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ABSTRACT Aiming at the problem of positioning consistency and real-time performance during power
inspection of unmanned aerial vehicles (UAV), this paper proposes an UAV positioning algorithm based
on the secant slope characteristics of transmission lines. The traditional correlation scan matching (CSM)
positioning method is prone to mismatch under the condition of a single geometric feature. Although the
inertial measurement unit (IMU) -aided CSM method improves the positioning accuracy, using the IMU for
a long time to estimate the position is prone to cumulative errors and increases the computational cost to
a certain extent. Our proposed method uses the least square polynomial curve fitting method to parametric
reconstruction of the transmission line, which enhances the geometric characteristics of the transmission line
and made up the missing part. The secant line of transmission line is extracted and its feature is parameterized
to match with the reconstructed transmission line map, and the translation vector and rotation vector of UAV
are estimated. Through multiple sets of experiments, it is proved that our algorithm is less than the CSM
method and the IMU-aided CSM method in terms of average translation error, average rotation error, and
positioning time. Our algorithm not only improves the positioning accuracy but also guarantees the real-time

positioning requirements.

INDEX TERMS Cumulative error, point cloud matching, secant slope, transmission line.

I. INTRODUCTION

In the power transmission line patrol operation and main-
tenance work, UAV based patrol has significant application
advantages, and the precise positioning technology of UAV is
the basis of the realization of obstacle avoidance, navigation,
path planning and other inspection functions. First of all,
the precise positioning technology of UAV can make it more
accurate to reach each task point, reduce the number of shots
of the detected target due to the wrong pose information,
and improve the accuracy of information collection; through
the precise positioning technology, the drone can realize
full autonomous mission flight, which can effectively avoid
repeated taking photos or missing shots. At the same time,
accurate positioning technology can improve the efficiency
of data collection to meet the needs of the mission during the
drone cruise.

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Jahangir Hossain

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

At present, robot positioning technologies are mainly
divided into three categories: dead reckoning (DR) methods,
signal-based positioning methods, and laser scanning match-
ing methods.

The DR [1] method mainly relies on sensors such as IMU
to infer the current pose based on the pose at the previous
moment. Using the gyroscope and accelerometer to measure
the robot’s angular and linear motion parameters, based on
Newton’s laws of mechanics, the speed, position and attitude
of the robot can be calculated. The output frequency of this
method is high, which satisfies the real-time performance of
positioning, and the short-term positioning accuracy is high.
However, the method has accumulated errors, which gradu-
ally increase with time, which eventually leads to positioning
failure. This method is usually used in combination with a
signal-based positioning method or a laser scanning matching
method to improve positioning accuracy.

The signal-based positioning method is represented by the
Global Navigation Satellite System (GNSS). GNSS [2] is
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one of the key technologies for realizing geolocation. This
method has improved the accuracy after the real-time kine-
matic (RTK). RTK [3] is to install the GNSS monitoring
receiver on an accurate known base station and calculate the
distance correction between the base station and the GNSS
satellite. This positioning method can reach the centimeter
level. However, RTK has the following problems: base station
installation cost is high and power consumption is high; its
positioning accuracy is very dependent on the number of
satellites; it is susceptible to electromagnetic interference;
when it is blocked, it is prone to signal loss and cause posi-
tioning failure.

The laser scanning matching method uses the observed
features to match the database features and stored fea-
tures to obtain the robot pose. This method requires a
positioning map to be made in advance. In recent years,
positioning methods based on laser scanning matching
have occupied the main position in the research of UAV
positioning.

Motivated by the rapid development of robot positioning
technology and the large demand for inspections in the power
industry, many researchers have conducted research on the
location of UAV during power inspections. When the robot
starts to move from an unknown position, it will position
itself according to the position estimation and the existing
environment map during the movement. At the same time,
an incremental map will be built on the basis of its own
positioning to realize the autonomous positioning and nav-
igation of the robot. However, the cumulative error caused
by long-term pose estimation is inevitable, and there will
be a large deviation between the constructed positioning
map and the real map. Therefore, we have improved the
existing method and proposed an UAV positioning method
based on the secant slope characteristics of transmission
lines. We mainly study the consistency of UAV in power
inspection. Based on the known environment map, the offline
optimization of the environment map and the positioning
of UAV under the known environment map are explored.
The primary contribution of the paper can be summarized as
follows:

1) PARAMETRIC RECONSTRUCTION OF THE TRANSMISSION
LINE

The problem of data loss and single characteristic of the trans-
mission line are solved by parameter reconstruction. Firstly,
the geographic information model of power inspection is
established, the transmission line environment with similarity
is modeled. Then, analyzed the geometric characteristics of
the transmission lines, and parameterized the transmission
lines by least square polynomial curve fitting method. Finally,
the performance of the proposed parametric reconstruction
method is verified by experiment. A method for separately
storing point cloud data of power poles and transmission lines
is proposed, which reduces memory consumption by more
than a thousand times compared with the original storage
method.
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2) FEATURE MATCHING ALGORITHM BASED ON SECANT
SLOPE

Aiming at the high similarity of transmission line environ-
ment, if we only use IMU integral to estimate the position
of UAV, there will be a large cumulative error of the UAV
pose. Therefore, we propose a localization algorithm based
on the secant slope characteristics of the transmission lines.
First, according to the laser scanning data, extract the slope
characteristics of the transmission line after IMU attitude
correction. Then, extract the slope of the secant line, match
with the reconstructed transmission line map, which can
improve the accuracy of position estimation by optimizing the
translation vector and yaw angle. Finally, several experiments
are carried out, the effect of our method is compared with
CSM method and IMU-aided CMS method. The results show
that the proposed method has higher accuracy and real-time
performance.

Il. RELATED WORK

The localization methods for laser scanning matching are
basically divided into three categories [4]: filtering method;
iterative and gradient descent method; and probabilistic grid
method.

The method based on the filter mainly uses the recursive
Bayesian principle to estimate the current pose of the robot
according to the control input information, prior pose infor-
mation and observation information. Common filter algo-
rithms are: Extended Kalman Filter (EKF) [5], Unscented
Kalman Filter (UKF) [6], Particle Filter (PF) [7]-[10]. The
main emphasis of the filter is time and increment charac-
teristics, this method is also called online filtering method.
The EKF method can obtain better state estimation under the
condition that the system is less nonlinear and satisfies the
Gaussian distribution [11]. In this method, robot pose track-
ing is regarded as a linear problem with simple calculation
and fast speed. However, in practical application, due to the
highly nonlinear environment of the system, the error caused
by the linearization of the system accumulates over time,
resulting in positioning failure [12]. Hong et al. [13] used
the three-axis attitude determination (TRIAD) algorithm to
obtain the directional cosine matrix (DCM) and proposed an
EKF algorithm using the three directional cosines of DCM
as the measurement vector to reduce the cumulative error.
Jwo and Tseng [14] proposed an EKF method based on inter-
active multiple model (IMM), which uses IMM estimation
as the input of multiple parallel filters to match different
motion modes, and finally performs weighted average to
assist EKF estimation, improves the positioning accuracy of
the robot. To solve the problem of robot positioning stability,
Zhou et al. [15] proposed an UKF based pose estimation
and tracking method to stabilize the nonlinear system. Using
Lyapunov theory, the asymptotical stability of the system
was guaranteed, and the effectiveness and robustness of the
algorithm were greatly improved. However, due to its sen-
sitivity to data noise, the pose tracking performance is still
insufficient. In addition, Effati and Skonieczny [16] carried
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out a large number of UKF positioning and EKF positioning
experimental results and found that in most cases, the UKF
convergence rate is fast, and in some cases only the UKF
convergence. However, how well the traditional PF algorithm
solves the posterior probability of the system depends on
the number of samples. It has poor real-time performance in
the localization process of complex environments and it is
difficult to meet the task requirements.

The current mainstream iterative and gradient descent
methods are: Iterative Closest Points (ICP) and Normal Dis-
tribution Transformation (NDT). The implementation prin-
ciple of the ICP algorithm is based on the least square
optimal registration method. By repeatedly selecting corre-
sponding point pairs, the optimal rigid body transformation
is calculated until the convergence accuracy requirements
for correct registration are met. The traditional ICP algo-
rithm consumes more computing time as the environment
grows during the matching process, making it difficult to
guarantee real-time performance during the positioning pro-
cess. To solve this problem, R. Tiar et al. proposed a local
iterative closest points-simultaneous localization and map-
ping (ICP-SLAM) algorithm based on local environment
division. By applying the ICP algorithm to the local map,
this method allows the calculation time to be within a fixed
time range, and overcomes the influence of the calculation
time on the positioning results [17]; Li S et al. proposed
an improved ICP algorithm based on k-dimensional tree
(k-d tree), which uses k-d tree to store, manage and search
point cloud data, which greatly improves the calculation
efficiency of traditional ICP algorithm [18]; Most scanning
matching algorithms need to find corresponding points or
lines between the characteristic points or lines during the
matching process, which will consume a certain amount of
calculation time. Biber and Strasser [19] proposed the normal
distributions transform (NDT) algorithms to replace them,
subdivide the two-dimensional plane into cells, and construct
the normal distribution of multi-dimensional variables based
on laser scanning data. Because the performance of NDT
algorithm is related to cell size, it is difficult to achieve the
optimal selection of cell size. Ulag and Temeltag [20] pro-
posed a multi-layered normal distribution transform method
(MLNDT), this method establishes a multi-level planar struc-
ture and divides it by cells of different sizes, which effectively
solves the effect of cell size selection on the NDT algorithm.

In the positioning process, due to the measurement noise of
the sensor and the uncertainty of the environment, the proba-
bilistic grid method is usually used to estimate the pose of the
robot. The probabilistic localization method is implemented
based on the Bayesian filter [21], which uses Bayes’ theorem
to provide a recursive solution formula for calculating the
probability density function. Markov localization uses the
approximate grid method to discretize all possible positions
and postures of the robot, in which the weight of each
cell represents the probability of the robot at that position,
and the localization process is mainly to update the weight
of each cell. Markov positioning is a state-space sampling
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method that can represent any probability distribution. It is
not sensitive to measurement noise and has high reliability;
however, since the weights of these cells are updated after
each sensor measurement, the time and space complexity of
the process is relatively high, and a known state space is
required, so this method is usually only used in indoor envi-
ronments [22]. In order to solve this problem, Olson [23] pro-
posed a correlation scan matching (CSM) algorithm. Through
the grid division of space, the Gauss distribution is used to
evaluate and diffuse the grid, and the transformation with
the highest score is used as the pose transformation of the
robot. This method achieves higher positioning accuracy and
good robustness at the cost of additional time. In order to
make the calculation more efficient, Olson proposed a method
using multi-resolution [24]. This method first uses a low-
resolution grid to find a candidate transformation matrix, and
then uses the result as an initial value for high-resolution grid
calculation. Because when searching with a low-resolution
grid, the speed is faster than high-resolution. After obtaining
the transformation matrix through low-resolution, perform
preliminary transformation on the data, and then use high-
resolution optimization to save a lot of computing time.
Experiments show that the calculation speed of this method
is 10 times that of the single high-resolution method.

lll. MAP OPTIMIZATION

A. GEOGRAPHIC INFORMATION MODEL OF ELECTRICITY
INSPECTION

Whether using the laser data matching method for positioning
in a 2D environment or a 3D environment, it is necessary
to pre-made an environment map. The data acquired by the
laser LIDAR are matched with the pre-made map to obtain the
position and posture, and then the actual position and posture
of the robot are calculated by the external parameters between
the laser LIDAR and the robot.

The point cloud data used in this study was collected using
velodyne 16-line LIDAR in a high-voltage electrical tower
environment. The acquisition of environmental information
by UAV through a laser scanning device typically results
in point cloud data of uneven density. Due to factors such
as changes in the surface characteristics of the measured
object and the mismatching of the registration process of
the point cloud data, it is hard to avoid some noise points.
In addition, when the power towers and the transmission
lines are measured by laser scanning, there are always a
large number of outliers far away from the measured object,
and the measurement error in the process of acquiring data
will produce sparse outliers. These factors may lead to the
failure of point cloud data in the matching process, so we
build environment map by combining scan matching and
closed-loop detection [25], and further optimize the map by
point cloud optimization software. Figure 1 is the point cloud
map of transmission line and power tower after preliminary
optimization of the constructed map.

According to the characteristics of the environmental map
constructed in the electric power inspection, it can be divided
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FIGURE 2. Enlarged view of the transmission lines.

into two parts: namely the power towers and the transmission
lines. We can find that the features of the power towers are
rich, so the results obtained by the laser scanning matching
algorithm can meet the positioning requirements.

Figure 2 is an enlarged view of the transmission lines,
we can see that geometric features of the transmission lines
are single, some of the maps are missing, which is easy to
cause mismatch, so it is difficult to meet the positioning
requirements. We consider reconstructing the missing data
to enhance the geometric features, and further correct the
position of UAV to improve the consistency of positioning.
Therefore, we parameterized the environment of the trans-
mission line and stored it separately from the power towers.

B. PARAMETRIC RECONSTRUCTION OF THE
TRANSMISSION LINE

The transmission line is made of metal material. In winter,
the metal shrinks when the weather is cold. If the length
of the wire is equal to the distance between the two tow-
ers, it will be broken by the contraction force. Therefore,
the length of the transmission line is usually longer than the
distance between the two power towers, showing a naturally
drooping posture. It can be considered as a line segment
between two points, and the length of the line segment is
longer than the distance between the two points. The physical
model droops naturally due to gravity, similar to a parabolic
model, so we reconstructed the transmission lines according
to this characteristic. In this study, the least square polynomial
curve fitting method [26] is utilized to represent the whole
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FIGURE 3. An intercepted transmission line.

transmission line to compensate for the missing pieces and
enhance the geometry features.

Firstly, we intercepted a section of the transmission line
and selected the endpoints of the line by distance. Then
calculate the angle between the projection of the line in the
XOY plane and the Y axis, the angle is yaw, as is shown
in Figure 3.

The red curve AB in the Figure 3 is the intercepted trans-
mission line. Let Ef) be the line direction vector after the
curve projection, 7 = (0, 1, 0) be the y-axis direction vector.
Then the angle is obtained:

-

%
CD-n

— ) (D
‘CD’ il

yaw = arccos(

Line point cloud Z is transformed by the rotation matrix
R, and the cross section of the transformed point cloud Z’ is
parallel to the YOZ plane:

cos(yaw) 0  —sin(yaw)
R= 0 1 0 ,
sin(yaw) 0  cos(yaw)
ZI=R-Z )

Fit the two-dimensional point cloud data after projection,
and set the fitting polynomial as:

f &) = Z_oakdi (x) (€)

where: ay is the polynomial coefficient, ¢y is the function
corresponding to each coefficient.

Equation (4) is the sum of the squares of the deviations
from each point to the curve:

§* = I [B_genx () — f ()] 4)

The fitting process is transformed into finding the mini-
mum of the equation (4). Therefore, the partial derivatives of
the coefficients o, o1, . . . , &} are respectively made equal to
Zero:

05 m
P -2 Zi:l Pr (xi)

x[aopo (xp) o1y () +. . . Fondy () —f ()] =0
%)
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FIGURE 4. Error-iteration curve.

Converting these derivations from equation (5) into a
matrix form:

L g1 (x) ¢ (x) o J ()
1 ¢ (x2) or (x2) w | f(x2)
1 d1 (xn) -+ Pk (xn) (77} f (%)
&‘f—-/ \—\/—-/
X A Y

Thatis X - A = Y. Equation (7) is the coefficient matrix A:
A=xT.x)" . xT.y %)

According to the characteristics of the transmission line
model, ¢r(x) can be taken for x ke (0,1,2...). Define
the error threshold as E7. The fitting steps are as follows:

(a) Rotating the original data by equations (1) and (2),
parallel to the YOZ plane;

(b) Taking Er = 0.001,k = 0, 1,2,...,curve fitting is
performed by equations (3), (4), (5), (6), and (7) until the
curve deviation S converges to less than E7, resulting in a
final curve.

Figure 4 shows the number of the iterations and the error
curve during the fitting process. In the figure, # is the number
of iterations, e is the curve error (unit: meter) of each iteration,
that is, when n = 3, k = 2, the curve deviation S converges
to less than E7.

Figure 5 shows the comparison of the fitted curve with the
original point cloud data. In Figure 5 (a), the green part is the
original point cloud data, the data is discontinuous in some
places and partially missing. In Figure 5 (b), comparing the
results before and after the fitting: we can clearly see that the
green point cloud data is mixed with many red parts. These
red parts are the missing point cloud data made up by the
least square polynomial curve fitting method, the fitting curve
is smooth and continuous. In Figure 5 (c), comparison of
projection in YOZ plane before and after curve fitting. After
fitting the point cloud data, the missing segment is effectively
compensated.

In the data we collected, the number of point cloud on the
transmission line was 14367. The coordinates of each point
in three-dimensional space are represented by three float type
parameters: X, Y, Z, so each point cloud occupies 12 bytes of
memory; The memory consumption of the point cloud data
storage for the entire transmission line is: 12 x 14376 =
164.42KB.
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FIGURE 5. Comparison of original point cloud data and fitting curve.

After parameterized reconstruction of the transmission line
by curve fitting, we proposed a new data structure to store a
single transmission line:

(1) The coefficients of the curve polynomial are generally
more than 3 and less than 10 parameters of the double type,
that is, occupying 24-80 Byte memory.
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(2) Endpoints of the transmission line: each transmission
line has two endpoints, the coordinates of each of them are in
the form of (X, Y, Z), that is, occupying 24 Byte memory.

(3) Endpoints of the fitting curve: each fitting curve has
two endpoints, and the coordinates of each endpoint are in
the form of (Y, Z), that is, occupying 16 Byte memory.

It can be obtained by calculation that the memory con-
sumption of our method is: 64Byte — 120Byte. The memory
consumption is reduced by more than 1000 times compared
with the original storage mode. At the same time, the memory
consumption of the original storage mode increases with the
increase of the number of point cloud data and the number
of transmission lines. However, our storage method can guar-
antee the memory consumption in a very small range, which
is not affected by the number of point cloud data, and only
increases with the number of transmission lines.

IV. SECANT SLOPE FEATURE MATCHING ALGORITHM

A. EXTRACTION OF TRANSMISSION LINE AND SECANT
ENDPOINTS

Since there are at least two transmission lines across the
two towers, in order to extract the endpoints of any of the
transmission lines, it is necessary to extract the line from the
sensing data first. In this paper, point-to-point distance prop-
agation method [27] is used to extract a single transmission
line in the sensing data. Take the first point as the initial point,
set the distance threshold between the points, propagate the
distance to its neighboring points, and the point that meets
the distance threshold is the next initial point, until all of the
data is traversed, finally a transmission line is obtained. The
points corresponding to the minimum and maximum value in
the Y direction is taken as the initial endpoint of the secant
line, traverse the neighboring points in the remaining part
of the extracted line respectively, and calculate the center of
gravity of all neighboring points as the final secant endpoint.
The specific algorithm flow is as follows:

(1) The pre-processed sensing data in section III is stored
in the array scan_data[n], where n is the number of
point clouds in the data and scan_data[1] is the initial
propagation point femp; At the same time, the dynamic
array extract_line and other_data are created to record
the extracted point cloud data and the remaining point
cloud data respectively. Set the distance threshold as
T _distance.

(2) Calculate distance between point scan_data[i](i # 1)
and propagation point temp. If distance < T _distance,
scan_datali] is stored in dynamic array extract_line,
set temp = scan_data[i]. Otherwise, scan_datali] is
stored in dynamic array other_data.

(3) Repeat step (2) until all points are iterated through.
The data stored in extract_line is the extracted single
transmission line data.

(4) Traverse to find the minimum and maximum points in
extract_line as the initial endpoints of the transmission
line: point_A and point_B.
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FIGURE 7. Effect after extraction of line and endpoints.

(5) Simultaneously traverse to find the adjacent points of
point_A and point_B in the array of extract_line, cal-
culate the gravity center of its adjacent points as the
final secant endpoints, and record their serial numbers
as A_num and B_num.

Figure 6 shows the original sensing data.

Figure 7 shows the effect of line and endpoint extrac-
tion. The green part is the point cloud data of a transmis-
sion line extracted by the point-to-point distance propagation
method [27]. The red circle is the endpoints of the secant line.
The blue part is the point cloud data of another transmission
line.

B. SECANT SLOPE CHARACTERISTICS
PARAMETERIZATION
In order to make the matching algorithm more efficient, the
three-dimensional problem is simplified into the geometric
features of the secant in the two-dimensional plane, and
then parameterized into one-dimensional slope features for
matching, which greatly reduces the time complexity of the
algorithm.

The parameterization of secant slope features can be sep-
arated into two parts: two-dimensional plane projection and
secant slope calculation.
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FIGURE 8. Secant line after data projection.

Let M;i=0,1,...,n) be the two-dimensional data,
which is obtained by projecting the extracted point set P; onto
a two-dimensional plane. Mf is the horizontal axis coordinate
after projection of point i, M7 is the vertical axis coordinate
after projection of point i. Assuming that P4 is the initial
point:

{MH (P} — P32+ (P) — P’ )
M:;=P}

Equation (9) is the corresponding secant slope k and the
horizontal axis distance d between two secant endpoints:

e M % -M j’f
M Ay_M B, C)
d= ‘M B—My
Figure 8 is the secant feature extracted after data projec-
tion. The green part is the point cloud data of the transmission

line, the red line is the secant of the extracted transmission
line, and the red circle is the endpoints of the secant.

C. ERROR MODLE

As is shown in Figure 9, the red line is the fitting curve. Set
the endpoints of target secant as T and 7", and the distance of
horizontal direction between T and T’ is d. The endpoints
at both ends of the curve are A and B. According to the
horizontal axis distance d, the other endpoints A’ and B’ of the
respective secant can be calculated, as well as the respective
center points M1 and M2, and the center points M’ between
M1 and M2 can be obtained. Take any point E on the curve,
and point E’ whose horizontal axis distance from point E is d
is the predicted endpoint of the secant.

Based on the fact that the secant slope of any two points on
the curve is unique when the distance between horizontal axis
is fixed, as shown in equation (10), the error can be changed to
the angle between the target secant and the predicted secant.
Equation (11) is the predicted secant error model:

kew = (EL— Eo) [ (E, — E})
ke = (T1 = T) [ (T, = T))
e = arctan[(kggr — krr) /(1 + kger x krp)] - (11)

In the equation above, kggr is the predicted secant slope,
k7 1s the target secant slope, and e is the predicted error.

(10)
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FIGURE 9. Predicted secant and target secant.

D. SECANT SLOPE FEATURE MATCHING ALGORITHM
Select one endpoint of the curve as the starting predic-
tion secant to search the target secant slope. The equation
for updating the predicted secant slope can be obtained as
follows:

kg = [(E; — Az) — (E; — Az)]
[<E§ - Ay) — (By - Ay)]

where: Ay, Az are the update steps in direction Y and direc-
tion Z, respectively. Until the error e obtained in equation (11)
converges to a certain range and the search is completed.

This method has a great dependence on the selection of
updating step, which directly affects the efficiency, accu-
racy and convergence of the algorithm. The secant slope
in the transmission line curve also has the characteristic
of increasing or decreasing monotonously when the dis-
tance between the horizontal axis is fixed, so the dichotomy
method [28], [29] is used to quickly search the secant slope.
Equation (13) and (14) are the updated equations for predict-
ing the secant slope:

[(M} +0.5d) — (M}, — 0.5d)]

12)

o = [(M;+0.5d) — (M} - 0.54)] -
{My’ = (M1, +M2,)/2 (14
M. =M1, +M2,)/2

where: d is the distance difference of the target secant along
the horizontal axis. Calculate the error e by the equation
(11), (13), and (14), until it converges to a certain range,
ending the search. This method does not have to choose the
updating step, and the accuracy and computational efficiency
are higher than the former.
The flow of secant slope feature matching algorithm based
on dichotomy is as follows:
1) Initial endpoints A, A, B, B, error threshold E7;
2) Take points A and B at each end of the curve. Based on
the transverse axis distance d, calculate the correspond-
ing points A" and B’,and then obtain their respective
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central points M 1 and M 2,using the above points as the
initial boundary points;

3) Let k77’ be the target secant slope. The slope k44 and
kpp' can be calculated respectively. If k77 is not within
the k44 and kpp intervals, the match fails; If k44, and
kpp are equal to k777, then the matching ends, A and A’
or B and B’ are the target secant endpoints, otherwise
the next step is executed;

4) The coordinate point M’ corresponding to the curve
is obtained by calculating the center point in the hor-
izontal directions of points M 1 and M2, which is used
as the center point of the predicted secant endpoint.
At the same time, the new endpoints E and E’ of the
predicted secant are calculated, and the secant slope
kggr is calculated. If kgg equals kpps, the matching
ends, and the predicted secant endpoint is the target
secant endpoint; If kggs is smaller than k7, set M ‘¢’ to
M 1, and re-execute step 3; if kggs is greater than k77,
set M ‘¢’ to M2 and re-execute step 3.

5) Step 3 is iterated until the error is less than the given
error threshold E7. Finally, the predicted secant end-
points E and E’ are obtained.

V. EXPERIMENTS

In this section, we have conducted several sets of exper-
iments to evaluate the performance of our proposed algo-
rithm, compared with CSM method [23] and IMU-aided
CSM method [30]. All of the experiments are implemented
in ubuntul6.04, ROS kinetic and MATLAB R2017a, and
conducted on a PC with an Intel i5 processor having 3.4GHz
and 32.0 GB of memory. Parameters setting: E7 is 0.1. Due to
the limitation of conditions, no field test was conducted, but
we used the data playback function of ROS. The speed of data
playback is the same as that of data collection, so the whole
experiment can simulate the process of real-time collection
and processing. In the process of mapping, we first need
to run the collected point cloud data. The acquisition frame
rate of LIDAR is more than 10 frames per second, so when
the processing time of each frame is less than the sampling
interval of lidar, that is 0.1s, the real-time processing level
can be reached.

In Sec V-A, we use the data collected by the velodyne
16-line LIDAR to construct an environment map as the real
path. In Sec. V-B, we compare the results of three algorithms
using 30 frames of data matching. In Sec. V-C, we use
three algorithms to build the map and compare the respec-
tive translation errors, rotation errors, and calculation time.
In Sec. V-D, the effects of different flight speeds on the per-
formance of each algorithm are compared.

A. 3D MODEL CONSTRUCTION

Based on the point cloud data obtained by LIDAR, the envi-
ronment map is constructed by the combination of scan-
ning matching and closed-loop detection [25]. The blue
track is the real path with an accuracy of 0.05m, as shown
in Figure 10 (a), (b).
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(b) Top View

FIGURE 10. Environmental map of electric power inspection.

The starting point, ending point, and A, B, C, and D, four
areas of the UAV’s movement are marked in Figure 10 (b).
Among them, A and C are high-voltage tower areas with
abundant features, B and D are transmission line areas with
single features.

In order to verify the performance of the algorithm pro-
posed in this paper, the off-line positioning experiments
are carried out with CSM method and IMU-aided CSM
method respectively. None of the above three methods used
closed-loop detection to optimize the location results.

B. CONSTRUCTION OF SUB-MAPS
In order to see the comparison results more clearly,
we selected 30 frames of data during the positioning pro-
cess, used three algorithms (CSM method, IMU-aided CSM
method, our method) to construct transmission line sub-
maps, and compared them with the real path constructed
in Sec. V-A. Figures 11 (a), (b), (c) are three-dimensional
views of the matching results using the CSM method.
Figures 11 (d), (e), (f) are three-dimensional views of the
matching results using the IMU-aided CSM method.
Figures 11 (g), (h), (i) are three-dimensional views of the
matching results using the method we proposed. The red
part is 30 frames of real point cloud data (30-frame sub-map
corresponding to the blue transmission line), the black part is
the sub-map obtained by matching with three algorithms.

It can be seen from Figure 11 (a), (b) and (c) that
CSM method (in black) has large angle deviation and
translation deviation compared with the real path (in red).
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FIGURE 11. Comparison of our method with CSM method and IMU-aided CSM method.

In Figurell (d), (e) and (f), although the rotation deviation
of IMU-aided CSM method is smaller than that of CSM
method, it results in a larger translation error. Using IMU to
estimate the position and attitude can improve the positioning
accuracy to a certain extent, but there is accumulated error
in using IMU to calculate the track for a long time, which
is easy to lead to positioning failure with the accumulation of
time. Using our improved method for matching, the generated
sub-graph (Figure 11 (g), (h) and (i)) can basically coincide
with the real point cloud data, which is closer to the true

VOLUME 8, 2020

position of the transmission line and improves the consistency
of positioning.

In order to quantify the accuracy and computational cost
of the algorithm, we use the method in [31] to calculate
the average translation error (ATE), average rotation error
(ARE), and time of calculation and sub-map building (t) of
the three algorithms for pose estimation, as shown in Table 1.

From Table 1, it can be seen that the proposed method
is superior to the CSM method and IMU-aided CSM
method in terms of accuracy and time consumption. Among
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FIGURE 12. 3D view of track results.
TABLE 1. Algorithm performance evaluation.
Algorithms ATE/m ARE/° t/s
CSM method 1.795 3.486 1.276
IMU-aided
CSM method 2.829 1.223 1.487
The method 0.483 0.127 0.032

we proposed

them, ATE is 26.9% of CSM method,17.07% of IMU-aided
CSM method; ARE is 3.64% of CSM method, 10.38% of
IMU-aided CSM method. It can be seen from the above
table that our method only takes 0.032 seconds to process
30 frames of data and build graphs, which means that during
the use of the method in this paper, using the secant slope
feature can quickly search for the correct position and pose,
and meet the real-time requirements of UAV positioning.
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C. CONSTRUCTION OF POSITIONING MAP

We have carried out further experiments to compare
the effect of three methods of positioning and real-time
map building, respectively using three algorithms to
let the UAV follow the trajectory of Sec. V-A at
a speed of 10km /h. Figure 12 (a), (b), (c), (d) are the
three-dimensional maps constructed using three algorithms,
respectively. Figure 13 (a), (b), (c), (d) are their top views.

It can be seen from Figure 12 and Figure 13 that the map
build by CSM method completely deviates from the real path
when it passes through area B (transmission line environ-
ment), that is, the positioning fails in the process of area B, but
the positioning results are similar with the real path when it
passes through area A and area C, so it can be considered that
the CSM method is prone to mismatch in the case of single
feature and high environmental similarity; IMU-aided CSM
positioning method, through the introduction of IMU integral
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FIGURE 13. Top view of track results.

to modify the positioning results of CSM method, compared
with CSM method, has some improvement, but there is still
some deviation in area B and D; Our positioning method
is based on IMU-aided CSM positioning, using Euclidean
distance between frames to extract key frames every certain
interval, using secant slope matching method in the extracted
key frame interval to quickly adjust the UAV’s position and
attitude, and the final positioning results are closer to the
real trajectory. Experimental results show that the proposed
method is relatively stable and consistent.

we calculate the average translation error (Table 2), aver-
age rotation error (Table 3) in areas A, B, C, and D,
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TABLE 2. Comparison of average translation errors of three algorithms in
different areas.

Algorithms ATE/(m)
A B C D
CSM method 2.228 40.255 3.265 52.448
IMU-aided 1.852 2.333 3.229 3.063
CSM method
The method 1.724 0.255 0.552 0.198
we proposed

TABLE 3. Comparison of average rotation errors of three algorithms in
different areas.

Algorithms ARE/ (°)
A B C D
CSM method 2.802 19.588 2.369 11.957
IMU-aided 1.755 3.223 1.985 3.933
CSM method
The method 1.003 0.996 0.335 0.856
we proposed

TABLE 4. Comparison of calculation and mapping time of three
algorithms.

CSM method IMU-aided The method
CSM method we proposed
t/s 821.738 1036.461 711.625

Table 4 shows the time of calculation and map building of
three algorithms for pose estimation.

In Table 2, we can see that in area A, the translation errors
of the three algorithms are not very large, about two meters.
However, in area B, there is a big deviation between the
map created by CSM and the real path. This is because the
environmental difference of transmission line is too small,
and there is no easy to distinguish the environmental charac-
teristics, so CSM method is easy to fall into local extremum.
The maximum translation error of the map constructed by
CSM method is about 40 to 50 meters. Since IMU is used
to estimate the position and attitude of the IMU-aided CSM
method, the positioning accuracy of the IMU-aided CSM
method is much better than that of the CSM method, but the
long-term use of IMU still results in a translation error of 2
to 3 meters. Using our method, no matter in the transmission
line area or power tower area, the deviation between the built
map and the real path is very small.

As shown in Table 3, the CSM algorithm has an average
rotation error of 19.588 degree in area B and 11.957 degree
in area D. Such a large rotation error has a great impact on the
mapping results, but the rotation error of CSM is still within
areasonable range in area A and area C. The rotation error of
IMU-aided CSM method in B and D regions are much better
than that in CSM, but compared with A, C region is still larger.
Our algorithm is stable in the whole positioning process, and
the rotation error is controlled within 1 degree, which greatly
improves the positioning and mapping accuracy.

The CSM method is actually a brute-force matching algo-
rithm. It needs to compare each pair of adjacent frames, which
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FIGURE 14. Comparison of translation errors of three algorithms at
different flight speeds.

consumes more calculation time. Although the IMU used by
the IMU-aided CSM method has a high frequency and a fast
calculation speed, it still increases the calculation time to
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FIGURE 15. Comparison of rotation errors of three algorithms at different
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a certain extent. Our proposed algorithm uses secant slope
matching at key frames, saving time for brute force matching
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and improving accuracy. As shown in Table 4, t is the time of
positioning and map update, and our algorithm can guarantee
the real-time requirements of positioning.

D. EVALUATION OF ALGORITHMS AT DIFFERENT SPEEDS
We also use the flight speed (km / h) as the measure-
ment unit to exclude the impact of the flight speed on the
matching results. Including 10km / h, 15km / h, 20km / h,
...50km/h calculate their translation error percentage (%),
and rotation error percentage (%). The results are shown
in Figure 14(a), (b), (c) and figure 15(a), (b), (c).

It can be seen from Figure 14 and Figure 15 that both
translation error rate and rotation error rate increase with the
increase of flight speed. The growth speed is fast first, then
slow, and finally tends to a certain range. The translation
error rate of CSM algorithm is about 40%, that of IMU-aided
CSM method is about 10%, and that of our method is about
2%. The rotation error rate of CSM algorithm is about 10%,
that of IMU-aided CSM method is about 2%, and that of our
method is within 1%. As can be seen above, the flight speed
has a certain impact on the translation and rotation of the
algorithm. The faster the speed is, the more serious the error
is. However, the proposed method has far better positioning
accuracy under fast flight conditions than the CSM algorithm
and IMU-aided CSM algorithm.

VI. CONCLUSION AND DISCUSSION

In this paper, the influence of the lack of data in the trans-
mission line map on the location algorithm is analyzed. The
least square curve fitting method is used to parameterize the
transmission line map, which enhances the geometric charac-
teristics of the map model. At the same time, only the param-
eters of the fitting curve and the coordinates of each endpoint
are stored for the transmission line, which greatly reduces the
memory consumption. This paper analyzes the shortcomings
of UAV pose estimation in the transmission line environment,
proposes a matching method based on the secant slope of
the transmission line, which reduces the three-dimensional
geometric characteristics to one-dimensional slope character-
istics, greatly simplifying the complexity of the algorithm; at
the same time, based on the parabola-like characteristics of
power lines, fast search and matching are performed using
the dichotomy method. While reducing the translation error
and rotation error of the drone, the efficiency of the algorithm
is greatly improved. At last, the superiority of this algorithm
is proved by comparing with CSM algorithm and IMU-aided
CSM algorithm through several experiments. This article is a
study of the power transmission line. In future work, we need
to consider how to simplify the point cloud data in the tower
map on the premise that the geometric characteristics of the
obtained tower environmental information are not changed.
Our algorithm is based on the theoretical situation of only two
transmission lines between two power towers. In the future,
we need to consider how to extract the features of the secant
line in the case of multiple lines.
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