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ABSTRACT Over the last few years, the malware propagation on PC platforms, especially on Windows
OS has been even severe. For the purpose of resisting a large scale of malware variants, machine learning
(ML) classifiers for malicious Portable Executable (PE) files have been proposed to achieve automated
classification. Recently, function call graph (FCG) vectorization (FCGV) representation was explored as
the input feature to achieve higher ML classification accuracy, but FCGV representation loses some critical
features of PE files due to the hash technique. This paper aims to further improve the classification accuracy
of FCGV-based ML model by applying both graph and non-graph features. We propose an FCGV-SF based
Random Forest classification model, which applies both FCGV features (graph features) and statistical
features (SF, non-graph features) extracted from disassembled PE files. Six types of effective non-graph
features are chosen for our integrated vector, namely, metadata, symbol, operation code, register, section
and data definition. We evaluate our model on a dataset provided by Microsoft hosted at Kaggle, and the
experimental results indicate that the classification accuracy increases from 0.9851 to 0.9957 compared with
the existing model based on FCGV only.

INDEX TERMS Function call graph, machine learning, malware classification, Portable Executable,
statistical features.

I. INTRODUCTION
Over the last few years, the malware propagation on PC
platforms, especially on Windows OS, has been even severe,
causing various threats to system security and data privacy.
AV-TEST statistical report [1] indicated that there were over
30 million malicious Portable Executable (PE) files regis-
tered merely in the first half of 2019. This huge intrusion of
malicious PE files results from the malware modification and
obfuscation performed by attackers, so that similar malware
samples will be distinct from the others [2] and then evade
detection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Mercaldo .

There are usually two separate steps to perform on each
malicious PE file, namely malware detection and classifica-
tion. Firstly, if an executable program contains any malicious
content, it needs detecting through malware analysis tech-
niques. After malware detection, a classification mechanism
categorizes the executable program labeled as malware into
the most similar family for further analysis. In this paper,
we focus on the techniques of malware classification. To
extract features used for malware classification, static and
dynamic analysis techniques have been explored to perform
the analysis of malicious PE files. Static analysis exam-
ines the codes of malware samples without executing them.
In static analysis, content-based features such as instruction
opcodes [3], API sequences [4], [5] and function call graphs
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(FCGs) [6], [7] are typically extracted from disassembled
malicious PE files as the original features for analysis. Static
analysis can easily capture syntax and semantic information
for in-depth analysis, but it is susceptible to code obfuscation
techniques, e.g., compression and polymorphic/metamorphic
transformation [8]. Dynamic analysis usually executes mal-
ware samples in a virtual environment which is monitored
by debugger [12] for observing their behavioral information
such as network activities [9], system calls [10], file oper-
ations and registry modification records [11]. Code obfus-
cation technologies exert less effect on dynamic analysis,
but malware execution consumes much more time and many
more resources than static analysis. Both static and dynamic
analysis techniques have their unique strength and weakness.

A large number of PE malware variants poses great
challenges to human experts in manually analyzing all of
these malware. This situation exposes an imperative need
for developing effectively and efficiently automated malware
classification techniques. Using machine learning (ML) in
the malware classification can make a significant contribu-
tion to resist the malware epidemic. ML classifiers used
for malicious PE file classification typically employ a sin-
gle numerical feature vector representation of each file as
input and mark one or more class labels for each file dur-
ing training. By performing static and/or dynamic analysis
on each PE sample, two types of features can be extracted
frommalware binaries, namely, non-graph features and graph
features. Recently function call graph (FCG) vectorization
(FCGV), which is a kind of graph features, was explored to
achieve higher ML classification accuracy [13] but FCGV
representation loses some critical features of PE files due to
the hash technique.Meanwhile, non-graph features have been
applied for malware classification [14]. Each type of features
represents its unique perspective ofmalicious PEfiles, having
its own merits and limitations. Hence, it is a necessity to
creating an integrated feature vector which contains more
comprehensive information of PE binaries. However, there is
no work on the integration of FCGV features and non-graph
features for designing ML malware classifiers.

In this paper, we propose an FCGV-SF based Random
Forest classification model (denoted as FCGV-SF model in
the following) which applies both FCGV features (graph
features) and statistical features (SF, non-graph features)
extracted from disassembled PE files. Statistical features
reflect the high-level statistical characteristics in PE binaries,
which is more concise and representative. Six types of effec-
tive statistical features [14] are chosen to build our integrated
vector, namely metadata, symbol, operation code, register,
section and data definition. To the best of our knowledge,
we are the first to apply both FCGV features and non-graph
features formalware classification. Comparedwith priormal-
ware classification work based on FCGV only or non-graph
statistical features only, our proposed model preserves more
vital information in disassembled PE files. We use the data
provided on Kaggle [2] for Microsoft Malware Challenge to
evaluate our model, and the classification accuracy increases

from 0.9851 to 0.9957 by comparison with the existing model
based on FCGV only.

The rest of this paper is divided into four sections
as follows. Section II discusses related work. Section III
presents the details of our FCGV-SF model using the new
integrated vector. Section IV presents experimental results
and Section V concludes this study and describes future work.

II. RELATED WORK
The past years witnessed variousML-based approaches, most
of which depended on the features extracted from malware
binaries by using static and/or dynamic analysis. These fea-
tures can be organized as two groups, one is graph feature and
the other is non-graph feature. We discuss the existing classi-
fication approaches from the aspects of graph and non-graph
features in the following.

A. GRAPH FEATURE BASED APPROACHES
There are usually three main types of graph information from
malware samples: FCGs, system-call dependency graphs and
control flow graphs. An FCG is a directed graph repre-
sentation constructed from codes where the vertices spec-
ify functions and the edges correspond to the caller-callee
relations between functions (vertices) [20]. A system call
dependency graph is a directed graph that is usually deter-
mined by dynamic taint analysis. In a system call dependency
graph, a vertex corresponds to a system call and an edge
represents a data dependency between system calls. In [21],
Allen defined a control flow graph as a ‘‘directed graph where
basic code blocks are represented by vertices and control
flow paths are represented by edges’’. A basic control block
was described as ‘‘a linear program instructions sequence
which has one entry point (the first instruction executed) and
one exit point (the last instruction executed)’’. Graph-based
features have been increasingly used in many researches to
cluster and classify malware. Such features have the most
significant advantages of preserving interactive information
between different parts of the malicious codes.

This section only discusses features extracted by static
analysis, which are called as FCGs. FCGs are usually built
from disassembled binaries constructed by static analysis.
Various researches have extracted FCG features for malware
classification and clustering. After creating FCGs, we need
a measure to evaluate the similarity between two FCGs,
such as approximate graph edit distance (GED). In [22]
and [23], Simulated Annealing Algorithm [24] was employed
to approximate GED. On the other hand, Hu et al. [25]
used Hungarian Algorithm to approximate GED. Hassen
and Chan [13] developed a function clustering-based FCGV
representation using hash technique to approximate GED,
which achieved remarkable performance as well as improved
classification accuracy.

Note that GED is not the only way to measure graph
similarity. For example, as another measure of similar-
ity, the normalized common edge number between two
graphs was used in [26]. Dullien and Rolles [27] com-
puted graph similarity through fixed points and propagations.
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They defined a fixed point between pair of graphs. A fixed
point represents two nodes (one each from two different
graphs), which can be easily determined to represent the same
item in both graphs. Their method started from an initial fixed
point. By considering the adjacent nodes, it propagated to
more fixed points. In addition, Kong and Yan [28] extracted
new features from FCGs and used these features to approxi-
mate the similarity between two graphs.

All these aforementioned works only applied FCG
features. FCGs have an advantage on preserving more com-
plete structural information in binaries, however, loss of some
structural information is inevitable during the extraction.
This representation fails to extract comprehensive features
of code, which leads to suboptimal classification accuracy.
It highlights the necessity to integrate non-graph features as
well as FCGs. Hence, our model explores both FCG and
non-graph features for classification.

B. NON-GRAPH FEATURE BASED APPROACHES
This section presents research work based on common
non-graph features which can be extracted from one mali-
cious PE file often with less preprocessing than graph
features.

Ahmadi et al. [14] provided a constructive set of non-graph
features. They extracted several customized statistical fea-
tures which reflected the essence of maliciousness in disas-
sembled PE files. For example, the symbols like ‘‘−, +, ∗, ],
[, ?, @’’ are typical of code that has been designed to evade
detection. Jung et al. [15] explored the application of function
lengths in bytes, which were from disassembled malware
samples and represented as a histogram with the predefined
number of bins. Then they used these frequency values of
function lengths as features for the malware classification.
In [16] and [17], another set of features based on printable
strings were extracted using static analysis from malware
binaries. Besides, the authors in [17] and [18] used program
import table to create a binary feature vector for malware
classification. The program import table in a PE file can
provides information for the program so that it can import
the function in external libraries while executing.

Instruction n-gram constructed from instruction sequences
are extracted from a disassembledmalicious PEfile [18], [19].
In this case, instruction mnemonics or opcodes, excluding
the operands, can represent the instructions. Hu et al. [19]
emphasized that the high dimensionality of instruction n-
gram was one of the challenges when using them. Even
for 2-gram features, the number of 2-grams can possibly
reach tens of thousands. To address this problem, a hashing
trick was used to reduce dimensionality. They employed a
uniformly distributed hash function on the large feature space
to hash this high-dimension space into a smaller dimension.
In [17], binary file byte sequence n-gram was used as fea-
tures for malware classification. Unlike n-gram sequences
based on instruction mnemonic or opcodes, these features
do not require disassembled files. These byte sequences
are extracted from all sections of the original PE binaries,

which differ from the opcode sequences that only focus on
the code segments.

All these works only applied non-graph features. Although
it is mostly easy for us to extract non-graph features, it still
turns out to be hard to remain comprehensive information
from binaries. As a result, we combine non-graph features
with FCG features to achieve more accurate classification
results.

III. FCGV-SF BASED RANDOM FOREST
CLASSIFICATION MODEL
This section first presents the overview of our FCGV-SF
model, then details the procedure of FCG vectorization and
statistical feature extraction respectively.

A. FCGV-SF OVERVIEW
Selecting features which represent malware samples is one of
the most challenging issues for the classification task. This
paper combines various features (namely, FCGV represen-
tation and non-graph statistical features) to generate a novel
integrated feature vector in order to attain better classification
accuracy.

We choose the features extracted from FCGs as the first
part because they preserve more complete structural informa-
tion of codes, compared with n-gram features. They include
the information of functions in a malicious PE file, and
more importantly contain the interactive information between
functions. However, most of the existing researches, which
employed FCG-based features for malware classification,
relied on computationally intensive techniques to estimate
graph similarity. As a result, these work exposed shortcom-
ings of large performance overhead and weak scalability.
Hence, we use FCGV technique [13] to reach more accu-
rate results with less time cost. The details are discussed in
Subsection III.B.

Note that non-graph features, compared with graph
features, are easily extracted and they are also helpful in
improving classification accuracy. Meanwhile, FCGV rep-
resentation can be easily combined with other non-graph
features. In the midst of various non-graph features, we inves-
tigate a set of statistical features [14], namely intuitively
statistical characteristics of PE files, such as file size and the
number of lines in the file. The main attraction of statistical
features is that they represent global characteristics of PE files
which is more concise and representative as well. To avoid
unnecessary performance overheads, we devise a simple, yet
efficient feature extraction module without using more com-
plex features based on n-grams or sequences. We eventually
choose six types of statistical features including metadata,
symbol, operation code, register, section, data definition,
as discussed in Subsection III.C.

Fig.1 presents a high-level view of our classification
model. As it shows, the first step of our model is the extrac-
tion of FCG representations from disassembled malicious
PE binaries. Once an FCG is extracted, we use function
clustering techniques for vectorizing this FCG to an FCGV
vector in a low-dimensional feature space, which is defined
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FIGURE 1. The overview of FCGV-SF model.

FIGURE 2. The procedure of FCG vectorization.

as vFCGV. Meanwhile, we collect six types of predefined
statistical features to build a non-graph SF vector vSF. Then
we concatenate vFCGV and vSF to create an integrated feature
vector v. At last, malware classification is performed on
vthrough the ML model based on Random Forest Algorithm,
which predicts the malware family that the sample belongs
to. We discuss Random Forest classifier in Subsection III.D.

B. FCG VECTORIZATION
The procedure of converting an FCG to FCGV representation
is presented in Fig.2. Three modules are involved in FCG
vectorization, including FCGExtraction, Function Clustering
and Vector Extraction. Our model starts by first performing
the extraction of FCGs from disassembled binaries. Vertices
in FCGs are functions represented in terms of their instruction
opcode sequences. Then the hash technique for clustering
functions reconstructs an FCG labeled with function cluster-
ids. The final step is to perform vector extraction on this FCG
into FCGV representation. Details of these three modules are
discussed in the following.

1) FCG EXTRACTION
FCG Extraction is the first module of FCGV technique which
extracts FCG representations from disassembled binaries of
malicious PE files. In order to obtain the functions and
their caller-callee relations, we use the regular expression to
match instruction opcodes in binaries. During the process
of FCG Extraction, vertices which represent external func-
tions are labeled with their function names. Note that the
names of local functions named by malware writers gener-
ally cannot reflect what the function implements with their
instruction sequences. Therefore, we decide to label later the
vertices which represent the local functions. In this FCG,
vertices corresponding to local functions also contain a set
of instruction opcode sequences extracted from these func-
tions. Besides, the caller-callee relations between functions
are defined as directed and unweighted edges. When FCG

Extraction is finished, this labeled graph is passed to the next
module which is responsible for clustering and relabeling
local functions.

2) FUNCTION CLUSTERING
The second module of vectorization is Function Clustering,
which needs a proper measure to identify similar functions.
GED is one of effective ways to estimate similarity, however,
with O(n2) time complexity in the number of instructions.
To address this problem, Jaccard Index can be employed to
approximate GED but it still costs much time. Fortunately,
locality-sensitive hashing (LSH) is an algorithmic technique
that preserves relative distances between items while hashing
similar input items into low-dimension versions. Hence, it can
effectively reduce the dimensionality of high-dimension data.
A set of LSH functions called Minhash [30] can be used to
efficiently approximate Jaccard Index, which further simpli-
fies the measurement of similarity between functions. The
procedure of Minhash is as follows. First we employ a ran-
dom permutation on the set. Then the index value of the first
element is computed. Guided by the rationale of Minhash,
this value is the hash of the set. Under the strict mathematic
verification, the probability that two sets have the same Min-
hash value is equivalent to the Jaccard similarity between
the two sets. Therefore, for the local function, we perform
Minhash signature and secondary hashing on its n-gram
instruction opcode set to compute a positive cluster-id. For
the external function, we directly hash the function name to a
negative cluster-id. Then we get an FCG whose functions are
labeled with cluster-ids.

3) VECTOR EXTRACTION
In the third module, we extract FCGV representation from
the FCG labeled with function cluster-ids. Vertex weight
and edge weight constitute this vector representation. In this
labeled FCG, the number of functions (vertices) from each
cluster is represented by the vertex weight. As for the edge
weight, it corresponds to the number of times that a caller-
callee relation is found from a function (vertex) in one cluster
to a function (vertex) of another cluster or a function (vertex)
within the same cluster. We can create an FCGV represen-
tation of FCG by concatenating the weights of vertices and
edges.

Due to function clustering, two graphs that are slightly
different may have the exactly same FCGV representation.
In the area of malware classification, there are various obfus-
cation techniques such as changing function calling pat-
terns. This FCGV representation has its own merit which
is more resilient to resist the negative effects of these
techniques. The reason is that it might not express small
changes in the graph structure on condition that there is
no variation observed in the edge and vertex frequencies.
Therefore, FCGV representations make the malware classifi-
cation less susceptible to malicious changes such as function
calls reordering. However, the original FCG inevitably loses
a few details of the graph structure after being processed
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TABLE 1. Six types of statistical features.

by the hash technique. Hence, we combine this FCGV
representation with statistical features to make up the loss.

C. STATISTICAL FEATURES EXTRACTION
FCGV representations only use code segments in binaries.
Furthermore, they are simplified through the Minhash tech-
nique, which means they do not preserve all the critical infor-
mation from disassembled files. As a result, it leads to the
loss of expressiveness and suboptimal classification accuracy.
In this subsection, we consider combining statistical features
with FCGV representations.

Then we face the challenge of how to choose proper sta-
tistical features for the integrated vector. On the one hand,
we need to ensure that FCGV vector and SF vector are of
equal importance, which means we should make the dimen-
sion of vFCGV and vSF basically identical. On the other hand,
we choose the effective and representative statistical features
in terms of the experiments in [14].

We notice that the dimension of API (one set of statistical
features) is too high and MISC (another set of statistical
features) includes too many items that only have auxiliary
effects. Therefore, we abandon these two sets. In Table 1,
we provide details on what features we have chosen and why
they have been selected. Extracting these six types of features
from disassembled files, we combine them with the FCGV
vector presented in Subsection III.B to create a new feature
vector as the input of our ML model. Not only does this

vector contain structural information in the code, but also it
has intuitively statistical characteristics of binaries. The more
effective features it can preserve, the higher accuracy it may
lead to.

D. RANDOM FOREST CLASSIFIER
Random Forest [29] is a ML algorithm using ensemble learn-
ing whose base classifiers are decision trees. Ensemble learn-
ing techniques generally combine predictions from multiple
classifiers to improve prediction accuracy. Random Forest
Algorithm starts from building T decision trees.We randomly
select training samples for each tree from the original training
dataset D to get a new training set Dt which has the same size
with the original D. This random selection is based on some
certain distribution. Then we train an individual decision tree
on Dt without pruning. For the split of any given tree node,
we only consider F features which are randomly selected
rather than all available features. Finally, the majority vote
policy is adopted among all the trees to predict the class label
of the sample.

UsingRandomForest Algorithm formalware classification
brings us various advantages [31] as follows.
• Random Forest tends to have a better prediction per-
formance on a large-scale set of features because it
allows us to construct individual trees whose decorre-
lation improves the classification accuracy.

• Random Forest has a fast training speed, since for each
tree node, it considers a randomly selected subset of
features which is much smaller than our entire feature
space. Hence, it results in a training time reduction.

• Random Forest can prevent overfitting to a certain
extent, since the training samples for each tree and the
features for the split of each tree node are randomly
selected. Besides, because of the Law of Large Num-
bers, Random Forest does not overfit as more trees are
added [29].

• Random Forest reaches better or equal prediction accu-
racy compared with other techniques, such as decision
tree, logistic regression, and backpropagation artificial
neural networks [32].

In our FCGV-SF model, the integrated vector v consists of
two parts, vFCGV and vSF, whose dimensions depend on opti-
mal parameters chosen in FCG vectorization. The integrated
vector v is given as input to Random Forest classifier and the
output is a predicted label that represents which family the
sample belongs to.

IV. EXPERIMENTAL EVALUATION
This section evaluates the capability of our FCGV-SF model.
We first present the dataset and then determine the optimal
values of parameters, namely the n-gram length, the number
of clusters and the number of decision trees. Eventually we
show the improvement of our FCGV-SF model compared
with the previous FCGV-only model.

A. DATASET
Microsoft Malware Classification Challenge (BIG 2015)
dataset [2] hosted at Kaggle is used for evaluating our
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TABLE 2. Microsoft malware dataset class distribution.

proposed classification model. The reasons that we choose
this dataset are presented as follows.
• Suitable. This paper focuses on malware classification.
To the best of our knowledge, other malware datasets
only label benign and malicious samples, like Ember
(2018) [33], which cannot be used to classify malware
variants into their actual families due to the lack of
specific class labels. Fortunately, this Kaggle dataset
labels nine specific families of malicious PE files, which
means this dataset exactly meets our requirement.

• Comparable. The FCGV-only model proposed in [13]
used this Kaggle dataset for evaluation. To demonstrate
the improvement of our FCGV-SF model, we choose
the same dataset to intuitively compare the classification
accuracy.

• Convenient. This Kaggle dataset includes disassembled
files constructed by performing static analysis on origi-
nal malicious programs. These disassembled files can be
directly used for feature extraction. Besides, each sam-
ple in this dataset is marked with their class label, which
can verify the classification results of our FCGV-SF
model.

There are 10,867 labeled malware samples in this original
dataset. We use 10,260 of the samples that are successfully
parsed by the disassembled file parser proposed in [13].
Table 2 shows the class distribution of these samples. Each
malware sample involves two files, one including the disas-
sembled code and the other one consisting of the hex code.
We fail to extract statistical features from the hex code inKag-
gle dataset because of the code format. Thus the disassembled
code is used for experiments in this section.

B. PARAMETER SELECTION
In our FCG vectorization, there are two parameters to be
experimentally configured, namely, the instruction opcode
n-gram length and the function (vertex) cluster number.When
local functions are represented as sets of n-gram sequences,
the length of n-gram determines the value of n in n-gram,
which denotes the number of instruction opcodes. The num-
ber of function clusters determines how many buckets that
functions are hashed into.

Fig.3 shows that the impact of both the n-gram length and
the function cluster number on the classification accuracy.
We observe that the accuracy of using 1-gram is better than
that of both 3-gram and 5-gram whatever the number of
clusters is. LSH functions used for GED approximation can

FIGURE 3. Effect of n-gram length and function cluster number on
classification accuracy.

demonstrate this result. We employ the method proposed
in [13], which uses a set of LSH functions called Minhash to
compute Jaccard Index for the approximation of GED. When
calculating GED, the operations of insertion and deletion are
performed on 1-gram. Therefore, when we approximate GED
withMinhash, the classification accuracy will be worse under
the condition of the longer n-gram. From Fig.3, we observe
that:
• When it comes to the function cluster number,
the increase of function clusters results in the improving
classification accuracy. It can be explained by the fact
that if we cluster functions into a smaller number of
groups, the possibility of hashing dissimilar functions
into the same cluster becomes higher. Obviously, this
leads to less accurate classification results in turn.

• However, the increase of function clusters does not have
significant influence on the accuracy improvement when
using 1-gram. Note that a large number of function
clusters will result in a high-dimension vector space
and unnecessary performance overhead. Therefore, our
optimal model is based on 1-gram opcode sets and
16 function clusters.

Besides, in our Random Forest classifier, we need to deter-
mine the optimal parameter namely the optimal number of
decision trees. As the number of trees increases from 10 to
100, we evaluate the classification accuracy and weighted
F1 score with 5-fold cross validation on the FCGV-only
model proposed in [13] as well as our FCGV-SF model.
Weighted F1 score is the harmonic mean of precision and
recall weighted by the number of samples for each family.
From Table 3, we find that the increase of trees does not
improve the classification accuracy and weighted F1 score
obviously when the number of trees reached 80. Note that
with the increasing number of trees, classification time
increases. To balance the classification time and the accuracy,
we choose 80 as the optimal number of decision trees.
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TABLE 3. Effect of decision tree number on classification accuracy and
weighted F1 score.

C. CLASSIFICATION ACCURACY COMPARISON
We evaluate our model by making a comparison with the
classification model only based on FCGV proposed in [13].
As discussed above, they converted FCGs to FCGV represen-
tations using function clustering. This method has the main
attraction of linear time cost and better performance. Besides,
the extracted graph feature vector can be integrated with other
non-graph features easily.

Our implementation of their model contains threemodules,
Function Clustering, Call Graph Vector Extraction, and Base
Classifier. Functions (vertices) are firstly represented with
1-gram opcode sequences and then hashed into 16 clusters.
The confusion matrix of classification on the entire dataset
with 5-fold cross validation is shown in Fig.4, which achieves
an overall accuracy of 0.9851. The decimals on the diagonal
of the confusion matrix reflects the recall of each malware
family. However, it is obvious to see that only a family named
Simda does not reach the enough perfect recall. The reason is
that there are only 34 Simda instances in the entire dataset for
training. But from another point of view, the less perfect recall
exposes that using FCGs alone will lose some representative
features in malicious PE binaries.

Then we evaluate our FCGV-SF model on the same
10260 samples by predicting the labels on them. We convert
each FCG to a 240 dimensional feature vector vFCGV by
hashing functions into 16 clusters. In addition, we extract six
types of statistical features to create a 170 dimensional feature
vector vSF. Through concatenating vFCGV and vSF, we obtain
an integrated vector v as the input of RandomForest classifier.
The dimensions of vFCGV and vSF are basically identical,
so these two kinds of features are of equal importance when
feature subsets are randomly selected in Random Forest.
The classification results of our model on the entire dataset
with 5-fold cross validation is presented in Fig.5. Compared
with the previous FCGV-only model, the overall accuracy
increases from 0.9851 to 0.9957. In particular, the recall for
the malware family called Simda improves from 0.41 to 0.97.
In addition, the recall of other malware families also has
a little improvement. These results indicate that statistical
features can better describe the characteristics of malware

FIGURE 4. Confusion matrix of classification using FCG-only model.

FIGURE 5. Confusion matrix of classification using FCGV-SF model.

TABLE 4. Evaluation on FCGV-only and our FCGV-SF model.

samples from Simda and other families, which highlights the
necessity of integrating FCGV and statistical features.

Besides, we evaluate the FCGV-only model proposed
in [13] and our FCGV-SF model in terms of average pre-
cision, average recall and weighted F1 score, which are
weighted by the number of samples from each family. From
Table IV, we observe that each of these three metrics has an
improvement so as to prove the effectiveness of our model.

V. CONCLUSION AND FUTURE WORK
This paper explores the improvement in the classification
accuracy of FCGV-only model. We propose an FCGV-SF
based Random Forest classification model. The input of this
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model is a novel feature vector which concatenates FCGV
representation with non-graph statistical features. We select
the optimal parameters (namely the n-gram length, the num-
ber of clusters and the number of decision trees), which
can achieve a balance between time cost and accuracy for
vectorizing an FCG to FCGV representation. Experiments are
carried out for verifying the effectiveness of our model by
comparing with FCGV-only classification results. Our pro-
posed model is able to capture more information of malicious
PE files by integrating more representative features together
and then leads to a higher classification accuracy.

Note that the proposed model is evaluated by a malicious
PE file dataset constructed from static analysis. It can only
extract features in malicious codes, but a number of functions
in binaries are only used for obfuscation instead of running in
the execution. Hence, features are less comprehensive with-
out analysis based on malware behaviors. Besides, this paper
only focuses on malware classification. However, malware
detection is also a challenging and important task. Therefore,
we next plan to evaluate our model on a dataset which is
not only constructed by static analysis as well as dynamic
analysis but also contains benign and malicious PE files both.
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