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ABSTRACT The pendulum-swing problem is a factor that limits the development of parafoil-unmanned
aerial vehicle (UAV) systems. Autonomous attitude control based on parafoil and UAV control mechanisms
is considered an effective solution to this problem. However, due to the coupling effect of the two control
mechanisms, conventional control methods are not suitable. The design of attitude control for parafoil-UAV
systems has become a challenge. For this problem, a model-independent optimal control method called
multivariate extremum seeking with the Newton method (ES-NM) is introduced in this paper. To assess
the performance of multivariate ES-NM control for parafoil-UAV systems, a multibody dynamic model
based on the flexible line assumption is built. The aerodynamic coefficients of this model are estimated via
computational fluid dynamics (CFD) and corrected using flight data. Using this model, the coupling effect
of the two control mechanisms is investigated, and the control range is determined. Finally, the effectiveness
of multivariate ES-NM controller for a parafoil-UAV system is verified. Simulation experiments performed
under various conditions demonstrate that the multivariate ES-NM control can manipulate the UAV control
mechanism and the parafoil control mechanism simultaneously and produce the desired UAV attitude track.
Additionally, comparisons to proportional-integral-derivative (PID) control reveal the better performance of
the proposed control method.

INDEX TERMS Parafoil-UAV system, nonlinear multibody dynamic model, multivariate ES-NM control,
attitude optimal control, attitude tracking.

I. INTRODUCTION
Parafoil systems are unique aerodynamic decelerator sys-
tems. Through asymmetric and symmetric deflections of the
parafoil trailing edge, these decelerator systems can steer
payloads to an intended point and perform flare maneuvers to
ensure a soft landing. Hence, parafoil systems are well suited
for fixed-wing unmanned aerial vehicles (UAV) that need to
land on unprepared terrain accurately [1]. In recent years,
this type of system has been used in several UAVs, including
Developmental Sciences Corp.’s SkyEye, Israel Aerospace
Industries’ Eyeview and NASA’s X-38 [2], [3]. However, the
parafoil-UAV system has a unique issue called the pendulum-
swing problem. This problem is caused by gusts and leads
to instability in the attitude of the UAV [4]. If the pendulum
angle is too large during landing, the weak structural parts of
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the UAV, such as the wings and tail, will impact the ground
first and break apart.

A suitable method by which to solve the pendulum-swing
problem involves designing a control strategy for the parafoil-
UAV system. In recent studies, performing a flare maneuver
against the wind has been demonstrated to be an effective
approach to reduce the lateral and longitudinal velocities and
prevent pendulum swinging of the system [5], [6]. Through
in-flight wind identification, the wind direction and speed
can be determined. The heading of a parafoil-UAV system
is controlled by the asymmetric deflection of the parafoil
trailing edge, and a guidance and control algorithm ensures
that the heading is opposite to the wind direction. By cou-
pling this strategy with a final flare maneuver, the UAV can
achieve a soft and safe landing. However, in a variable-wind
environment, this control strategy cannot completely stop the
pendulum-swinging motion.

Another attractive control strategy is attitude control
based on control mechanisms of the system, including
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asymmetric and symmetric deflections of the parafoil trailing
edge and deflections of the aileron, elevator, and rudder of the
UAV. During flight, the UAV in the parafoil-UAV system has
a normal angle of attack. The UAV control mechanisms
are effective and can steer the longitudinal and lateral
motions. However, in recent years, few studies concerning
the attitude control of the UAV in a parafoil-UAV system
have been reported. The lack of a high-fidelity dynamic
model and the complexity of the coupling effect caused
by the parafoil and UAV control mechanisms make atti-
tude control design challenging. In modeling, 8/9-degree-of-
freedom (DoF) models for the parafoil-UAV system were
presented first [7], [9], and a multibody dynamic model
based on the flexible line assumption was then devel-
oped [10]. This multibody dynamic model can provide
high accuracy and is suitable for assessing the control
performance.

For other problems, an online optimal control method may
be a good solution. Extremum seeking control (ESC) is a
model-independent real-time optimal control approach for
nonlinear dynamic problems [11]. By adjusting the plant
input, this approach can converge the measured output to
extrema. Many studies on ESC have been presented. The
control performance of ESC was discussed in [12], and
corresponding applications in engineering fields were pre-
sented in [13]–[15]. As mentioned in the references, this
control method is generally used to solve single input-single
output problems. For multi-input dynamic systems, this
strategy needs to be further improved. Recently, Chun
Yin proposed an improved method based on ESC, which
is called multivariate extremum seeking with the Newton
method (ES-NM) [16], [17]. This control method can
solve multi-input problems, accelerate convergence with-
out increasing oscillations and eliminate the coupling
effect of multiple control mechanisms. It is suitable for
addressing multi-input- single-output (MISO) control prob-
lems, such as the attitude control of parafoil-UAV sys-
tems. Hence, the purpose of this article is to design
an attitude control strategy based on multivariate ES-NM
to solve the pendulum-swing problem of parafoil-UAV
systems.

To assess the performance of multivariate ES-NM con-
trol for parafoil-UAV systems, first, a multibody dynamic
model based on the flexible line assumption is developed.
All aerodynamic coefficients of this model are calculated by
computational fluid dynamics (CFD) and are corrected by the
flight data. The accuracy of the corrected model is reliable.
Using this model, the coupling effect of the parafoil brake
deflection and the UAV control mechanism can be ascer-
tained. The control range of these two control mechanisms is
then obtained. According to this range, the control parameters
are determined, and the multivariate ES-NM controller is
accomplished. Finally, a series of simulation experiments
is performed under various conditions. The performance of
multivariate ES-NM control for parafoil-UAV systems is
explored and discussed.

FIGURE 1. Configuration of the parafoil-UAV system.

II. PARAFOIL-UAV SYSTEM MODEL
There are three parts in a parafoil-UAV system: the parafoil,
the UAV, and the suspension lines. As shown in Fig. 1, the
connection between the parafoil and the UAV is a two-point
rigging connection, which permits considerable relative yaw-
ing and pitching motions but little relative rolling motion
between the parafoil and the UAV. According to this con-
figuration, the parafoil-UAV system can be modeled in three
parts. The coordinate system is listed in Table 1.

The first part of the model is the parafoil canopy. The mod-
eling of the parafoil canopy has been studied for several years.
Due to the air flowing into the canopy, an inflated shape can
be maintained during flight. The parafoil canopy is always
considered as a rigid body [18]–[20]. Thus, the parafoil
canopy of a parafoil-UAV system can bemodeled with 6 DoF.
The force and moment acting upon the parafoil canopy have
contributions from the weight, the aerodynamic force and
moment, the suspension line tension, and the apparent mass
force and moment. By summing the forces and moments
about the canopy mass center in the parafoil body refer-
ence frame, the dynamic equations of motion can be written
as

mpV̇p+Wp×mpVp = Faerop+Gp+Fam+
n∑
i=1

LpgTp,i

(1)

JpẆp+Wp×
(
JpWp

)
= Maerop+Mai+

n∑
i=1

lp,i×
(
LpgTp,i

)
(2)

In (1) and (2), mp and Jp are the mass and inertia matrix of
the parafoil canopy, respectively; Vp andWp are the velocity
and angular velocity of the parafoil canopy in the parafoil
body reference frame; Faerop and Maerop are the parafoil
aerodynamic force and moment; Fam andMai are the appar-
ent mass force and inertia moment; Gp is the gravity of the
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TABLE 1. Coordinate system.

parafoil canopy in the parafoil body reference frame; n is
the number of suspension lines; the vector Tp,i represents the
force of each suspension line; the vector lp,i represents the
position vector from the mass center of the parafoil canopy to
the connection points P1, P2, P3. . .; and the matrix Lpg rep-
resents the transformation matrix from the inertial reference
frame to the parafoil body reference frame.

The roll, pitch and yaw Euler angles of the parafoil canopy
are represented by φp, θp, and ψp. The kinematic equations
of the parafoil canopy are expressed as φ̇pθ̇p
ψ̇p

 =
 1 sinφp tan θp cosφp tan θp
0 cosφp − sinφp
0 sinφp

/
cos θp cosφp

/
cos θp

 ppqp
rp

 (3)

where pp, qp, and rp are the angular velocity components of
the parafoil canopy in the parafoil body reference frame.

The parafoil aerodynamic forces Faerop and moments
Maerop expressed in the parafoil body reference frame are
provided in (4) and (5).

Faerop =
1
2
ρṼ 2

p SpLAP

 −Cp
D

Cyββp
−Cp

L

 (4)

Maerop =
1
2
ρṼ 2

p Sp

 bCp
l

cCp
m

bCp
n

 (5)

where ρ is the air density; b is the canopy span; c is the
canopy chord; Sp is the reference area of the parafoil canopy;
Ṽp is the total velocity of the parafoil canopy; and the matrix
LAP represents the transformation matrix from the parafoil
aerodynamic reference frame to the parafoil body reference
frame.

The aerodynamic coefficients appearing in (4) and (5)
depend on the angle of attack αp, the sideslip angle βp and the
parafoil control inputs (asymmetric parafoil brake deflection
δ
p
a and symmetric parafoil brake deflection δps ) [21]. The static
and dynamic stability derivatives and control derivatives can
be calculated via CFD.

Cp
L = CL0 + CLααp + CLδsδps (6)

Cp
D = CD0 + CDα2α

2
p + CDδsδ

p
s (7)

Cp
l = Clββp +

b

2Ṽp
Clppp +

b

2Ṽp
Clrrp + Clδaδpa (8)

Cp
m = Cm0 + Cmααp +

c

2Ṽp
Cmqqp (9)

Cp
n = Cnββp +

b

2Ṽp
Cnppp +

b

2Ṽp
Cnrrp + Cnδaδpa (10)

The apparent mass force Fam and apparent inertia moment
Mai in the parafoil dynamic equations cannot be neglected
because of the small mass-to-volume ratio of the parafoil
canopy. The influences of the apparent mass and the apparent
inertia have been demonstrated, and the methods by which
to determine these apparent parameters are presented by
Lissman and Barrows [22], [23]. According to the method
of Lissman, the spanwise camber of the parafoil canopy can
be neglected. The apparent mass forces and moments are
expressed as

Fam = −Iam
˙̃Va −Wp × Iam

(
Ṽa

)
(11)

Mai = −
(
IaiẆp +Wp ×

(
IaiWp

))
+ ram × Fam (12)

Ṽa = Vp − ram ×Wp − LpgVwind (13)
˙̃Va = V̇p−ram×Ẇp − LpgV̇wind+Wp × LpgVwind (14)

where Ṽa is the airspeed vector of the apparent mass center
in the body reference frame; Vwind is the wind velocity vector
in the inertial reference frame; ram is the position vector
from the parafoil canopy mass center to the apparent mass
center; and the matrices Iam and Iai are the apparent mass and
inertia matrixes of the parafoil canopy, which are discussed
in [22].

The second part of the model is the UAV. The equa-
tions of motion for the UAV are derived with the Newton
method [24], [25]. The UAV contends with gravity, aerody-
namic forces and the tension of the suspension lines. By sum-
ming all forces and moments, the dynamic equations of the
UAV in the UAV body reference frame can be written as

mbV̇b +Wb × mbVb = Gb + Faerob +
m∑
i=1

LbgTb,i (15)
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JbẆb+Wb×(JbWb) = Maerob+

m∑
i=1

lb,i×
(
LbgTb,i

)
(16)

In (15) and (16), mb and Jb are the mass and inertia matrix
of the UAV, respectively; Vb and Wb are the velocity and
angular velocity of the UAV mass center in the UAV body
reference frame; Gb is the gravity of the UAV; the vector
Tb,i represents the force of the suspension line attached to
the UAV; the vector lp,i is the position vector from the UAV
mass center to the connection points B1, B2, B3, B4. . .; and
the matrix Lbg represents the transformation matrix from the
inertial reference frame to the UAV body reference frame.

The kinematic equations of the UAV can be written as φ̇bθ̇b
ψ̇b

 =
 1 sinφb tan θb cosφb tan θb
0 cosφb − sinφb
0 sinφb

/
cos θb cosφb

/
cos θb

 pbqb
rb

 (17)

where φb, θb, and ψb are the roll, pitch and yaw Euler angles
of the UAV, respectively, and pp, qp, and rp are the angular
velocity components of the UAV in the UAV body reference
frame.

The UAV aerodynamic forces Faerob and momentsMaerob
can be written as

Faerob =
1
2
ρṼ 2

b SbLab

−Cb
D

Cb
Y
−Cb

L

 (18)

Maerob =
1
2
ρṼ 2

b Sb

 bbCb
l

cbCb
m

bbCb
n

 (19)

where Ṽb is the airspeed of the UAV; bb is the UAV wing
span; cb is the UAVwing chord; Sb is the reference area of the
UAV; and the matrix Lab represents the transformation matrix
from the UAV aerodynamic reference frame to the UAV body
reference frame.

The UAV aerodynamic coefficients are functions of the
angle of attack αb, the sideslip angle βb and the UAV control
inputs (aileron angle δba , elevator angle δ

b
e , and rudder angle

δbr ). The functions can be written as

Cb
D = Cb

D0+

(
Cb
L−C

b
L0

)2
πeAR

+Cb
Dδeδ

b
e+C

b
Dδaδ

b
a+C

b
Dδrδ

b
r (20)

Cb
Y = Cb

yββb+C
b
yδaδ

b
a+C

b
yδrδ

b
r+

bb
2Ṽb

(
Cb
yppb+C

b
yrrb

)
(21)

Cb
L = Cb

L0+C
b
Lααb+C

b
Lδeδ

b
e+

cb
2Ṽb

(
Cb
Lα̇α̇b+C

b
Lqqb

)
(22)

Cb
l = Cb

lββb+
bb
2Ṽb

Cb
lppb+

bb
2Ṽb

Cb
lrrb+C

b
lδaδ

b
a+C

b
lδrδ

b
r (23)

Cb
m = Cb

m0+C
b
mααb+C

b
mδeδ

b
e+

cb
2Ṽb

(
Cb
mα̇α̇b+C

b
mqqb

)
(24)

Cb
n = Cb

nββb+
bb
2Ṽb

Cb
nppb+

bb
2Ṽb

Cb
nrrb+C

b
nδaδ

b
a+C

b
nδrδ

b
r

(25)

where e is the Oswald coefficient and AR is the aspect ratio
of the UAV wing. The UAV stability and control derivatives

FIGURE 2. Suspension line schematic.

appearing in (20)-(25) are constant. All of these derivatives
can also be estimated via CFD.

The last part of the model is the suspension lines. Accord-
ing to the configuration of the parafoil-UAV system, as shown
in Fig. 2, all of the suspension lines are simplified as 12 stan-
dard massless viscoelastic elements, of which eight elements
are attached to the parafoil and four elements are attached
to the UAV. This viscoelastic element has been applied to
the modeling of the flexible line, such as the tether of the
towed parafoil system and the rope of the dragline excavation
system [26], [27]. Consider two mass points C1 and C2, with
the masses of all the suspension lines symmetrically focused
on these two mass points. The forces on the two points
include the weight, aerodynamic forces and tension of the
suspension lines. By summing all of these forces, the dynamic
equations of the suspension line in the line reference frame
are expressed as

mc1V̇ c1 =

nc1∑
i=1

Fp,c1,i +
mc1∑
i=1

Fb,c1,i + Faero,c1 + Gc1 (26)

mc2V̇ c2 =

nc2∑
i=1

Fp,c2,i +
mc2∑
i=1

Fb,c2,i + Faero,c2 + Gc2 (27)

In (26) and (27), mc1 and mc2 are the total masses of
suspension lines attached to points C1 and C2; Vc1 and
Vc2 are the velocity vectors of the mass points C1 and
C2 in the line reference frame, respectively; Gc1 and Gc2
are the gravity of mass points;nc1 and nc2 are the num-
ber of suspension lines that connect the parafoil canopy to
points C1 and C2; mc1 and mc2 are the number of sus-
pension lines that connect the UAV to points C1 and C2;
and Faero,c1 and Faero,c2 are the aerodynamic forces on
the suspension lines, which can be neglected for a small
parafoil.

The forces of the suspension lines, Fp,c1,i, Fp,c2,i, Fb,c1,i,
and Fb,c2,i, are expressed in terms of the strain and strain rate
of the suspension lines. The corresponding expressions can
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be written as

Fp,c1,i ,Fp,c2,i ,Fb,c1,i or Fb,c2,i

=
FTi
lTi

1xi1yi
1zi

 (28)

ḞTi +
Kv
Cv
FTi

=

(Ks + Kv) l̇Ti +
KvKs
Cv

(lTi − l) (lTi > l)

0 (lTi ≤ l)
(29)

lTi =
√
1x2i +1y

2
i +1z

2
i (30)

where FTi is the tension of each suspension line element;1xi,
1yi, and 1zi are the position difference components; lTi and
l̇Ti are the length and strain rate of each suspension line; l
is the nominal unstretched line length; and Ks, Kv and Cv
are the static stiffness, viscous stiffness and viscous damping
coefficients of a viscoelastic line element, respectively. For
a flexible suspension line, if lTi ≤ l, the tension of the line
element will be equal to zero.

For the same suspension line, the tension acting upon the
parafoil canopy or the UAV is equal to the tension acting upon
the two mass points. The directions of these two force vectors
are opposite. Hence, the vectorsTp,i andTb,i can be expressed
as

n∑
i=1

Tp,i = −
nc1∑
i=1

Fp,c1,i −
nc2∑
i=1

Fp,c2,i, n = nc1 + nc2

(31)
m∑
i=1

Tb,i = −
mc1∑
i=1

Fb,c1,i −
mc2∑
i=1

Fb,c2,i, m = mc1 + mc2

(32)

Finally, the dynamic equations of the parafoil-UAV system
are formed by combining (1), (2), (15), (16), (26), and (27).
The set of 6 translational and rotational dynamic equations
yields 18 scalar equations of motion that can be written
in matrix form. The matrix equations for the parafoil-UAV
system are expressed as (33), as shown at the bottom of this
page, where S (·) is the cross-product matrix of the vector and
B1, B2, B3, B4, B5, and B6 are written as

B1 = Faerop + Gp −
nc1∑
i=1

LpgFp,c1,i −
nc2∑
i=1

LpgFp,c2,i

−S
(
Wp

)
Iam

(
Vp − S (ram)Wp − LpgVwind

)

+IamLpgV̇wind

−IamS
(
Wp

)
LpgVwind − S

(
Wp

)
mpVp (34)

B2 = Maerop − S
(
Wp

)
JpWp −

nc1∑
i=1

lp,c1,i ×
(
LpgFp,c1,i

)
−

nc2∑
i=1

lp,c2,i ×
(
LpgFp,c2,i

)
− S

(
Wp

)
IaiWp

+S (ram) Iam
(
LpgV̇wind − S

(
Wp

)
LpgVwind

)
−S (ram)S

(
Wp

)
Iam

(
Vp − S (ram)Wp − LpgVwind

)
(35)

B3 = Gb + Faerob −
mc1∑
i=1

LbgFb,c1,i −
mc2∑
i=1

LbgFb,c2,i

−S (Wb)mbVb (36)

B4 = Maerob − S (Wb) JbWb

−

mc1∑
i=1

lb,c1,i ×
(
LbgFb,c1,i

)
−

mc2∑
i=1

lb,c2,i ×
(
LbgFb,c2,i

)
(37)

B5 =
nc1∑
i=1

Fp,c1,i +
mc1∑
i=1

Fb,c1,i + Faero,c1 + Gc1 (38)

B6 =
nc2∑
i=1

Fp,c2,i +
mc2∑
i=1

Fb,c2,i + Faero,c2 + Gc2 (39)

III. MULTIVARIATE EXTREMUM SEEKING CONTROL
Consider a state vector x and an output vector y.
The model of the prafoil-UAV system are then written
as

ẋ = f (x, u) = F (x)+ G (x) u, y = g (x) (40)

where F , G, f and g are smooth nonlinear functions; and u is
the control input.
Suppose that we know a smooth control law u = ϕ (ϑ)

parametrized by ϑ . The model of the parafoil-UAV system
can then be expressed as ẋ = f (x, ϕ (ϑ)). There exists a
smooth function χ such that f (x, ϕ (ϑ)) = 0 if and only if
x = χ (ϑ). Additionally, for every ϑ ∈ Rn, the equilibrium
x = χ (ϑ) of the system ẋ = f (x, ϕ (ϑ)) is locally exponen-
tially stable.
The quadratic cost function of this system is written

as

z = h (y) = (w̃− y)T E (w̃− y) = h (g (x)) (41)


mpI + Iam −IamS (ram)
S (ram) I Jp + Iai − S (ram) IamS (ram)

mbI
Jb

mc1I
mc2I





V̇p
Ẇp
V̇b
Ẇb
V̇c1
V̇c2

 =

B1
B2
B3
B4
B5
B6

 (33)
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FIGURE 3. Block diagram of the multivariate ES-NM for a parafoil-UAV system.

where w̃ is the desired attitude. In this cost function, there
exists a unique ϑ∗ ∈ Rn for z = h (g (χ (ϑ))) = h̃ (ϑ) such
that ∂

∂ϑ
h̃ (ϑ∗) = 0 and ∂2

∂ϑ2 h̃ (ϑ
∗) = H > 0, H = HT .

The attitude control problem of the parafoil-UAV system is
transformed into an extremum seeking problem of the cost
function.

To search the minimum z = h̃ (ϑ) at ϑ∗, a mul-
tivariate extremum seeking with the Newton method
is proposed in this paper. The scheme of multivariate
ES-NM is presented in Fig.3, and the functions are expressed
as

dx
dt
= f

(
x, ϕ

(
_

ϑ + Q (t)
))

(42)

d
dt



_

ϑ

ξ
_

G
0
_

H
η


=



kξ(
I −9D̄9̄

)−1 (
−9D̄0

_

G− D̄ξ
)

−ωl
_

G+ ωl (z− η)P (t)

ωr0 − ωr0
_

H0

−ωl
_

H + ωl (z− η)N (t)
ωh (z− η)


(43)

where

9 = diag {ψ1, ψ2, . . . , ψn} (44)

9̄ = diag
{
ψ̄1, ψ̄2, . . . , ψ̄n

}
(45)

k = diag {k1, k2, . . . , kn} (46)

D̄ = diag {d1, d2, . . . , dn} (47)

D (s) = diag
{

d1
s+ d1

,
d2

s+ d2
, . . . ,

dn
s+ dn

}
(48)

P (t) =
[

2
α1

sinω1t
2
α2

sinω2t . . .
2
αn

sinωnt
]T
(49)

Q (t) =
[
α1 sinω1t α2 sinω2t . . . αn sinωnt

]T (50)

N (t) =


N11 (t) N12 (t) . . . N1n (t)
N12 (t) N22 (t) . . . N2n (t)
...

...
...

N1n (t) N2n (t) . . . Nnn (t)

 (51)

with Nii (t) =
16

α2i

(
sin2 (ωit)−

1
2

)
and

Nij (t) =
4
αiαj

sin (ωit) sin
(
ωjt
)
, (i 6= j)

The parameters di, ψi, and ψ̄i are positive constants that
are selected to satisfy 1 − ψidiψ̄i > 0; αi is a small positive
constant; ki is the positive control gain; ωi is the probing fre-
quency, which varies for different control inputs; and ωl , ωh,
and ωr are the positive filter coefficients. These parameters
can be written as ωi = ωω′i, ωl = ωδω′L , ωr = ωδω′R,
ωh = ωδω′H , D̄ = ωδD̃, k = ωδK ′, where ω and δ are

small positive constants. Consider τ = ωt , ϑ̃ =
_

ϑ − ϑ∗,
η̃ = η − h̃ (ϑ∗), 0̃ = 0 − H−1, H̃ =

_

H − H , and
new perturbation signals P̃ (τ ) = P (t/ω), Q̃ (τ ) = Q (t/ω),
Ñ (τ ) = N (t/ω). The control system can be converted to the
following forms

ω
dx
dτ

= f
(
x, ϕ

(
ϑ∗ + ϑ̃ + Q̃ (τ )

))
(52)

d
dτ



ϑ̃

ξ
_

G
0̃

H̃
η̃



= δ



K ′ξ(
I − ωδ9D̃9̄

)−1 (
−9D̃

(
0̃ + H−1

)
_

G− D̃ξ
)

−ω′L
_

G+ ω′L
(
z− η̃ − h̃ (ϑ∗)

)
P̃ (τ )

ω′R

(
0̃ + H−1

) (
I −

(
H + H̃

) (
0̃ + H−1

))
−ω′L

(
H + H̃

)
+ ω′L

(
z− η̃ − h̃ (ϑ∗)

)
Ñ (τ )

ω′H

(
z− η̃ − h̃ (ϑ∗)

)


(53)

To further investigated the stability of this control
system, we freeze x at its equilibrium value x =

χ
(
ϑ∗ + ϑ̃ + Q̃ (τ )

)
, and the reduce system can be then
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written as

d
dτ



ϑ̃r
ξr
_

Gr
0̃r

H̃r
η̃r



= δ



K ′ξr(
I − ωδ9D̃9̄

)−1 (
−9D̃

(
0̃r+H−1

)
_

Gr − D̃ξr
)

−ω′L
_

Gr+ω′L
(
v
(
ϑ̃r+Q̃ (τ )

)
− η̃r

)
P̃ (τ )

ω′R

(
0̃r+H−1

) (
I −

(
H+H̃r

) (
0̃r+H−1

))
−ω′L

(
H+H̃r

)
+ω′L

(
v
(
ϑ̃r+Q̃ (τ )

)
− η̃r

)
Ñ (τ )

ω′H

(
v
(
ϑ̃r+Q̃ (τ )

)
− η̃r

)


(54)

where v (1) = h̃ (ϑ∗ +1) − h̃ (ϑ∗), 1 = ϑ̃r + Q̃ (τ ). For
this function, we have v (0) = 0, ∂v(0)

∂1
= 0, ∂

2v(0)
∂12 = H > 0.

By taking the common period of the probing frequencies
5 as

5 = LCM
{
1
ω′i

}
× 2π, i ∈ {1, 2, · · · , n} (55)

where LCM stands for the least common multiple, and we
can derived the average model as

d
dτ



ϑ̃ar
ξar
_

G
a

r
0̃ar
H̃a
r
η̃ar



= δ



K ′ξar(
I − ωδ9D̃9̄

)−1 (
−9D̄

(
0̃ar+H

−1
)
_

G
a

r − D̃ξ
a
r

)
−ω′L

_

G
a

r+
ω′L
5

∫ 5
0 v

(
ϑ̃ar +Q̃ (σ )

)
P̃ (σ ) dσ

ω′R

(
0̃ar+H

−1
) (

I −
(
H+H̃a

r

) (
0̃ar+H

−1
))

−ω′L

(
H+H̃a

r

)
+
ω′L
5

∫ 5
0 v

(
ϑ̃ar +Q̃ (σ )

)
Ñ (σ ) dσ

−ω′H η̃
a
r+

ω′H
5

∫ 5
0 v

(
ϑ̃ar +Q̃ (σ )

)
dσ


(56)

The average equilibrium (ϑ̃a,er , ξa,er ,
_

G
a,e

r , 0̃a,er , H̃a,e
r , η̃a,er )

satisfies

ξa,er = 0n×1 (57)
_

G
a,e

r = 0n×1 (58)∫ 5

0
v
(
ϑ̃a,er + Q̃ (σ )

)
P̃ (σ ) dσ = 0n×1 (59)

η̃a,er =
1
5

∫ 5

0
v
(
ϑ̃a,er + Q̃ (σ )

)
dσ (60)

H + H̃a,e
r =

1
5

∫ 5

0
v
(
ϑ̃a,er + Q̃ (σ )

)
Ñ (σ ) dσ (61)

I =
(
H + H̃a,e

r

) (
0̃a,er + H

−1
)

(62)

For small αi, 0̃a,er + H−1 > 0. With a Taylor expansion
of (59), we get

∫ 5

0

1
2

n∑
i=1

n∑
j=1

∂v (0)
∂1i∂1j

×

(
ϑ̃
a,e
r,i + αi sin

(
ω′iς

)) (
ϑ̃
a,e
r,j + αj sin

(
ω′jς

))
+

1
3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3v (0)
∂1i∂1j∂1k

(
ϑ̃
a,e
r,i +αi sin

(
ω′iς

))
×

(
ϑ̃
a,e
r,j +αj sin

(
ω′jς

)) (
ϑ̃
a,e
r,k+αk sin

(
ω′kς

))
+O

(
|α|4

))
×

2
αp

sin
(
ω′pς

)
dς = 0,∀p ∈ {1, 2, · · · , n} (63)

Define

ϑ̃
a,e
r,i =

n∑
j=1

bijαj +
n∑
j=1

n∑
k=1

cij,kαjαk + O
(
|α|3

)
(64)

where bij and cij,k are real numbers. Substituting ϑ̃a,er,i and(
ϑ̃
a,e
r,i

)2
to (65) and matching the like power of αj, we have


∂2v (0)
∂11∂11

· · ·
∂2v (0)
∂11∂1n

...
...

...

∂2v (0)
∂1n∂11

· · ·
∂2v (0)
∂1n∂1n


 b

1
j
...

bnj

 = H

 b
1
j
...

bnj

 =
 0
...

0


(65)

Hence, for all i, j ∈ {1, 2, · · · , n}, we can obtain bij = 0.
Next, matching the like power of αkαl , (k 6= l), we have


∂2v (0)
∂11∂11

· · ·
∂2v (0)
∂11∂1n

...
...

...

∂2v (0)
∂1n∂11

· · ·
∂2v (0)
∂1n∂1n


 c

1
k,l
...

cnk,l

=H
 c

1
k,l
...

cnk,l

 =
 0
...

0


(66)
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Similarly, we can obtain cik,l = 0. Finally, matching the
like power of α2l , (k = l), we have

H



c1l,l
...

cl−1l,l
cll,l
cl+1l,l
...

cnl,l


+

1
4



∂3v (0)

∂12
l ∂11
...

∂3v (0)

∂12
l ∂1l−1

1
2
∂3v(0)
∂13

l

∂3v (0)

∂12
l ∂1l+1
...

∂3v (0)

∂12
l ∂1n



=



0
...

0
0
0
...

0


⇒



c1l,l
...

cl−1l,l
cll,l
cl+1l,l
...

cnl,l



= −
1
4
H−1



∂3v (0)

∂12
l ∂11
...

∂3v (0)

∂12
l ∂1l−1

1
2
∂3v (0)

∂13
l

∂3v (0)

∂12
l ∂1l+1
...

∂3v(0)
∂12

l ∂1n



(67)

According to above, we can get

ϑ̃
a,e
r,i =

n∑
l=1

cil,lα
2
l + O

(
|α|3

)
(68)

Moreover, with a Taylor expansion of (60) and (61),
we have

η̃a,er

=
1
5

∫ 5

0

1
2

n∑
i=1

n∑
j=1

∂2v (0)
∂1i∂1j

(
ϑ̃
a,e
ri + αi sin

(
ω′iς

))

×

(
ϑ̃
a,e
rj + αj sin

(
ω′jς

))
+

1
3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3v (0)
∂1i∂1j∂1k

×

(
ϑ̃
a,e
ri + αi sin

(
ω′iς

)) (
ϑ̃
a,e
rj + αj sin

(
ω′jς

))
×

(
ϑ̃
a,e
rk + αk sin

(
ω′kς

))
+ O

(
|α|4

)]
dς (69)(

H̃a,e
r

)
p,p
+ Hp,p

=
1
5

∫ 5

0

1
2

n∑
i=1

n∑
j=1

∂2v (0)
∂1i∂1j

(
ϑ̃
a,e
r,i + αi sin

(
ω′iς

))

×

(
ϑ̃
a,e
r,j + αj sin

(
ω′jς

))
+

1
3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3v(0)
∂1i∂1j∂1k

×

(
ϑ̃
a,e
r,i + αi sin

(
ω′iς

)) (
ϑ̃
a,e
r,j + αj sin

(
ω′jς

))
×

(
ϑ̃
a,e
r,k + αk sin

(
ω′kς

))
+O

(
|α|4

)]
×

16
α2p

(
sin2

(
ω′pς

)
−

1
2

)
dς,

∀p ∈ {1, 2, · · · , n} (70)(
H̃a,e
r

)
p,m
+ Hp,m

=
1
5

∫ 5

0

1
2

n∑
i=1

n∑
j=1

∂2v (0)
∂1i∂1j

(
ϑ̃
a,e
ri + αi sin

(
ω′iς

))

×

(
ϑ̃
a,e
rj + αj sin

(
ω′jς

))
+

1
3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3v(0)
∂1i∂1j∂1k

×

(
ϑ̃
a,e
ri + αi sin

(
ω′iς

)) (
ϑ̃
a,e
rj + αj sin

(
ω′jς

))
(
ϑ̃
a,e
rk + αk sin

(
ω′kς

))
+O

(
|α|4

)] 4
αpαm

sin
(
ω′pt

)
sin
(
ω′mt

)
dς,

∀p,m ∈ {1, 2, · · · , n} , p 6= m (71)

Substituting ϑ̃a,er,i to (69), (70) and (71), η̃a,er and H̃a,e
r can

be expressed as

η̃a,er =
1
4

n∑
i=1

Hi,iα2i + O
(
|α|3

)
(72)

(
H̃a,e
r

)
p,p
=

n∑
i=1

∂3v (0)
∂1i∂12

p
ϑ̃
a,e
r,i (73)

(
H̃a,e
r

)
p,m
=

n∑
i=1

∂3v (0)
∂1i∂1p∂1m

ϑ̃
a,e
r,i (74)

H̃a,e
r =

n∑
i=1

n∑
j=1

2icij,jα
2
j +

(
O
(
|α|3

))
n×n

(75)

where 2i is a n× n matrix with(
2i
)
p,m
=

∂3v (0)
∂1i∂1p∂1m

(76)

Substituting ϑ̃a,er,i to (62), 0̃a,er can be written as

0̃a,er =
(
H
(
H−1H̃a,e

r + I
))−1

− H−1

= −

n∑
i=1

n∑
j=1

H−12iH−1cij,jα
2
j +

[
O
(
|α|3

)]
n×n

(77)

The Jacobian of (56) is expressed as

Ja,er = δ

[
A3n×3n 03n×(2n+1)

B(2n+1)×3n D(2n+1)×(2n+1)

]
(78)

where

A3n×3n

=

 0n×n K ′ 0n×n

0n×n −
(
I − ωδ9D̃9̄

)−1
D̃ A23

A31 0n×n −ω′LIn×n

 (79)
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B(2n+1)×3n

=


0n×n 0n×n 0n×n

ω′L

5

∫ 4
0

∂

∂ϑ̃

(
vÑ (ς)

)
dς 0n×n 0n×n

ω′H

5

∫ 5
0

∂

∂ϑ̃
(v) dς 0n×n 0n×n

 (80)

D(2n+1)×(2n+1)

=

−ω′RIn×n −ω′RH−1 +31 0n×n
0n×n −ω′LIn×n 0n×n
01×n 01×n −ω′H

 (81)

with

A23 = −
(
I − ωδ9D̃9̄

)−1
9D̃

(
0̃a,er + H

−1
)

(82)

A31 =
ω′L

5

∫ 5

0

∂

∂ϑ̃

(
vP̃ (ς)

)
dς = ω′LH+O (|α|) (83)

31 = ω̆R
∑n

i=1

∑n

h=1
H−1

(
�iH−1+H−1�i

)
H−1cihhα

2
h

+

[
O
(
|α|3

)]
n×n

(84)

Since A31 > 0, ω′L , ω
′
R, ω

′
H > 0, I − ωδ9D̃9̄ > 0

and 0̃a,er + H−1 > 0, it is proved that Ja,er is Hurwitz
for sufficiently small αi. Hence, there exist δ̄, ᾱ such that
for all α ∈ (0, ᾱ) and δ ∈

(
0, δ̄

)
the reduced system

(54) has a unique exponentially stable periodic solution

(ϑ̃5r , ξ
5
r ,

_

G
5

r , 0̃
5
r , H̃

5
r , η̃

5
r ) of period 5 and this solution

satisfies ∣∣∣∣∣∣ϑ̃5r,i −
n∑
j=1

cij,jα
2
j

∣∣∣∣∣∣ ≤ O
(
δ + |α|3

)
(85)

∣∣ξ5r ∣∣ ≤ O
(
δ + |α|3

)
(86)∣∣∣∣_G5r ∣∣∣∣ ≤ O

(
δ + |α|3

)
(87)∣∣∣∣∣∣0̃5r +

n∑
i=1

n∑
j=1

H−12iH−1cij,jα
2
j

∣∣∣∣∣∣ ≤ O
(
δ + |α|3

)
(88)∣∣∣∣∣∣H̃5

r −

n∑
i=1

n∑
j=1

2icij,jα
2
j

∣∣∣∣∣∣ ≤ O
(
δ + |α|3

)
(89)∣∣∣∣∣η̃5r − 1

4

n∑
i=1

Hi,iα2i

∣∣∣∣∣ ≤ O
(
δ + |α|3

)
(90)

The control system based on multivariate ES-NM is
demonstrated to be asymptotically stable. Additionally,
the choice of control parameters is discussed here. As shown
in Fig. 3, the gain matrix k has a great effect on the con-
vergence speed of the control system. The convergence will
be very slow if k is too small, but a too large k will lead to
severe oscillation or instability. The value of k should be large
enough in a suitable range. ωl is the coefficient of the high
pass filter. It is required to be large enough. Oppositely, ωh
is the coefficient of the low pass filter. It is required to be
small enough. ωr is used to construct the estimates of H−1.

FIGURE 4. Flight test for the parafoil-UAV system.

FIGURE 5. Aileron control input in flight test.

TABLE 2. System geometric parameters.

It is required to satisfy ωr > 0. For the probing frequencies,
they are required to satisfy ωi 6= ωj and ωi + ωj 6= ωk for
i 6= j 6= k . The further investigation of control parameters is
shown in [16], [28].

IV. FLIGHT TEST
The reliability of the control performance evaluation and the
accuracy of the control parameter estimation depend on the
precision of the proposed model that is related to the parafoil
and UAV aerodynamic coefficients. To improve the precision
of the model, a flight test was conducted in June, 2019. The
test system contains a 2.5 kg rectangular parafoil and an 8 kg
fixed-wing UAV, as shown in Fig. 4. The detailed geometric
parameters of this test system are listed in Table 2. For the
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FIGURE 6. Comparisons of the flight test and simulation.

parafoil, the span length is 4.5 m, the chord length is 1.6 m,
and the canopy area is 7.2 m2. For the UAV, the span length
is 2.1 m, the chord length is 0.36 m, and the wing area is

0.76 m2. The wing, flat tail and vertical tail of this UAV
are equipped with an aileron, an elevator and a rudder that
can be manipulated during flight. In this test, the average

VOLUME 8, 2020 43745



F. Lv et al.: Multivariate Optimal Control Strategy for the Attitude Tracking of a Parafoil-UAV System

TABLE 3. Parafoil aerodynamic coefficients.

wind speed is 4.57 m/s, and the average wind direction is
203 degrees. The parafoil-UAV system is released from a
height of 104 m. After gilding steadily, the series of aileron
control inputs shown in Fig. 5 are performed. The flight data
of this test are obtained from inertial measurement unit (IMU)
and global positioning system (GPS) sensors that are fixed
in the fuselage of the UAV. The motion of the UAV can be
observed clearly.

During the test, significant relative motion is observed
between the parafoil and the UAV. This relative motionmakes
the aerodynamic coefficients of the parafoil-UAV system
difficult to identify completely from the only known data,
which are the velocity and angular velocity of the UAV.
The identification of aerodynamic coefficients for this test
system is not suitable. CFD is another method to calculate
aerodynamic coefficients. By using CFD,Wu, Ghoreyshi and
Ye [29]–[31] has been calculated the aerodynamic stability
derivatives of the parafoil and the UAV, respectively. For the
UAV, the calculated coefficients are reliable. However, for
the parafoil, they are not accurate enough due to the canopy
geometric deformation. The aerodynamic coefficients of the
parafoil need to be corrected.

Substituting all aerodynamic coefficients calculated via
CFD into the model and running the simulation, the simula-
tion result of the uncorrected model is obtained. As shown
in Fig. 6, significant errors exist between the simulation
results and the test data, which are mainly caused by the
inaccurate aerodynamic coefficients and the unknown wind
variation during the test. To minimize the errors and improve
the precision of the model, the static and dynamic stability
derivatives of the parafoil are artificially adjusted within a
reasonable range. Compared with the uncorrected model,
the corrected model can well capture the basic motions of the
test system. All corrected aerodynamic coefficients are listed
in Tables 3 and 4.

V. SIMULATION OF THE CONTROL PERFORMANCE
To study the performance of the multivariate ES-NM con-
troller, a new parafoil-UAV system is designed. The shape
of the parafoil remains unchanged, while the size of the
UAV is increased proportionally. According to the similarity

FIGURE 7. Roll angles under varying parafoil brake defections and UAV
aileron control.

theory of aerodynamics, the parafoil and UAV aerodynamic
coefficients of this new system can be considered the same
as those of the flight test system mentioned above. Using the
detailed geometric parameters listed in Table 5, themultibody
dynamic model of this parafoil-UAV system is established
and programmed in MATLAB. In this section, this model is
used to analyze the influence of the parafoil and UAV control
mechanisms and to assess the control performance of the
proposed method. The detailed results are shown as follows.

A. CONTROL RANGE DESIGN
As mentioned above, a parafoil-UAV system has a parafoil
and a UAV. Each part has its own control mechanism. The
parafoil control mechanisms are the left and right deflections
of the parafoil trailing edge, whereas the UAV control mech-
anisms are the deflections of the aileron, elevator, and rudder.
The longitudinal control of this system is achieved directly
by UAV elevator deflection, whereas the lateral control is
achieved by parafoil brake deflection together with aileron
and rudder deflection of the UAV. These two control mecha-
nisms interfere with each other and have a great influence on
the controllability and stability of the parafoil-UAV system.
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TABLE 4. UAV aerodynamic coefficients.

TABLE 5. System geometric parameters.

Hence, before designing an optimal controller, it is necessary
to use the dynamic model to analyze the interaction effect of
the two control mechanisms and redesign the control range
of the parafoil-UAV system.

Fig. 7 shows the steady-state roll angles of the parafoil
and UAV with varying parafoil brake deflections and UAV
aileron deflections. The parafoil brake deflection changes
from −100% to 100%, and the UAV aileron deflection
changes from −40 to 40 degrees. Under −100% parafoil
brake deflection and 12-degree aileron deflection, the parafoil
and UAV roll angles are minimal. The parafoil roll angle is
−21.3 degrees, and the UAV roll angle is −23.3 degrees.
In contrast, under 100% parafoil brake deflection and
−12-degree aileron deflection, the parafoil and UAV roll
angles are maximal. Compared with a system controlled by
a single mechanism, the system controlled by two mecha-
nisms can perform flight maneuvers with larger roll angles
and smaller turning radii. On the other hand, the parafoil
brake deflection has a great influence on the control range
of the UAV aileron permitted by the parafoil-UAV system.
When the parafoil brake deflection is −100%, the minimum
aileron deflection that the system permits is −22 degrees,
the maximum aileron deflection is 12 degrees, and the aileron
control range is −22 to 12 degrees. When the parafoil brake
deflection increases to 0%, the minimum aileron deflection
decreases and the maximum deflection increases. The aileron
control range is −28 to 28 degrees, which is larger than the
previous range. When the parafoil brake deflection increases
to 100%, the aileron control range is −12 to 22 degrees.
As the parafoil brake deflection increases, the aileron control
range decreases. The aileron control range is directly related
to the parafoil brake deflection. To simplify the design of the
control range, in this paper, the control range of the parafoil
brake deflection is set as−100 to 100%, and the control range
of the UAV aileron deflection is set as −12 to 12 degrees.

In this control range, the maximum and minimum roll angles
of the parafoil and the UAV can be achieved.

The angle of attack is another parameter that can be used to
design the control range. Fig. 8 shows the angles of attack of
the parafoil and UAVunder varying parafoil brake deflections
(−100 to 100%) and UAV aileron deflections (−40 to 40
degrees). When both the parafoil brake deflection and the
aileron deflection are 0, the parafoil and UAV angles of attack
are maximized, with the angle values of 13.7 degrees and
9 degrees, respectively. When the parafoil brake deflection is
100% and the aileron deflection is−12 degrees and when the
parafoil brake deflection is−100% and the aileron deflection
is 12 degrees, the parafoil and UAV angles of attack are
minimal, with the angle values of 6.4 degrees and 2.5 degrees,
respectively. In the designed control range, the angles of
attack of the parafoil and the UAV do not exceed the angle
of stall. This designed control range is reasonable for the
parafoil-UAV system.

Fig. 9 shows the parafoil and UAV pitch angles with vary-
ing parafoil brake deflections and UAV elevator deflections.
The parafoil brake deflection changes from 0 to 100%, and
the UAV elevator deflection changes from−40 to 40 degrees.
When the parafoil brake deflection is zero, the parafoil pitch
angle decreases from −6.2 degrees to −10.6 degrees, and
the UAV pitch angle decreases from −6.2 to −21.6 degrees
with increasing UAV elevator deflection. When the parafoil
brake deflection is full, the parafoil pitch angle decreases
from−8.9 degrees to−25.6 degrees, and the UAVpitch angle
decreases from−5.7 degrees to−39.4 degrees. Although the
parafoil brake deflection does not directly control the longitu-
dinal motion, it has a great effect on the control performance
of the UAV elevator.

Fig. 10 shows the angles of attack of the parafoil and
UAV under varying parafoil brake deflections (0 to 100%)
and UAV elevator deflections (−40 to 40 degrees). With the
increase of the parafoil brake deflection and UAV elevator
deflection, the angles of attack of the parafoil and UAV
decrease. Under these control inputs, all angles of attack are
convergent. The motion of the parafoil-UAV system is steady
at all times. However, due to the angle of stall, the UAV
elevator deflection also has its own limit. For the system in
this paper, the parafoil angle of attack should be less than
15 degrees, the UAV angle of attack should be less than
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FIGURE 8. Angles of attack under varying parafoil brake defections and
UAV aileron control.

13 degrees, and both of these angles need to be positive.
Hence, the elevator control range can be set as −20 to 16
degrees, and the parafoil brake deflection can be set as 0 to
100%. Considering the symmetry of the parafoil brake deflec-
tion, its control range can be set as −100 to 100%.

B. SIMULATION OF THE OPTIMAL CONTROL
Using the control range, a multivariate optimal controller
based on ES-NM is accomplished. To assess the control
performance of the proposedmethod, two cases are simulated
in this article.

Case 1: The parafoil brake deflection and the UAV aileron
deflection are initially 50% and−5 degrees, respectively, and
no wind exists.

Case 2: The parafoil brake deflection and the UAV aileron
deflection are initially zero, and variable wind exists.

For these two cases, the main purpose of the controller is
to make the roll angle of the UAV as close to zero as possible
by using the parafoil brake deflection and the UAV aileron
deflection. Hence, the cost function of the system can be
written as

z = h (φb) = 0.5 (φb − 0)2 (91)

FIGURE 9. Pitch angles under varying parafoil brake defections and UAV
elevator control.

In the multivariate ES-NM controller, the estimated input
of the parafoil-UAV system

_

ϑ contains the estimated parafoil

brake deflection
_

δ
p

a and the estimated UAV aileron deflection
_

δ
b

a. The control range of the parafoil brake deflection is
−100 to 100%, and the range of the UAV aileron deflection
is −12 to 12 degrees. The probing frequencies ω1 and ω2
are estimated as 5π and 4.5π , respectively. The filter coef-
ficients ωl , ωr and ωh are 500, 10−4 and 3, respectively. The
gain matrix k is diag {100, 300}. The other parameters are
selected as follows: α = [0.1, 0.1]T , D̄ = diag {0.01, 0.01},
9̄ = diag {10, 10}, 9 = diag {2, 3}, and 0−10 =

400diag {1, 1}.
The simulation for Case 1 is performed first, and the

results are presented in Fig. 11. Under the influence of the
multivariate ES-NM controller, the estimated parafoil brake
deflection rapidly decreases from 50% to 0%. Meanwhile,
the estimated UAV aileron deflection increases as well and
converges to zero at 600 s. Correspondingly, the roll angles
of the parafoil and the UAV decrease and converge to the
desired attitude, as shown in Fig. 12. This demonstrates that
the multivariate ES-NM controller can adjust the two control
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FIGURE 10. Angle of attack under varying parafoil brake defections and
UAV elevator control.

mechanisms simultaneously and produce the desired attitude
of the parafoil-UAV system.

To further illustrate the control performance of the pro-
posed method, comparisons between the multivariate ES-NM
controller and the proportional-integral-derivative (PID) con-
troller for Case 2 are provided. In Case 2, there is a unique
wind field along the Yg axis of the inertial reference frame.
The wind direction is constant, and the wind speed is vari-
able, as shown in Fig. 13. This situation will cause the
parafoil-UAV system to begin a pendulum-swinging motion
and increase the risk associated with landing if there is no
control. Hence, the control object of these two controllers for
Case 2 is to maintain the roll angle of the UAV as close to
zero as possible.

The two control mechanisms of the parafoil-UAV system
have different control characteristics and applications. For
the attitude control of the UAV, the UAV control mechanism
plays a dominant role. The parameters of the multivariate
ES-NM controller need to be changed. For Case 2, the gain
matrix k of the multivariate ES-NM controller is modi-
fied to diag {10000, 100}, and the other parameters remain
the same. For the PID controller, the aileron deflection is

FIGURE 11. Estimated control input (Case 1).

FIGURE 12. Roll angles of the parafoil and the UAV (Case 1).

chosen as the input of the control system. The control range
is −28 to 28 degrees. kP, kI and kD are tuned as 0.5,
1.05 and 2.1. The simulation results of the PID controller and
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FIGURE 13. Velocity of the wind (Case 2).

FIGURE 14. Comparison of the UAV roll angles (Case 2).

the multivariate ES-NM controller for Case 2 are presented
in Figs. 14-15.

As shown in Fig. 14, under the influence of the PID con-
troller and the multivariate ES-NM controller, the roll angles
of the UAV both show damped oscillations. The amplitudes
of oscillations gradually decrease, and the values converge to
zero. At 600 s, the UAV roll angle under the multivariate ES-
NM controller is close to zero, and the roll angle under the
PID controller is still oscillating. It shows that the response
rate of the multivariate ES-NM controller is better than that
of the PID controller.

Fig. 15 shows the parafoil brake deflection and the UAV
aileron deflection achieved by the PID controller and themul-
tivariate ES-NM controller. For the PID controller, the sim-
ulated parafoil brake deflection is zero, and the variation of
the UAV aileron is a damped oscillation. The maximum value
of the UAV aileron deflection at the beginning can be up to
17.5 degrees. For the multivariate ES-NM controller, parafoil
brake deflection exists. Its minimum value is only −0.41%.
The UAV aileron deflection is also damped, but the maximum
value is less than 6 degrees due to the existence of the parafoil

FIGURE 15. Comparisons of the control inputs (Case 2).

brake deflection. The multivariate ES-NM controller shows
a smaller overshoot and is better than the PID controller in
terms of energy consumption.

VI. CONCLUSION
In this article, an optimal control method called multivariate
ES-NM is introduced to solve the pendulum-swing prob-
lem of parafoil-UAV systems. To assess the performance of
multivariate ES-NM control, a multibody dynamic model is
developed based on the flexible line assumption. Using flight
test data, the aerodynamic coefficients are corrected, and the
accuracy of the model is verified.

Simulations of this model under varying parafoil brake
deflections and UAV control inputs are performed. The
results show that the UAV control input permitted by the
parafoil-UAV system changeswith the increase of the parafoil
brake deflection. The coupling effect of these two control
mechanisms leads to a decrease in the control range. Accord-
ing to the redesigned control range, the parameters of the
multivariate ES-NM controller are confirmed. Simulation
experiments are performed under wind and no-wind con-
ditions. As shown in the results, the multivariate ES-NM
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control can adjust the parafoil brake deflection and the UAV
control input simultaneously and control the attitude angles of
the parafoil-UAV system. This proposed control method can
effectively solve the pendulum-swing problem. Furthermore,
comparisons between the PID controller and the multivariate
ES-NM controller are presented. The response rate of the
proposed controller is better, and the overshoot is smaller.
The performance of the multivariate ES-NM controller is
better than that of the PID controller in terms of the energy
consumption.
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