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ABSTRACT There is growing interest in the use of energy storage systems (ESS) to create combined
‘‘renewable energy plus storage’’ power plants. ESS based on lithium-ion batteries have drawn much
attention due to their high energy density and low self-discharge. However, as lithium-ion batteries are still
costly, a power producer should determine ESS capacity in a sophisticated manner to ensure profitability
of the PV plus storage projects. During the project horizon, lithium-ion batteries undergo severe capacity
degradation, which must be considered in ESS planning. The degradation rate depends on various stress
factors which are affected by ESS sizes and operation. Therefore, this paper aims to propose an advanced
framework for calculating the capacity of an ESS supplementing a photovoltaic system considering the effect
of the size and operation of ESS on battery degradation while maximizing profitability. Depending on how
batteries are used during the project horizon, two scenarios are discussed and an ESS sizing framework for
each scenario is suggested. To deal with non-convexity and black-box parameters of the optimal ESS sizing
problems, we introduce an iterative algorithm that finds a solution by accessing battery degradation and
optimizing profitability repetitively. We adopted the South Korean market for analysis and simulation of the
frameworks.

INDEX TERMS Battery degradation, energy storage system (ESS), ESS sizing, economic analysis.

I. INTRODUCTION
The depletion of fossil fuel sources and continued threat of
global warming have led to the emphasis of the importance
of renewable energy development. As such, many govern-
ments around the world are attempting to expand renewable
energy supply through financial incentives and regulatory
policies. The Renewable Portfolio Standard (RPS), which
has been widely adopted in the United States, the United
Kingdom, China, and South Korea, is a regulation for renew-
able energy expansion that requires electricity providers to
produce a percentage of electricity using renewable energy
sources such as wind, solar, geothermal, and biomass. Some
countries like the United States and South Korea also have
renewable energy certificates (REC) programs. Generally,
one REC is issued for each MWh of electricity generated and
delivered to the grid using renewable energy. REC markets
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exist where energy supply companies trade RECs to meet
RPS program obligations.

Solar energy has been adopted as one of the most impor-
tant renewable energy sources because of its abundance and
scalability, easily going from a few kWs to hundreds ofMWs.
Additionally, continued solar panel price decreases have led
to rapid growth in solar installations. According to Lazard [1],
the levelized cost of energy of solar in 2018 was lower than
that of some conventional generation sources such as gas,
nuclear, and, coal. However, because solar generation is inter-
mittent and generally non-dispatchable, the solar generation’s
high penetration significantly affects power system operation.
Some governments have started to focus on energy storage
system (ESS) as amethod for relieving such effects and estab-
lished policies for promoting ESS installation in the coun-
tries. For example, California adopted an ESS procurement
mandate of 1,325MW that applies to its three largest investor-
owned utilities. The South Korean government grants addi-
tional REC weights to electricity discharged from ESSs
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that were charged using renewables to improve the profitabil-
ity of ESS investors.

Among the various types of energy storage, lithium-ion
batteries are used in electric vehicles because of their high
energy density, light weight, low self-discharge rate, and
long life span [2], [3]. Rapid electric vehicle proliferation
has accelerated lithium-ion battery price decreases through
economies of scale, and lithium-ion batteries are now eco-
nomically viable to be used in power systems in some coun-
tries. Nevertheless, their prices remain high compared to
other power generation sources. Therefore, ESS-based power
producers should be very thoughtful in determining proper
ESS sizes for securing profitability in their energy projects.
Renewable energy projects including a PV plus storage typi-
cally last 10 to 20 years. During this period, batteries undergo
significant degradation; therefore, degradation must be con-
sidered when determining ESS size. Battery degradation is
affected by stress factors such as state of charge (SoC),
depth of discharge (DoD), temperature, and C-rate, which are
determined by ESS operating algorithms and battery specifi-
cations. ESS size is one of those specifications affecting such
stress factors. In other words, different ESS sizes produce dif-
ferent stress factors, resulting in different battery degradation.
Therefore, ESS size is a variable that affects battery degrada-
tion, which means the degradation rate is not an independent
parameter of ESS sizes. Consequently, effective ESS sizing
must take into account how battery degradation is affected by
ESS sizes.

To analyze battery degradation, chemical theory [4]–[6] as
well as empirical [7] and semi-empirical approaches [8]–[12]
have been used. Analyzing battery degradation through
chemical theory has the advantage of logically explain-
ing degradation causes. However, data resulting from this
approach are generally difficult to match with practical bat-
tery operation data. Empirical approaches can be another
option, but such methods require large volumes experimental
data to ensure accuracy. Empirical models based on limited
data in one application typically cannot be applied to other
applications. Semi-empirical approaches taken by references
[8]–[12] combine theoretical analyses with empirical obser-
vations to model battery capacity degradation. Their models
are flexible enough to be used for various energy storage
applications while still showing a good fit with practical data.

In recent years, multiple studies have attempted to deter-
mine optimal energy storage planning in various applications.
Some of these studies [13]–[17] have focused on ESS sizing
and siting to improve power system flexibility as part of the
system assets. Zhang et al. [18] and Qiu et al. [19] explored
co-optimizing of transmission and storage planning. Energy
storage planning for accommodating high renewable input in
current power systems has been discussed in several studies
[20]–[23], and other have focused on ESS sizing for power
producers pursuing profit maximization [24]–[30]. These
works disregard battery capacity degradation or treat it as
an externally determined parameter which is independent of
ESS size. However, degradation’s relationship with ESS sizes

shall be considered in calculating the optimal ESS capacity.
Furthermore, in many of aforementioned works, ESSs are
planned to take advantage of energy arbitrage fromwholesale
electricity markets. However, in practice, renewable energy is
typically traded through long-term bilateral forward contracts
or power purchase agreements (PPA) rather than onwholesale
electricity markets to ease project financing and provide risk-
hedging for energy projects. Power producers investing in
renewable plus storage systems would also prefer to trade
electricity through long-term forward contracts, but there is
insufficient discussion on ESS sizing for this.

This paper presents an advanced ESS sizing framework
based on an iterative method considering lithium-ion battery
degradation. To the best of our knowledge, this is the first
study that reflects the influence of ESS sizes and operation on
battery degradation in proposition of an ESS sizing strategy.
In this work, a brief discussion on the structures of PV plus
storage systems is provided first. Next, we study battery
degradation modeling, which is expressed as a complex func-
tion of stress factors based on Xu et al. [12]. We consider
independent power producers who seek maximization of net
present value (NPV) through a long-term contract or PPA.
The rationale for this consideration is justified by the fact that
in many countries renewable energy is commonly traded by
long-term contracts or PPAs. Although this work focuses on
the forward contract type which is typical for South Korea,
the proposed framework can be applied to other markets
or applications. From a practical perspective, we introduce
two scenarios based on how to use batteries over the con-
tract horizon and then formulate optimization problems for
each scenario. However, these optimization problems are
non-convex and highly nonlinear because battery capacity
degradation depends on ESS sizes and operation in a very
complicated sense. In fact, it is highly complex to express
battery degradation as an analytic form of input variables in
the optimization problems. To resolve these issues, we pro-
pose an iterative framework that repetitively applies an ESS
operation algorithm, evaluates battery capacity degradation,
and optimizes NPV at each iteration. From a simulation based
on the South Korean forward contract type, we find that
adding an ESS to an existing PV system is highly profitable.
ESS sizes and profitability assessments are conducted by
tuning forward contract prices and PV plus storage system
parameters.

The main contributions of this work are enumerated
below.

1) Advanced ESS sizing framework considering
interrelationship between ESS sizes and battery
degradation:This sizing strategy allows ESS investors
to calculate more accurate ESS capacity than treating
battery degradation as an independent parameter. The
mathematical problems for optimal ESS sizing are not
guaranteed to be convex and have black-box parame-
ters. To resolve these issues, we propose an algorithm
that evaluates battery degradation and optimizes eco-
nomic values in an iterative manner.
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2) Different ESS sizing algorithms depending on bat-
tery usage types over the contract horizon in a
practical perspective: The first scenario assumes that
a constant maximum battery capacity is used for the
entire contract horizon. The second scenario fixes
a maximum DoD range during the contract period.
We suggest a ESS sizing strategy for each scenario.

3) Various numerical experiments: We calculate ESS
sizes and economic values using the proposed frame-
workwith various system conditions such as PV system
capacities, DC converter sizes, maximum DoD ranges,
and PPA contract prices.

The rest of this paper is structured as follows. Section II
describes PV plus storage systems and electricity markets.
Section III models battery capacity degradation, Section IV
presents the proposed frameworks, and Section V pro-
vides numerical results. Lastly, the paper is concluded in
Section VI.

II. SYSTEM DESCRIPTION
A. PV PLUS STORAGE SYSTEM DESCRIPTION
Depending on the degree to which the storage and PV
are physically and operationally coupled, a PV plus stor-
age system can be categorized as either an AC-coupled or
DC-coupled PV plus storage system [31], [32]. Figure 1
shows a schematic diagram of an AC-coupled system with
co-located PV and ESS that share a point of common cou-
pling with the AC power grid. The PV and ESS can operate
independently in this system because they do not share any
power electronic devices. Thus, the system operator is free
to select between the grid and PV to obtain the electricity
source thatmaximizes profits. Because of this flexibility, such
a system cannot prove the origin of electricity charging the
ESS. Therefore, this system type cannot receive financial
incentives such as federal investment tax credits (ICT) in the
United States and extra RECweights in SouthKorea. Figure 2
presents a schematic diagram of a DC-coupled system in
which the PV and ESS are coupled the on the DC side and
share an AC-DC inverter. The ESS can store PV electricity
through the DC-DC converter in this system, but it cannot be
charged from the grid. Therefore, this system is eligible for
ICT or extra REC weights, increasing the profitability for the
system owner. In many markets, including North America,
developers are increasingly interested in DC-coupled systems
for this reason [33]. The remainder of this paper assumes DC
coupled systems as shown in Figure 2.1

B. ELECTRICITY MARKET DESCRIPTION
Solar energy is commonly sold through long-term forward
contracts in which a power supplier and purchaser agree on an
electricity price for a fixed period that typically ranges from
10 to 20 years. However, there have been some discussions
on participating in wholesale electricity markets [34]–[36].

1There are the other designs of DC-coupled system types besides the one
shown in Figure 2.

FIGURE 1. Schematic diagram of an AC-coupled system.

FIGURE 2. Schematic diagram of a DC-coupled system.

On the one hand, solar power producers can guarantee a long-
term steady source of revenue through forward contracts,
which allows them to facilitate project financing. On the
other hand, buyers, typically a utility or large corporation,
can be supplied low price power and attain RECs to meet the
RPS. Recently, growing number of PV plus storage projects
ranging from few MWs to tens of MWs have come online in
theUnited States. Because a PV plus storage system hasmuch
greater flexibility in supplying power, a project owner would
expect to sign a higher-price contract than with a standalone
PV system. The rough forward contract price ranges of some
PV plus storage projects are accessible; however, sensitive
information about PPA contracts such as ESS operating con-
ditions and the detailed structure of contract prices are not
published. Unlike in the United States where many utilities
exist, South Korea has only one utility company known as
Korea Electric Power Corporation (KEPCO). Power gen-
erated from renewables and RECs are both tradable either
through spot markets or bilateral contracts with KEPCO.

Table 1 shows various solar power REC weights for differ-
ent capacities and installation types. In the case of PV plus
storage, electricity discharged from the ESS that were pro-
duced by PV between 10:00 and 16:00 is eligible for 5.0 REC
until the end of 2019 and 4.0 REC in 2020. For PV-generated
power directly supplied to the grid, REC weights between
0.7 and 1.5 are imposed. Unlike traditional power genera-
tion companies, renewable power providers are exposed to
both volatile system marginal prices2 and REC prices, which
makes it difficult for renewable energy providers to expect
stable profits and thus makes providers reluctant to invest
in renewable energy. To ease of this uncertainty, the South
Korean government have approved a long-term forward con-
tract and introduced so-called ‘‘fixed price markets’’ where

2In South Korea, systemmarginal price or SMP which is the shadow price
of the system balance constraint determines wholesale electricity prices.

60248 VOLUME 8, 2020



H. Shin, J. H. Roh: Framework for Sizing of ESS Supplementing Photovoltaic Generation in Consideration of Battery Degradation

TABLE 1. REC weights for PV systems based on installation types and
sizes in South Korea.

renewable energy providers can sell power and RECs to at
long-term fixed prices. This is almost identical to ‘‘bundled’’
PPAs in the United States. In this paper, we consider the PV
plus ESS system operator to be participating in fixed price
markets or bundled PPAs.

III. LITHIUM-ION BATTERY DEGRADATION
Battery capacity degradation is a main concern for power
providers as it directly affects profit. Batteries are chemical
products, thus it is nearly impossible to analyze their degra-
dation through a single method. This paper adopts a hybrid
model combining chemical theory and the data-based model
presented in Xu et al. [12].

Before discussing capacity degradation modeling, we must
define battery capacity. Battery capacity is the energy (kWh)
presently available in a battery. Thus, battery capacity
decreases as the battery is used. In many academic works,
battery life is defined as the time at which battery capacity
reaches 80% of its initial capacity. However, in practice,
lithium-ion battery manufacturers and ESS-based generation
project developers sometimes adopt lower levels to calcu-
late battery life.3 Lithium battery degradation is divided into
cycling aging caused by battery usage and calendar aging,
which is naturally degradation over time. Total aging is the
sum of these two types of aging. There are various stress
factors that affect battery degradation such as DoD and SoC
levels, C-rate, cycle numbers, temperature, and total battery
operation time. Xu et al. [12] presented aging models for
these factors based on a combination of chemical theory and
experimental data analysis, which can be expressed as:

DoD : fDoD(DoD) = (kDoD1DoD
kDoD2 + kDoD3 )

−1 (1a)

SoC : fSoC (SoC) = ekSoC (SoC−SoCref ) (1b)

C-rate : fC (C) = ekC (C−Cref ) (1c)

Temp. : fT (T ) = ekT (T−Tref )·
Tref
T (1d)

where kDoD1 , kDoD2 , and kDoD3 are DoD aging model
coefficients and kSoC , kC , and kT are SoC, C-rate, and
temperature aging model coefficients, respectively. The sub-
script ref represents reference values for each stress factor

3This is because PPA between a power producer and utility is typically
long-term, from 10 to 20 years. To meet end-of-life (EOL) set to 80%, ESS
should maintain a maximum DoD range and C-rate at low levels to reduce
battery degradation. It probably leads to low NPVs.

(SoCref = 50%, Cref = 1C , and Tref = 25◦C). The
number of cycles is calculated using the rainflow-counting
algorithm [37] which is widely used in fatigue analysis. The
mathematical model of battery capacity degradation can be
given as the sum of cycling aging and calendar aging [12]:

fd =
N∑
i=1

fDoD(DoDi)fSoC (SoCi)fC (Ci)fT (Ti)ni

+ktHfSoC (SoCavg)fT (Tavg) (2)

where i represents the i-th cycle, H denotes total operation
time in seconds, SoCavg =

∑N
i=1 SoCi/N , and Tavg =∑N

i=1 Ti/N .
Because degradation is influenced by the battery’s residual

capacity and the solid electrolyte interphase phenomenon
[38], battery state of health (SoH) can be modeled as follows:

SoH = pSEI · e−rSEI fd + (1− pSEI ) · e−fd (3)

Xu et al. [12] obtained a set of model parameters for
Eqs. (2) and (3) from data on lithium-ion Manganese
Oxide (LMO) battery degradation.

IV. ENERGY STORAGE SYSTEM SIZING FRAMEWORK
We must solve a problem with parameters dependent upon
a decision variable in a highly complicated sense. That is,
SoH considered in the optimization problem has a highly
nonlinear relationship with battery size.Moreover, it is highly
complex to express SoH as a mathematical function of ESS
size as the stress factors determining SoH are affected by ESS
operation. Therefore, this section’s main focus is proposing
an optimization strategy that deals with black-box parame-
ters whose qualification is possible only through numerical
computations. Before formulating the problem, we discuss
two scenarios on how batteries are used during the project
horizon or over the contract period. This is worth discussion
because ESS project developers commonly require a mini-
mum storage capacity or DoD range to be maintained during
the project horizon or contract period, in practical situations.
We assume that the contract period is sufficiently long-term
to be the same as the project horizon.

A. SCENARIOS DEPENDING ON BATTERY USE
The first scenario assumes a constant usable capacity over the
entire contract period, with the ESS operator using a fixed
kWh range of the battery as shown in Figure 3(a). Because of
capacity fade, the initial battery size should be considerably
larger than usable energy. In this scenario, the goal is to deter-
mine the optimal usable energy and the degree of oversizing
that maximizes the economic value of adding the ESS to an
existing PV system. We refer to this scenario as ‘‘Energy-
Fix’’ throughout the paper.

The second scenario assumes a constant % range or DoD
used over the contract horizon. The usable capacity is cal-
culated as the product of DoD and total capacity subject
to degradation. That means that in this scenario, referred to
as ‘‘DoD-Fix’’, the usable capacity decreases over time as
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FIGURE 3. Total capacity and usable capacity of the battery in two
scenarios.

shown in Figure 3. The goal then is to optimize ESS size with
a predefined DoD value.

There could be additional scenarios, such as the combina-
tion of those two scenarios in such a way that usable capacity
is fixed for the first half of the period and DoD is fixed for
the other half.

B. ESS OPERATION ALGORITHM
The ESS operation algorithm for maximizing profits under
South Korean type PPAs is not complex. Based on the REC
weights listed in Table 1, storing as much PV generation from
10:00 to 16:00 as far as ESS capacity will allow is optimal.
At other times, directly supply PV power to the grid is optimal
because of round-trip battery losses. Thus, the optimal ESS
operation strategy is described as follows:
(1) From 10:00 to 16:00 (6 hours):

a. Store PV-generated power until the maximum SoC
level is reached

b. Supply remaining PV power directly to the grid
(2) Other times (18 hours):

a. Supply PV-generated power directly to the grid
b. Discharge electricity from the ESS at a constant rate

until the minimum SoC level is reached
Remaining PV power in (1)-b involves power that cannot be
stored in the ESS due to the limits of the battery and converter
capacities in (1)-a. It should be noted that the maximum SoC
level in (1)-a is constant in DoD-Fix as a fixed DoD range
is used over the project horizon. In Energy-Fix, however,
the level increases with time as described in Figure 3(b).

C. BATTERY SIZING STRATEGY CONSIDERING
CAPACITY DEGRADATION
We start by formulating each scenario’s optimization prob-
lem. Table 2 gives variables and parameters to be used in
problem formulation. Because an ESS has one cycle every
day, we do not need to solve the problem over an hourly

basis but rather daily, which remarkably reduces problem
formulation and computation complexity. Daily PV power
production (G̃PV ) is set to a random variable to capture
uncertainty. αt is parameterized by year t because of PV
panel degradation. Strictly speaking, αt is random, but its
variation is normally smaller than that of G̃PV . Thus, we treat
αt as a scalar to avoid complexity caused by introducing two
random variables in the problem solving process. For the
South Korean market, λESS becomes SMP+Weight×REC
and λPV becomes SMP+1.0×REC.4 CESS is the capital
cost of a fully installed ESS including battery racks, system
balancers, energy management systems, developer margins,
and engineering, procurement, and construction costs, on a
$/kWh basis, excluding the DC converter. We assume that
the existing PV system is equipped with a sufficiently sized
AC-DC inverter.

1) ESS SIZING FOR ENERGY-FIX
Because long-term investment is of interest, it is necessary
to consider the discounted value of cash flow to measure
profitability. We employ NPV for the measurement. The ESS
installation problem’s NPV can be expressed as

NPV(x, y) =
T∑
t=1

γ tN · E[Revt (x)]− CESS · (1+ y)x (4)

where E[·] is the expectation over G̃PV and Revt (x) stands
for revenue attained from ESS operation for each cycle in
year t . DC converter size is assumed to be fixed, so it is not
considered in Eq. (4). The influence of DC converter size
will be discussed in sensitivity analysis by simulation. Before
presenting howRev(x, y) is formed, we define energy that can
be stored in the ESSwhich is determined by ESS capacity and
PV generation during 10:00-16:00 as

Et (x) = min{Rx, ρPV−Bat · αtk t · G̃PV }. (5)

Although we consider the fixed energy case, DoD range R
can also be included in (5) if DoD value is required. Now the
revenue is

Revt (x) = λESS · ρBat−AC · Et (x)

+λPV · ρPV−AC

(
k t G̃PV −

E(x)
ρPV−Bat

)
(6)

with the first term representing revenues from ESS discharge
and the second term representing revenues from directly sup-
plying of PV-generated power to the grid.

Because usable capacity must be guaranteed for every
t ∈ T , the problem requires the following conditions:

(1+ y) · SoHt (x, y) ≥ 1 for t = 1, . . . ,T . (7)

4Of course, REC weights from 0.7 to 1.2 are imposed on a standalone
PV system relying on its location and size as shown in Table 1. This work
assumes a REC weight of 1.0 for such a system.
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TABLE 2. Variables and parameters used for problem formulation.

We can disregard (1+y) ·SoHt (x, y) ≥ 1, ∀t = 1, . . . ,T −1
because SoHt (x, y) does not increase with t . Thus, the opti-
mization problem can be expressed as

max
x,y

NPV(x, y) in (4) (8a)

s.t. (1+ y) · SoHT (x, y) ≥ 1. (8b)

The problem (8a)-(8b) is difficult to solve because of the
bi-linear term in the objective function. Furthermore, we do
not know the analytic form of SoH in the constraint whose
qualification is only possible through computation.5 To find
the x and y values close to optimal, we decompose the prob-
lem and apply an iterative method. With a fixed y = ŷ,
maximizing NPV(x, ŷ) becomes a convex problem with x
which is analytically solvable. The first order condition for
maximizing NPV(x, ŷ) is given by

T∑
t=1

γ tN
(
λESSρBat−AC − λPV

ρPV−AC

ρBat−AC

)

×

[
1− FG̃PV

(
Rx∗

αtk tρBat−AC

)]
=
CESS (1+ ŷ)

R
(9)

where FG̃PV denotes the cumulative distribution function of
G̃PV . The process for deriving Eq. (9) is provided in VI-A.
Thus, we can easily find a value of x that maximizes NPV
whenever y is fixed.

The proposed framework to find the storage size for
Energy-Fix is as follows:
1) Initialize oversizing level y (e.g., y = 0.3).
2) For the given value of y, solve Eq. (9) to find the value

of x that optimizes NPV.

5There might be an approximate analytic model but this requires large
practical data, which is not yet plausible in the ESS-based generation
industry.

3) With ESS capacity (1 + y)x, apply the ESS operation
algorithm given in Section IV-B and calculate stress
factors to battery degradation. From Eq. (3), calculate
SoH at the end year of the contract period, SoHT (x, y).

4) For a small positive number ε,
(a) If |(1 + y) · SoHT (x, y) − 1| ≤ ε, set the ESS size

to x.
(b1) If (1+ y) · SoHT (x, y)− 1 > ε, decrease y.
(b2) If 1− (1+ y) · SoHT (x, y) > ε, increase y.
After updating y, go back to step 2.

There are multiple ways to update y; however, we adopted a
bisection method that repeatedly bisects the interval of y. The
proposed framework assumes an arbitrary oversizing level
and calculates optimal ESS size using a given oversizing
level. It then checks whether the SoH constraint in Eq. (8b)
is satisfied. If SoH at T has a positive slack greater than ε,
we decrease the oversizing level under the assumption that
the ESS was oversized. In the opposite case, we increase the
oversizing level, assuming the ESS was undersized. Figure 4
illustrates the flowof this framework. The framework calls for
one SoH evaluation that requires demanding computations
at one iteration. Hence, the proposed framework is com-
putationally efficient. To further reduce the computational
burden, a suboptimal solution to Eq. (9) with an analyti-
cal form, which is described in VI-B, can be used in the
second step.

2) ESS SIZING FOR DOD-FIX
In this scenario, the ESS operator uses the battery while
fixing a DoD level thus reducing usable energy with battery
degradation. Thus, energy to be stored in the ESS is limited
by the degraded battery capacity, which can be expressed as
follows:

Et (x) = min
{
SoHt (x) · Rx, ρPV−Bat · αtk t G̃PV

}
. (10)
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FIGURE 4. The ESS sizing framework considering battery degradation for
Energy-Fix case.

The revenue equation has the same form as Eq. (6) except
that now Et (x) changes from Eq. (5) to Eq. (10). Oversizing
is not considered, thus the form of NPV is slightly altered
from Eq. (4) to

NPV(x) =
T∑
t=1

γ tN · E[Revt (x)]− CESS · x. (11)

We do not consider SoH constraints in the DoD-Fix case in
this paper. Consequently, the optimization problem can be
expressed as

max
x

NPV(x) in (11). (12)

This problem is difficult to solve because of the product
term, SoHt (x) ·Rx. As with Energy-Fix, it would be effective
to find a suboptimal solution to problem (12) by adopting an
iterative method. If SoHt (x) is assumed to be scalar, prob-
lem (12) becomes a convex problem, which can be solved
analytically. By fixing SoH (x) = SoH (x̂) and using a similar
process in VI-A, we can obtain the following condition for
the optimal solution, x∗, to problem (12) under the condition
SoH (x) = SoH (x̂):

T∑
t=1

γ tN ·SoHt (x̂)
(
λESSρBat−AC − λPV

ρPV−AC

ρBat−AC

)
×

[
1− FG̃PV

(
SoHt (x̂)Rx∗

αtk tρBat−AC

)]
=
CESS
R

. (13)

The proposed framework for calculating the storage size
for DoD-Fix consists of:

1) Initialize ESS capacity x̂.
2) With x̂, apply the ESS operation algorithm from

Section IV-B and obtain battery degradation stress fac-
tors. Then calculate SoHt (x̂) for t = 1, . . . ,T using
Eq. (3).

3) Using SoHt (x̂) for t = 1, . . . ,T , find the value of x that
solves Eq. (13).

4) For a small positive number ε,

FIGURE 5. The ESS sizing framework considering battery degradation for
DoD-Fix case.

(a) If |x̂ − x| ≤ ε, set the ESS size to x.
(b1) If x̂ − x > ε, decrease x̂.
(b2) If x − x̂ > ε, increase x̂.
After updating x̂, go back to step 2.

The bisection method is employed to update x̂. The frame-
work first regards SoH at the current iteration as SoH (x̂),
which is obtained from the assumed x̂. Then, the framework
computes the value of x that optimizes NPV based on SoH (x̂).
The fourth step checks whether the obtained x value is close
to x̂. If x is very close to x̂, x solves the optimization problem
with the ‘‘correct’’ SoH of x. Otherwise, the framework
updates x̂. The updating rule (b1) implies that x is calcu-
lated small because SoH (x̂) was overestimated. Therefore,
it decreases the value of x̂ to obtain a lower SoH. The updating
rule (b1) treats the opposite case. Figure 5 illustrates the
flows of the framework. As with Energy-Fix, the reduced
computation can be achieved by using a suboptimal solution
to Eq. (13) in the third step. A suboptimal solution in an
analytical form can be easily calculated using Eq. (23).

V. SIMULATION RESULTS
We now test the proposed framework using real-world PV
generation and market data in South Korea. We use the PV
generation data which was measured at every 5 minutes from
January 2017 to December 2017 in a PV power station with
the capacity of 1,000kW. We consider a forward contract for
a PV plus storage system that persists for 15 years. Forward
contract prices are given as a combination of the averaged
SMP and REC prices in 2017, which are $83.99/MWh and
$87.11/MWh, respectively. That is, λPV = $171.10/MWh
and λESS = $(83.99 +Weight · 87.11)/MWh. The capacity
of a DC converter should be thoughtfully determined as it
limits the maximum instantaneous power from PV genera-
tion stored in the ESS. We first set DC converter capacity
to 850 kW and then change the capacities in Section V-D.
The efficiencies between PV and power grid are set to
95.07%, with 92.24% between the battery and the grid, and
94.05% from solar power to the battery. By adopting the
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TABLE 3. Parameter values used for simulations.

ESS prices of 2018 in [39], we assume a price for ESS
excluding the DC converter to be $321/kWh. We assume
that the DC converter costs $71/kW,6 which is a reason-
able assumption when considering that the LMO type bat-
tery used for battery modeling has a relatively low price.
The parameter values used for simulations are summarized
in Table 3. In the simulation, DoD is measured from zero
SoC. For example, DoD 0.9 is equivalent to a SoC range
of 0-0.9. Because it is very difficult to predict the temperature
of the batteries in numerical experiments, the temperature
of the batteries is assumed to be 25◦C , during all simula-
tions [8], [12], [40]. In practice, the temperature variation of
the batteries can be controlled to some extent by means of
air-conditioning [8].

A. ESS OPERATION AND BATTERY DEGRADATION
Figure 6 shows the four 24-hour profiles of the PV generation
and battery SoC as a result of running the ESS algorithm
in Section IV-B when usable capacity is 3,000 kWh and the
maximum DoD is 0.75. Charging starts at 10:00 and contin-
ues until the maximum SoC level is reached. The battery is
discharged at a constant rate from 16:00 to 10:00 the next day
until the battery SoC level reaches to zero.

Figure 7 shows an example of SoH curves for Energy-
Fix with a usable capacity of 3,500 kWh and DoD-Fix with
an initial installation of 3,500 kWh. Figure 7(a) shows that
oversizing considerably influences the remaining capacity at
the final year in the Energy-Fix case. We observe that with
oversizing levels of 10% and 30%, SoH values at year 15 are
lower than 0.7 whereas a 50% oversizing level gives more
than 0.7. Figure 7(b) shows the SoH curves for different
DoD levels. High DoD reduces SoH significantly. If DoD
range is 100%, the SoH in the final year is computed as
0.64. Additionally, the gap between the SoH curves become

6Because the DC-coupled system is new, there is little information about
component prices. $71/kW is a realistic price because the price of the
power conversion system of a standalone ESS is expected to be $30/kW
in 2018 according to Bloomberg New Energy Finance [39].

FIGURE 6. Four examples of solar power production and SoC profiles
result from the ESS operation algorithm.

FIGURE 7. Battery capacity decrease curve of the PV plus ESS system
using stress factor coefficients and mathematical modeling in [12].

larger as it approaches the final year. These figures indicate
that battery capacity degradation is not a fixed parameter,
but rather it is affected by various variables including storage
sizes and DoD levels.

It is meaningful to compare SoH curve trends in the two
scenarios. All curves decrease steeply during the first years
and then gradually decrease. However, as they approach
the final year, the SoH curves of Energy-Fix and DoD-
Fix show different trends. In the DoD-Fix case, the SoH
curves’ slopes are relatively constant, which results from
a constant DoD range being used for the whole period as
depicted in Figure 8(a). In contrast, Energy-Fix uses a con-
stant usable capacity, which results in gradually increasing
SoC ranges as shown in Figure 8(b). This explains why the
SoH decline accelerated as the curves approach the final year
in Figure 7(a).

VOLUME 8, 2020 60253



H. Shin, J. H. Roh: Framework for Sizing of ESS Supplementing Photovoltaic Generation in Consideration of Battery Degradation

FIGURE 8. The SoC for 15 years obtained by applying the ESS operation
algorithm.

FIGURE 9. ESS capacity, SoH, and convergence gaps calculated at each
iteration of the proposed framework for Energy-Fix.

Note that this work employs the mathematical model
of battery lifetime in [12] to evaluate battery degradation.
Although reference [12] validates the model at 25◦C for
SoH around 80% in the simulation, we consider that the
model is still effective for SoH below 80% because the tem-
perature model in [12] is derived from Arrhenius equation
which is valid for medium and high temperature condition
including 25◦C .

B. CONVERGENCE OF THE ESS SIZING FRAMEWORKS
Figure 9 shows the process of finding the ESS usable capac-
ity, x, and oversizing ratio, y, in the Energy-Fix case. The
remaining capacity of the battery at year 15 and the absolute
difference between x and SoHT (x, y) · (1 + y)x are also
presented. For the first few iterations, x and y fluctuate and
then start to converge after the sixth iteration.

Figure 10 shows x, x̂, SoH at year 15, and |x − x̂| values
for DoD-Fix. After fluctuating for the first few iterations, x
and x̂ start to converge after the sixth iteration. The first and
third graphs show that the x values from optimization and

FIGURE 10. ESS capacity, SoH, and convergence gaps calculated at each
iteration of the proposed framework for DoD-Fix.

SoH have an inverse relationship. That is, with a high SoH,
the framework installs a smaller battery with the expectation
that the battery will be degraded gently. In contrast, with a
low SoH, the framework installs a larger battery to cope with
rapid battery capacity fade.

C. ESS SIZING AND NPV EVALUATION
Table 4 and 5 present ESS sizes, NPV, and benefit-cost
ratio (BCR) values obtained from the proposed frameworks
for REC weights of 5.0 (adopted by 2019) and 4.0 (scheduled
to be implemented in 2020). BCR is the ratio of the sum
of discounted revenue throughout the ESS project (or con-
tract period) to ESS installation costs. ‘‘Opt.’’ uses Eqs. (9)
and (13) to calculate ESS sizes, whereas ‘‘Subopt’’ finds the
solution using Eq. (23). Because our focus is to install the
ESS to supplement an existing PV system, NPV and BCR
are computed based on additional revenues and costs from
the ESS installation.

In the Energy-Fix case, the framework gives similar ESS
sizes, NPV, and BCR values for eachmethod used to optimize
NPV with the same REC weights. However, different REC
weights produce significantly different results. The frame-
work requires more capacity when REC weights are high.
This is straightforward because a higher REC guarantees
greater revenue, which motivates more aggressive investment
in the ESS. When the REC weight is 5.0, the ESS installation
is highly profitable, showing very high NPV and BCR values.
However, with a RECweight of 4.0, the NPV and BCR values
will be reduced significantly. When the REC weight changes
from 5.0 to 4.0, NPV decreases from $1,347,429 to $629,476,
which is 53% reduction. Because the forward contract period
is 15 years, the NPV of $629,476 may not be large enough for
a power producer to invest in ESS. BCR is also considerably
lower when RECweight is 4.0. However, a BCR value greater
than 1.5 could be attractive to ESS investors. These results are
derived from using the same ESS prices based on 2018 [39]
for all case, and declining ESS prices in 2020 will improve
the NPV and BCR values presented in Tables 4 and 5. The
SoH values in the final year are calculated between 0.67 and
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TABLE 4. Calculated ESS sizes and resultant NPV and BCR values in the Energy-Fix case.

TABLE 5. Calculated ESS sizes and resultant NPV and BCR values in the
DoD-Fix case (DoD=0.9).

0.68 for all cases. We compare the framework with a bench-
mark to verify its effectiveness. The benchmark calculates
the usable capacity as the product of the mean value of
αt , the capacity factor of solar,7 PV system capacity, and
24 hours, yielding 2, 803 kWh. The oversizing level is thus
set to 0.476, the minimum number that satisfies the SoH
condition. For a REC weight of 5.0, NPV and BCR values
are computed as $1,335,724 and 1.96, respectively. For a
REC weight of 4.0, NPV and BCR values are computed as
$621,141 and 1.45, respectively. These values are smaller
than those obtained by the proposed framework.

Table 5 shows that the solutions are dependent on NPV
optimization method in the DoD-Fix case. In DoD-Fix,
problem (24) which provides the ESS installation in ‘‘Sub-
opt.’’ less accurately approximates the problem that maxi-
mizes (21) because SoHt (x̂) is included in βt and bt . Like
Energy-Fix, NPV is reduced by 49% when REC weight
changes from 5.0 to 4.0, and we find that both cases have
high BCR values. The values of SoH for the final year are
calculated between 0.67 and 0.68. If we consider a bench-
mark that sets installation capacity to usable capacity in the
benchmark in Energy-Fix, NPV and BCR are calculated as
$1,261,664 and 2.31, respectively for a REC weight of 5.0.
For a REC weight of 4.0, they are obtained as $678,835 and
1.71, respectively. Thus, sizing from the proposed framework
produces higher NPV values. If we compare the Energy-
Fix and DoD-Fix cases, though comparison would be unfair,
DoD-Fix with DoD = 0.9 gives higher NPV and BCR values
with a similar SoH in the final year than Energy-Fix.

Figure 11 shows ESS installed capacity (kWh) versus PV
system capacities (kW) when REC weight is 4.0. The top red
curves represent total installed capacity, themiddle blue curve
shows usable capacity, and the bottom black curve shows

7According to the Korean Power Exchange, it was 15.57% in 2017.

FIGURE 11. ESS capacity (kWh) versus PV system capacity (kW) in the
Energy-Fix case. The REC weight is set to 4.0.

oversized kWh added to the usable capacity. The figure shows
that there is an almost linear relationship between PV system
capacity and ESS installation capacity. Using a curve fitting
tool provided in MATLAB R2019a, we found that the linear
equation of this curve has a slope of 3.66 and a y-intercept
of 6.41, which is almost perfectly fitted to the red curve. This
means that the ESS capacity determined by the framework
is about 3.66 times that of PV system capacity. The other
two curves are almost linear as well. The slope of the middle
curve is 2.47, meaning that the usable capacity should be set
to 2.47 times that of the PV system’s capacity. The oversizing
ratio in Figure 11 decreases from 48.95% to 48.52% as PV
capacity increases from 500 to 1,500 kW, showing a trivial
difference. For a REC weight of 5.0, simulation results show
that total ESS installation is 4.19 times that of PV system
capacity and usable capacity is 2.86 times that of the PV
system capacity. The oversizing ratio decrease from 46.2%
to 45.9% as PV capacity increases from 500 to 1,500 kW.

Figure 12 depicts ESS installation versus PV capacity for
different REC weights in the DoD-Fix case with DoD = 0.9.
Both curves are almost linear and have steeper slopes at
higher REC weights. For a REC weight 5.0, ESS capacity is
3.93 times of PV capacity whereas it is 3.49 times for a REC
weight of 4.0.

From Table 6, DoD levels significantly affects ESS instal-
lation and NPV, BCR, and final SoH values. It shows that
ESS size becomes smaller as the DoD level increases. This
is reasonable as a higher DoD level indicates more efficient
battery use. Both NPV and BCR values are significantly
improved with increase of DoD. In contrast, the SoH value
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FIGURE 12. ESS capacity (kWh) versus PV system capacity (kW) in the
DoD-Fix case.

TABLE 6. ESS sizes, NPV and BCR values, and final SoH in the DoD-Fix
case when REC weight is 4.0.

FIGURE 13. ESS capacity (kWh) versus converter size (kW) in the
DoD-Fix case.

in the final year decreases as the DoD level grows. If the
project owner requires a condition for final SoH, the DoD
level should be deliberately selected to satisfy that condition.
Otherwise, it is most economically efficient to use a DoD
value of 1.0.

D. INFLUENCE OF THE DC CONVERTER
The amount of PV power that can be stored in a battery
depends DC converter capacity. Therefore, it is meaningful

to analyze the effect of DC converter capacity on ESS installa-
tion and resultant NPV value. The topmost panel in Figure 13
shows ESS installation versus converter sizes with different
REC weights in the DoD-Fix case. Up to a converter size
of 600 kW, ESS installation capacities are equally calculated,
irrespective of REC weights. This is not an unexpected find-
ing as a small converter restricts the amount of PV generation
that can be stored in a battery. However, with a larger con-
verter, the ESS installation for a REC weight of 5.0 becomes
larger than for a REC weight of 4.0. For both REC weights,
ESS installation capacities increase with converter sizes and
finally saturate when the converter size reaches 850 kW
and 800 kW for REC weights 5.0 and 4.0, respectively.
From this observation, we notice that installing converters
larger than these numbers is not economically efficient. This
can be proven by the next two panels in Figure 13, which
present the calculation of NPV corresponding to the ESS
installation and converter sizes of the topmost panel. We can
find that the NPV has the highest value with a converter
capacity of 750 kW when the REC weight is 5.0. For a
REC weight of 4.0, a converter capacity of 650 kW gives the
highest NPV.

VI. CONCLUSION
This study has proposed an advanced ESS sizing framework
that considers lithium-ion battery degradation.We have found
that battery degradation is affected by ESS operation and
sizes, which makes the NPV maximization problem become
highly nonlinear and contain black-box parameters. To solve
this problem, the proposed framework decomposes the orig-
inal problem into the evaluation of SoH and optimization
of NPV. From a practical point of view, we discussed two
scenarios distinguished by how the battery is used over the
contract horizon and suggested an ESS sizing framework
for each scenario. We calculated ESS sizes, and NPVs and
BCR values from the framework with various contract prices,
PV capacities, DoD levels, and DC converter sizes. Based on
a South Korean type forward contract or PPA, we found that
adding ESS to a PV system to make a PV plus storage power
plant highly profitable. When RECweight decreases to 4.0 as
planned in 2020, NPV and BCRwill be reduced considerably.
Thus, decreasing ESS costs will be a main issue for maintain-
ing profitability. Additionally, the proposed framework gives
improved NPV values, compared to the benchmark cases.

This work allows ESS investors to determine ESS capacity
more sophisticatedly than simply treating battery degrada-
tion as an independent parameter. Various simulation results
conducted in this work can help investors choose ESS size,
battery usage methods, DoD levels, and DC converter sizes.
This work is based on the South Korean market; however,
the proposed framework that interactively assesses SoH and
optimizes NPV can be applied to other electricity markets or
even to ESS sizing problems in microgrids.

The optimization problem being considered is not guaran-
teed to be convex and has black-box parameters. Therefore,
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we cannot guarantee the optimality of the solutions obtained
by the proposed method. Thus, our next step is to develop a
more advanced optimization method for solving the problem
with black-box parameters. Applying such a method to other
applications is our future work.

APPENDIX
A. PROOF OF (9)
To simply express the problem (9), let us define

βt , γ tN
(
λESS · ρBat−AC − λPV

ρPV−AC

ρBat−AC

)
(14)

x ′ , Rx (15)

bt , ρPV−Bat · αtk t (16)

w̃ , G̃PV (17)

c , CESS (1+ y). (18)

Now our objective is to maximize the following function:

T∑
t=1

βtE
[
min{x ′, bt w̃}

]
−
c
R
x ′

=

T∑
t=1

βt

{
E
[
min{x ′, bt w̃}|bt w̃ ≤ x ′

]
Pr
[
bt w̃ ≤ x ′

]
+E

[
min{x ′, bt w̃}|bt w̃>x ′

]
Pr
[
bt w̃>x ′

] }
−
c
R
x ′ (19)

with Pr[X ] indicating the probability measure of event X .
Eq. (19) can thus be rewritten as

T∑
t=1

βt

[∫
w≤ x′

bt

bt w̃fw̃(w)dw+ x
′

(
1− Fw̃

(
x ′

bt

))]
−
c
R
x ′

where fw̃(·) is the probability density function of w̃. By taking
the first order derivative with respect to x ′, we can obtain the
following optimality condition,

T∑
t=1

βt

[
x ′

bt
fw̃

(
x ′

bt

)
+ 1− Fw̃

(
x ′

bt

)
−
x ′

bt
fw̃

(
x ′

bt

)]
−
c
R

=

T∑
t=1

βt

[
1− Fw̃

(
x ′

bt

)]
−
c
R
= 0. (20)

By plugging Eqs. (14)-(18) to Eq. (20), Eq. (9) can be
attained.

B. SUBOPTIMAL SOLUTION TO (9)
If we rewrite (20), we obtain

T∑
t=1

βtFw̃

(
x ′

bt

)
=

T∑
t=1

βt −
c
R

⇒

T∑
t=1

βtFw̃

(
x ′

bt

)

=

T∑
t=1

(
βt −

βt∑T
t=1 βt

·
c
R

)
. (21)

Decomposition of (21) at each t gives us,

βtFw̃

(
x ′t
bt

)
= βt −

βt∑T
t=1 βt

·
c
R

(22)

which is a sufficient condition for (21). The solution to (22)
is thus calculated as

x ′t = btF
−1
w̃

(
1−

c

R
∑T

t=1 βt

)
.

Finally, the suboptimal solution x ′sub is obtained as the
weighted average of x ′t as:

x ′sub =

(
T∑
t=1

x ′t
bt

)
·

(
T∑
t=1

1
bt

)−1

= T ·

(
T∑
t=1

1
bt

)−1
F−1w̃

(
1−

c

R
∑T

t=1 βt

)
(23)

Now we have obtained a suboptimal solution to Eq. (9) in
an analytic form by inserting Eqs. (14)-(18) into Eq. (23).
It is worth mentioning that x ′sub in Eq. (23) is the solution to
the problem, instead of maximizing (19):

max
x ′

E

( T∑
t=1

βt

)
min

x ′, T
(

T∑
t=1

1
bt

)−1
· w̃


− c

R
x ′.

(24)
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