid the homogenization of resampled particles from

stratified resampling, (that is, the particles with larger weights
may be sampled multiple times), a further resampling algo-
rithm is proposed, which will guarantee the diversity of
resampled particles. The improved resampling algorithm is
shown in Table 1.

where ind(i) is resampled particle indices from stratified
resampling, U denotes uniform distribution.

With the updated particles and weights at the k th step, the
current particle state is estimated as

x̂k ≈
Ns∑
i=1

w(i)
k x̄

(i)
k (18)

The core of the improved resampling technique is the parti-
cle update after stratified resampling. Uniform distribution is
used here can remain the particle states as normal distribution,
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TABLE 1. Improved resampling algorithm.

FIGURE 3. Particle distribution of health state at different times.

meanwhile enhancing the diversity of particles by the random
coefficient between 0.9 and 1.1 in Table 1.

In Fig. 3, due to the improved resampling technique, the top
sub-figures always exhibits approximate normal distribution
and particle diversity at different times. By contrast, even the
same initial particles, the particles degenerate severely in the
bottom-right sub-figures without the improved resampling
method.

B. BEARINGS RUL PROGNOSIS BASED ON IMPROVED
UPF
Rolling bearings are widely utilized in industrial equipment
to support rotatingmachineries. The life-cycle of rolling bear-
ings can be divided into several phases: health stage, incipient
fault, deteriorating stage and failure stage. The degradation
process of rolling bearings is depicted as an exponential
model that is shown as{

xk = exp(bk · k) · xk−1
zk = xk + σz

(19)

where xk−1 is the bearing state at the (k-1)th step, bk is the
model coefficient, zk is the measurement, which can be the
health indicator of rolling bearing. σz denotes the standard
deviation of measurement noise.

TABLE 2. The proposed RUL prognosis procedure for bearings using
improved UPF.

The difficulty of predicting the remaining useful life of
bearings lies in how to determine the model coefficient bk .
The common usage is to preset b in an initial range [m, n]
and to update it using the arriving measurements. The initial
range of parameter b is determined as follows: (1) When
RMS increases, it denotes incipient tendency. At that stage,
the local maxima and minima of RMS are detected. With
these points, the upper curve and lower curve are separately
fitted by exponential function. Each curve generates a param-
eter b, thus forming a range. (2) Several bearings on the high-
speed shafts are repeated as the last step. The minimal b
from all the lower curves is set as the left boundary of the
initial range, and the maximal b from all the upper curves
is set as the right boundary. Thus, the particles x in bearing
RUL prognosis are the ensemble of bearing state x and model
coefficient b, x = [x, b]T. The bearings RUL prognosis
procedure based on improved UPF is shown in Table 2.

At any step k , when the particle states including x̂k and b̂k
are estimated as Eq. (18), the future state should be computed
as the degradationmodel in Eq. (19) iteratively until it touches
the failure threshold. Provided that the time touching the
threshold is denoted by t̂kf , then the RUL at current step k
is computed as

RULk = t̂kf − k (20)

IV. CASE STUDY
A. THREE FAILURE BEARINGS IN WIND TURBINES
A typical drive train of wind turbines is shown in Fig. 4,
which consists of blade, hub rotor, gearbox, and generator.
From the hub rotor to the generator, the rotational speed
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FIGURE 4. The drive train of wind turbines and the placement of
accelerometers.

FIGURE 5. Life-cycle vibration signals from three wind turbines: a)
bearing 1 from drive end of generator; b) bearing 2 from drive end of
generator; c) bearing 3 from the rear end of high speed shaft in gearbox.

increases gradually. The last shaft in gearbox combined with
the generator rotor are named as high-speed shaft. Generally,
eight accelerometers are mounted on the surface of the drive
train to monitor the health state of gears or bearings. In this
paper, we focus on the bearings in wind turbine with high
rotational speeds since abundant on-site cases exhibit that
their degradation processes obey the exponential model as
Eq. (19).

Fig. 5 displays the vibration signals of three life-cycle
bearings from wind turbine high-speed shaft. The first two
are from drive end of generator (accelerometer 7 in Fig. 4),
and the last one is from the rear bearing on high speed shaft
in wind turbine gearbox (accelerometer 6 in Fig. 4). The
three bearings failed at the last day shown in Fig. 5. To avoid
the disadvantages of varying operating conditions, only the

TABLE 3. Fault features of bearings in wind turbine generators.

vibration signals with the rotational speed over 1000 rpm
of the generator were collected each day. The duration of
each signal is 2 second. The sampling frequency of the first
two bearings is 8192 Hz, and the last one is 51200 Hz as
different data acquisition systems were utilized. Suffering
from the fluctuating load from stochastic wind, the vibra-
tion amplitudes change obviously, but show evident tendency
when severe faults emerge on the bearings. The first two
failed bearings in generators are SKF 6326C3 and the third
one in gearbox is FAG 31326, whose fault features are listed
in Table 3. fr is the rotating frequency of the generator shaft.
Once the fault feature frequencies in Table 3 emerge continu-
ously in power spectrum of vibration signal, the bearing could
be deduced as incipient fault.

Taking bearing 1 for an example, the temporal signal,
power spectrum and envelope spectrum at different health
stages are shown in Fig. 6. At the 18th day in Fig. 6a, the
vibration amplitude is limited into ±10 m/s2, and there are
regular periodic fluctuations in the temporal signal. The fluc-
tuating component corresponds to the rotating frequency, 29
Hz, of the generator. At this stage, the rotating frequency indi-
cates a potential rotor imbalance, rather than bearing fault.
At the 195th day in Fig. 6b, besides the rotating frequency
(fr = 28 Hz), the frequencies 87 Hz (3.1 times of fr ), 134 Hz
(4.78 times of fr ) emerge, denoting the fault on outer race
and inner race of the bearing. In Fig. 6c, the 370th day,
the vibration amplitude continues to increasewith the rotating
frequency 30 Hz, the outer race fault frequency 93 Hz, and
the inner race fault frequency 142 Hz. That shows the perfor-
mance degradation of the bearing. At the 405th day in Fig. 6d,
the bearing enters into the failure stage where the vibration
amplitudes increase obviously, still accompanied by the fault
frequencies of outer race, inner race and their harmonics
in the envelope spectrum. Therefore, bearing 1 fails due to
the fault on both inner and outer race. Similarly, from the
analysis of envelope spectrum of bearing 2 and bearing 3,
the failure positions are focused on outer race and inner race
respectively, described in Table 3.

B. HEALTH INDICATOR AND FAILURE THRESHOLD
To develop a practical RUL prediction model for the on-site
bearings on wind turbine high-speed shafts, simple and
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FIGURE 6. The temporal signal, power spectrum and envelope spectrum
at different times of bearing 1: a) the 18th day; b) the 195th day; c) the
370th day; d) the 405th day.

TABLE 4. The statistical indicators of vibration signals.

FIGURE 7. Time indicators of bearing 1: a) mean; b) RMS; c) variance;
d) square root of amplitude; e) skewness; f) kurtosis; g) waveform factor;
h) margin factor.

effective indicators are necessary. Table 4 lists eight statistical
indicators of vibration signals.

The eight indicators of bearing 1 are shown in Fig. 7.
Apparently, the root mean square in Fig. 7b, variance in
Fig. 7c, and square root of amplitude in Fig. 7d possess good
monotonicity and tendency, which should be selected as the
health indicators of RUL prognosis.With the following issues
being considered, RMS is utilized as the health indicator in
this paper: (1) RMS is an effective statistical metric, which
has explicit threshold in the vibration criteria VDI 3834 [25]
that can denote the health state of wind turbines bearings.
(2) Although RMS could be influenced by varying opera-
tional conditions, the vibration signals with the rotational
speed over 1000 rpm of high-speed shafts were collected
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FIGURE 8. RMS of vibration signal of bearing 1, and predicted state with
different approaches.

each day. (3) The proposed method, improved unscented
particle filter, enables the estimation of the real value of health
indicators, with some noise. The fluctuation in RMS caused
by operating conditions can be treated as state noise. (4) In
the on-site scenarios, RMS exhibits favorable tendency when
the health state of bearings in wind turbines are deteriorating.
This is verified not only by the three study cases in this paper,
but the published paper, such as [28]. For the high-speed
bearings in wind turbines, the failure threshold of RMS
is 16 m/s2.

C. THE RESULTS OF RUL PROGNOSIS
The blue line in Fig. 8 shows the RMS of bearing 1. Although
the maximum of RMS didn’t exceed the threshold 16 m/s2,
this bearing indeed was replaced after the 413th day. There-
fore, the day with maximum RMS is defined as the failure
day. In this case, the failure day is the 409th day. Three
approaches including improved PF, improved UPF and state
fitting are utilized to predict the remaining useful life of the
bearing. The improved UPF (our proposed method) obeys the
procedure of Table 2, and the improved PF is similar but lacks
the unscented transform of Eqs. (12) and (13). State fitting
approach adopts single exponential model to fit the data from
the (k-N )th to k thstep to get a model parameter. The day with
the coming state knocking the threshold under this parameter
will be used to calculate the RUL. The fitted result at the k th

step is drawn in Fig. 8 as the green line. The predicted state
based on improved PF and UPF are shown as the red and
black line.

In Section III. B, the initial parameter b is mentioned that it
is significant for the prediction of the RUL. As the analysis of
abundant on-site bearings on wind turbine high-speed shafts,
b is initially set [0.01, 0.02]. The predicted RULs of bearing 1
are shown in Fig. 9. At the early prediction stage, the RULs
using three approaches deviate from the true RUL, however,

FIGURE 9. Predicted remaining useful life using different approaches for
bearing 1.

FIGURE 10. RMS of vibration signal of bearing 2, and predicted state with
different approaches.

they are gradually close to the true RUL with the bearing
being in degradation progress. In Fig. 9, the improved UPF
performs superiorly than the other two methods, showing
that the proposed approach can adjust its prognosis result by
the arriving measurements, rather than the initial parameter.
This demonstrates that the proposed approach is practicable
in the bearing RUL prognosis of wind turbine high-speed
shafts.

The RMS of bearing 2 in Fig. 10 exhibits intensive fluc-
tuation during its life cycle, which accords to the character-
istic of varying rotational speed and load of wind turbines.
Nevertheless, the three approaches (improved UPF, improved
PF, and state fitting) can still handle the fluctuating health
indicator, and get the tracking states, which are shown as the
black, red and green line separately. The failure day in this
case is the time knocking the threshold, the 165th day. The
initial parameter b is sampled in the same range [0.01, 0.02].
The predicted RULs in Fig. 11 are gradually close to
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FIGURE 11. Predicted remaining useful life using different approaches for
bearing 2.

FIGURE 12. RMS of vibration signal of bearing 3, and predicted state with
different approaches.

the true RUL, amongst these, the improved UPF based
approach performs better than the other methods before
the 130th day and the state fitting is superior after the
130th day.
The RMS of bearing 3 shows some differences to the two

bearings ahead. Even though it is in good health stage during
the first 100 days, the vibration amplitudes are larger, which
might be caused by the drawbacks in original manufacturing
and installation. The RUL prediction is triggered when the
RMS starts an ascending trend and the tracking states are
shown in Fig. 12 using the three different approaches. The
initial parameter b is sampled from the range [0.01, 0.02] as
well. In the RUL results of Fig. 13, the improved UPF shows
a more distinct advantage than the other two approaches,
because it is more close to the true RUL.

To evaluate the RUL prognosis effect of differ-
ent approaches, the mean absolute deviation (MAD),

FIGURE 13. Predicted remaining useful life using different approaches for
bearing 3.

TABLE 5. MAD of the RUL prediction results of the three bearings (unit:
days).

∑K
k=1 |RULk − RULak |/K , is calculated as Table 5. RULk

is the predicted remaining useful life using three different
approaches, RULak is the actual remaining useful life at the
k th step. K is the total prognosis step.

In Table 5, the improved UPF based approach has a higher
prediction accuracy than the other two methods when starting
the RUL prognosis procedure at the incipient fault stage of
the three bearings. For the last 30 days, a critical period when
maintenance strategy is scheduled, the MAD of the improved
UPF is only 5 days around, which can assist to provide an
accurate failure time for operation and maintenance at wind
farms.

D. COMPARISON WITH OTHER RUL PROGNOSIS METHOD
Many particle filter based methods were developed for RUL
prognosis. For example, in reference [26], the authors pro-
posed a tutorial for particle filter based prognostics algorithm
that can be used in the prognosis of battery degradation and
crack growth. This method is adopted to predict the RULs
of the bearings in this paper. The same range [0.01, 0.02]
for b is used. In the predicted result of bearing 1 in Fig. 8,
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the predicted state (dash line) corresponds to the measured
RMS. The predicted RUL in Fig. 9 fluctuates around the true
RUL, exhibiting a feasible prognosis result of RUL.

The same method and parameters are used for the pre-
diction of bearing 2, and the result is shown in Fig. 10.
The predicted state (dash line) in Fig. 10 deviates from the
measured RMS gradually with the deterioration of bearing
2. Consequently, the predicted RUL in Fig. 11 is far from
the true RUL, which cannot provide practical maintenance
suggestion at wind farms.

As a comparison, from the results in Figs. 9, 11 and 13,
the proposed improved UPF approach provides accurate RUL
results for the three bearings, which demonstrates that the
proposed approach is robust, and insensitive to the initial
model parameter. Through the proposed resampling tech-
nique, model parameter b is updated with the selected large
weight particles and the arrivingmeasurements, thus showing
a superior adaptability.

V. CONCLUSION
Bearings remaining useful life prognosis plays a significant
role in the operation and maintenance of wind turbines. How-
ever, varying speed and load, inappropriate model parameters
may block the successful application of remaining useful life
prognosis in on-site wind turbines.

In this paper, a robust model-based approach with
improved unscented particle filter is proposed, involving
three aspects: (1) Replacing the particles using the mean from
unscented Kalman transform to enhance particle aggregation;
(2) Using past measurements to estimate the variance in like-
lihood calculation; (3) A resampling technique is presented to
guarantee the particle diversity. Based on the improvements,
the procedure of bearing remaining useful life prognosis in
wind turbines is presented and verified by three life-cycle
bearings from on-site wind turbines. The results illustrate that
the proposed approach can accurately predict the remaining
useful life of bearings, which will provide feasible mainte-
nance suggestions for wind farms.
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