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ABSTRACT In this paper, we address the signal estimation problem for a linear combination of multiple
structured models, which is widely employed in the passive and/or active sensing systems to characterize
the behaviors, for example, jamming and multipath propagation, in radar and communication societies.
An iterative sequential estimation (ISE) algorithm is presented to obtain simultaneously the multiple
structured signals. At each iteration, employing the estimated signals at the previous step, the optimal linear
filters, based on mean-squared error criteria, are designed to minimize the output average power for every
element of each signal. Finally, we evaluate the performance of the proposed ISE method compared with
the least-square and compressed sensing algorithms via numerical simulations. The results highlight the
presented algorithm shows a better signal estimation performance at low SNR and plays a trade-off between
the computational complexity and the signal estimation performance.

INDEX TERMS Signal estimation, radar and communication, iterative sequential estimation, multiple
structured signals.

I. INTRODUCTION
Detection and estimation of the structured signals have been
widely emerged in a active/passive sensing system, e.g.,
radar and communication systems for the unknown multipath
channel in multiple-input multiple-output (MIMO) commu-
nication, blind source separation, signal identification, the
profiles of the Doppler frequencies and ranges in radars,
as well as the spatial angles [1]–[20]. The classic least-
squares (LS) approaches were presented in [21], [22], which
were optimal under the mean-square error (MSE) criteria in
additive white Gaussian noise. Nevertheless, the performance
of the LS approach deteriorates significantly accounting for
multiple targets or interferences in radar application. The
signal estimation problem can also be settled by a multitude
of effective algorithms, such as the maximum likelihood
(ML) [23], amplitude and phase estimation (APES) [24] and
the minimum-variance distortionless response (MVDR) [25].
Nevertheless, these algorithms would suffer from the perfor-
mance deterioration under a small number of snapshots, even
fail to estimate the locations of the coherent signal. Recently,
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several well-known sparse methods based on Compressed
Sensing (CS) theory were proposed to reconstruct signal [26],
showing a good recovery performance at high Signal Noise
Ratio (SNR). However, for low SNR, CS algorithm may fail
to recover signal.

Some adaptive algorithms, e.g., adaptive pulse compres-
sion algorithms (APC) [27] and iterative adaptive algorithm
(IAA) [13], were proposed to obtain the estimation by design-
ing independent optimal receive filters for every elements of
the structured signal, which share very low sidelobe levels in
the range compression and spatial angle estimation.

In summary, the aforementioned work considers only lim-
ited structured signals, and the adaptive estimation of the
multiple structured signals has never been considered. In this
paper, we consider the signal estimation problem for a lin-
ear combination of multiple structured models. Exploiting
the framework of the IAA, an iterative sequential estima-
tion (ISE) algorithm is presented to obtain simultaneously
the multiple structured signals. At each iteration, the optimal
linear filters, based on mean-squared error (MSE) criteria,
are derived to minimize the output average power for every
elements of each signal by exploiting the estimated signals at
the previous step.
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The benefits of the proposed ISE method in comparison
with the LS and CS methods are demonstrated via numerical
simulations.

The remainder of the paper is organized as follows.
In Section II, we formalize the signal model. In Section III,
we present the ISE algorithm. In Section IV, we evaluate the
performance of the proposed ISE method in comparison with
the LS and CS estimation. Finally, in Section V, we provide
concluding remarks.

II. SIGNAL MODEL
Denote by y = [y(1), y(2), · · · , y(N )]T theN×1 dimensional
complex vector collecting by a sensing system in the spatial
and/or temporal channels. The structured signals of interest
xm are the K × 1 dimensional vectors in the known sub-
space spanned by Hm, which are the N × K dimensional for
m = 1, · · · ,M , e.g.,

Hm =
[
hm,1,hm,2, · · · ,hm,K

]
=


hm(1, 1) hm(1, 2) · · · hm(1,K )
hm(2, 1) hm(2, 2) · · · hm(2,K )

...
...

. . .
...

hm(N , 1) hm(N , 2) · · · hm(N ,K )

 . (1)

Hence, the collected data vector y can be expressed as

y =
M∑
m=1

Hmxm + v, (2)

where v = [v(1), v(2), · · · , v(N )]T is the N × 1 dimen-
sional complex circular zero-mean Gaussian random vector
with identity covariance matrix σ 2I, while xm = [xm(1),
xm(2), · · · , xm(K )]T is the K × 1 dimensional deterministic
and unknown vector. In particular, we here assume that signal
vector xm is sparse (i.e., most of its elements are 0).

III. ISE ALGORITHM
This section is devoted to estimating the unknown signals
xm for m = 1, · · · ,M . Inspecting on y in (2), one could
observe that there is not an analytical solution due to the
coupling among the unknown signal xm. In the following,
we present an iterative sequential estimation algorithm based
on minimum mean-squared error criteria.

A. ISE PROCEDURE
To obtain the MSE estimation of xm(k), we pass the data
vector y through a N × 1 dimensional FIR filter wm[k], e.g.,

x̂m(k) = w†
m[k]y, (3)

where (·)† denotes the conjugate transpose operation. Hence,
the linear filter wm[k] is the solution of the following mini-
mization problemmin

wm[k]
E
[
|w†

m[k]y|2
]

s.t. w†
m[k]hm,k = 1,

(4)

where hm,k denotes the kth column of the matrix Hm. In
addition, the object function in (4) can be derived as

E
[∣∣∣w†

m [k] y
∣∣∣2] = w†

m [k]0wm [k], (5)

where 0 denotes the covariance matrix of y, computed as

0 = E[yy†] =
M∑
m=1

Hm5mH†
m + σ

2I, (6)

where5m = E[xmx
†
m], form = 1, · · · ,M , are the covariance

matrices of xm. Using lagrangian multiplier method, we can
construct an object function as follows

J (wm [k]) = w†
m [k]0wm [k]+ λ

(
1− w†

m [k]hm,k
)
. (7)

Then the gradient of (7) can be calculated as
20wm [k]−2λhm,k . Considering that the covariance matrix
0 is nonsingular, letting the gradient equal to 0, we can get

wm [k] = λ0−1hm,k . (8)

Substituting (8) into the constraint of (4), we can get the
expression of λ,

λ =
1

h†m,k0
−1hm,k

. (9)

Substituting (9) into (8), the optimal solution to problem (4)
can be derived as

wm[k] =
0−1hm,k

h†m,k0
−1hm,k

. (10)

Finally, substituting (10) into (3), the estimate of xm(k) can
be computed as

x̂m(k) = w†
m[k]y =

h†m,k0
−1y

h†m,k0
−1hm,k

. (11)

Remark: The right side of expression (11) depends on the
correlation matrices 5m of xm, m = 1, · · · ,M through 0
which are of course unknown and required to be estimated.
In particular, the matrix 5m involved in 0 will become the
diagonal matrices when the elements of xm are zero-mean
and independent random variables. To this end, in practice,
we just use the diagonal matrix

5̂m(x̂m) = diag
(
|x̂m(1)|2, · · · , |x̂m(K )|2

)
(12)

to approximate 5m = E[xmx
†
m], where x̂m =

[x̂m(1), · · · , x̂m(K )]T and diag(·) is a diagonal operator.
Therefore, based on (11), we can obtain

x̂m(k) = w†
m[k]y =

h†m,k 0̂({x̂m})
−1y

h†m,k 0̂({x̂m})
−1hm,k

, (13)

where

0̂({x̂m}) =
M∑
m=1

Hm5̂m(x̂m)H†
m + σ

2I. (14)
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An interesting observation is that the right side of expres-
sion (13) is also related to x̂m(k) thus leading to a coupled
relationship. To this end, we present an iterative sequential
estimation procedure to estimate xm(k). More specifically,
we assume x̂(u)m (k) denotes the uth iteration solution of xm(k).
For the uth iteration, we first construct the covariance matrix

0̂({x̂(u−1)m }) =
M∑
m=1

Hm5̂m(x̂(u−1)m )H†
m + σ

2I (15)

by using x̂(u−1)m (k), where

5̂m(x̂(u−1)m ) = diag
(
|x̂(u−1)m (1)|2, · · · , |x̂(u−1)m (K )|2

)
, (16)

with x̂(u−1)m = [x̂(u−1)m (1), · · · , x̂(u−1)m (K )]T .
We then estimate x̂(u)m (k) by the following expression

x̂(u)m (k) =
h†m,k 0̂({x̂

(u−1)
m })−1y

h†m,k 0̂({x̂
(u−1)
m })−1hm,k

. (17)

Next, we increase u and repeat the above procedure until
convergence. The proposed ISE procedure is summarized as
follows.

Algorithm 1 : The ISE Procedure for xm, m = 1, 2, · · · ,M

Require: y, Hm, and σ 2

Ensure: x?m for m = 1, 2, · · · ,M ;
1: initialize u = 0, and x̂(0)m = 0K×1, m = 1, · · · ,M ;
2: u := u+ 1;
3: Compute 5̂m(x̂

(u−1)
m ) via (16);

4: Construct 0̂({x̂(u−1)m }) via (15);
5: Estimate x̂(u)m (k), k = 1, · · · ,K , m = 1, · · · ,M by (17);

6: Compute ρ(u)m = ||x̂(u)m − x̂(u−1)m ||
2, if ρ(u)m ≤ εm,m =

1, 2, · · · ,M , where εm are the user selected parameters to
control convergence, output x?m = x̂(u)m . Otherwise, repeat
step 2 until convergence.

B. COMPUTATIONAL COMPLEXITY AND CONVERGENCE
ANALYSIS
In each iteration, the main computational complexity is con-
nected to the computation of 0̂({x̂(u−1)m }) and the estimation of
x̂(u)m (k), k = 1, · · · ,K ,m = 1, · · · ,M . The former requires
to perform (15) with the order of O(MKN 2). The latter needs
to perform the inversion of 0̂({x̂(u−1)m }) in (17) with the com-
putational complexity of O(N 3), while executing MK times
to estimate x̂(u)m (k) on the order of O(MKN 2). Thus, the total
computational complexity in each iteration of the proposed
algorithm is O(MKN 2

+ N 3).
It is worth highlighting that the estimation of x̂(u)m (k),

k = 1, · · · ,K ,m = 1, · · · ,M can be performed in par-
allel. Besides, for most practical applications, the proposed
algorithm converges with typically no more than 10 itera-
tions [13]. Finally, it is worth pointing out that a similar local
convergence analysis of ISE can be found in [28].

IV. NUMERICAL RESULTS
In this section, we evaluate the performance of the pro-
posed ISE via numerical simulations. For comparison, the LS
and CS methods are provided. In particular, letting x =
vec([x1, x2, · · · , xM ]), and H = [H1, · · · ,HM ], where
vec(A) denotes the vectorization of amatrixA, the expression
y in (2) can be recast as

y = Hx+ v. (18)

Hence, the LS estimation of x is

x̂ = (HTH)−1HT y. (19)

Note that we here assume that Hm are the N × K dimen-
sional with full column rank matrices (i.e., N ≥ K 1) for
m = 1, · · · ,M .

Since the signal vectors x is sparse, we can obtain sparse
solution x̂ of (18) by resorting to the compressed sensing
theory. The ‘‘l0-norm’’ based optimization corresponding to
(18) can be written as

min
x
‖x‖0

s.t. ‖y−Hx‖2 ≤ ε1, (20)

where ‖x‖0 represents the number of nonzero elements in
the vector in x and ε1 is a constant that controls the error.
However, (20) is a NP-hard problem which is rarely used
in practical applications. Hence, we convert (20) to be a
‘‘l1-norm’’ based optimization as follows [26],

min
x
‖x‖1

s.t. ‖y−Hx‖2 ≤ ε2, (21)

where ε2 is a user parameter. (21) is a convex problem that
can be solved via resorting to CVX toolbox [29].
Without loss of generality, we generate Hm, for

m = 1, · · · ,M , from the N × K dimensional complex
circular zero-mean Gaussian random matrices. In addition,
we consider the sparse signal vectors xm, containingQm non-
zero elements and (K − Qm) zero elements. The cells of the
non-zero elements for all xm are generated uniformly with
the same unit amplitudes and Qm = Q, m = 1, · · · ,M .
Namely, we generate xm2 as follows:

xm(k) =

{
1, k = lqm , q = 1, · · · ,Q
0, otherwise,

where lqm (lqm ≤ K ) denotes the index corresponding the unit
amplitude for xm,3 generated at random by the computer.

1For this case N < K , the LS approach fails to estimate signal since the
inverse of HTH does not exist, but ISE and CS algorithms are still able to
estimate x. In parituclar, in this paper, we only focus on the case N ≥ K . For
this case N < K , the similar conclusion can be made in the signal estimation
performance.

2The non-zero elements may not be equal and they can be complex
numbers.

3Without loss of generality, in this paper, we consider a general model.
Thus, we generate Hm and xm through using a random matrix and a non
special vector. For practical applications,Hm and xm have specificmeanings.
For example, in radar signal processing, xm may denote the target refection
coefficients needed to estimate.
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FIGURE 1. MSE (dB) versus the iteration index u for the ISE method
considering Q = 10, 20 and 30.

In the following simulations, unless otherwise stated,
we set M = 3, N = 1024, K = 256. The simulations are
executed via using Matlab 2016b version on a standard PC
(with a 2.8GHz Core i5 CPU and 8GB RAM).

A. CONVERGENCE ANALYSIS
In Fig. 1, we assume SNR in dB = 10 log10(1/σ

2) = −3 dB,
and analyze the performance of the proposed ISE method in
terms of convergence rate and the achievable estimation error
for different values of Q considering as figure of merit

MSE(u)
=

Q∑
q=1

(x̂(u)1 (lq1 )− x1(lq1 ))
2. (22)

The results show that MSE decreases by increasing the
iteration number and decreasing the values of Q for the ISE
method. The convergence rate is quite quickly with a givenQ.
For instance, considering Q = 10 and Q = 30, they require
respectively only about 5 and 4 iterations. It is worth pointing
out that the similar observations can be concluded for the
signals x2 and x3.

B. MSE FOR DIFFERENT SNR VALUES
In Fig. 2, we study the MSE (dB) behaviours of x1 versus
SNR for different values of Q. The other parameters are the
same as in Fig. 1. The curves illustrate that by increasing
the SNR and decreasing the values of Q, the performance
improves, and the MSE values of the ISE are smaller than
these of the LS and CS methods. The smaller the SNR
values, the larger the performance gaps. For example, for
SNR = −20 dB and Q = 10, the gap between ISE and LS
methods is about 2 dB, while it is about 4dB between ISE
and CS methods. Nevertheless, ISE and CS methods share
very close performance for SNR > 10 dB.

C. ESTIMATES OF XM FOR LOW SNR VALUES
Figs. 3 and 4 show the estimates of x1, x2 and x3 obtained
via ISE, LS and CS methods versus the index number for
Q = 10 considering SNR = −20 dB and SNR = −28 dB,

FIGURE 2. MSE (dB) versus the SNR (dB) for the ISE, LS and CS methods
considering (a) Q = 10, (b) Q = 20 and (c) Q = 30.

respectively. The other parameters are the same as in Fig. 1.
The results exhibit that three methods can derive the non-zero
components correctly for SNR = −20 dB, whereas only ISE
method is effective for SNR = −28 dB. Letting the estimates
of the zero components of the x1 be the sidelobes, we observe
that LS and CS method has higher sidelobe levels than these
of ISE algorithm for all the estimates of xm, m = 1, 2, 3.
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FIGURE 3. Estimates of xm; (a) m = 1; (b) m = 2; (c) m = 3 versus the
index number for Q = 10, SNR = −20 dB.

These behaviors imply ISE algorithm is more robust than the
LS and CS methods for low SNR values.

To further illustrate the effectiveness of ISE algorithm,
we also consider more channels. For example, in Fig. 5,

FIGURE 4. Estimates of xm; (a) m = 1; (b) m = 2; (c) m = 3 versus the
index number for Q = 10, SNR = −28 dB.

the estimates of x1, x2, x3, x4 (i.e., M = 4) are provided for
SNR = −28 dB. The results again confirm that ISE algorithm
is still able to estimate the non-zero components correctly,
while CS and LS methods are disabled.
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FIGURE 5. Estimates of xm; (a) m = 1; (b) m = 2; (c) m = 3 and (d) m = 4 versus the index number for
Q = 10, SNR = −28 dB.

TABLE 1. Computational time (in seconds).

FIGURE 6. PSL values versus the SNR for Q = 10.

In Table 1, we also show the corresponding computational
time for Figs. 3, 4 and 5. The results show that LS method
outperforms ISE and CS algorithms. This is due to the facts
that LS method can get a closed-form solution, while ISE

is an iteration procedure and CS method requires to solve a
convex problem. Besides, we can see that ISE approach costs
less time than CS method. The results show that ISE method
plays a trade-off between the computational complexity and
the signal estimation performance comparedwith LSmethod.

D. PSL FOR DIFFERENT SNR VALUES
Denote by PSL the ratio between the peak estimate of the
non-zero of xm, m = 1, 2, 3 and the maximum estimates
of sidelobe levels. In Fig. 4, we plot the average PSL of
the estimate x1, x2 and x3 versus the SNR for Q = 10 via
20 independent trials. The results illustrate that ISE algorithm
outperforms LS method by about 5dB for each channel.

V. CONCLUSION
This paper has addressed the signal estimation problem
for a linear combination of multiple structured models,
and presented the ISE method, which derives the multiple
structured signals in a sequential iterative way. At each itera-
tion, the optimal linear filters, based on the MSE criteria, are
designed by exploiting the estimated signals at the previous
step. Finally, we have analyzed the performance of the ISE
method. Results illustrate that the proposed ISE method con-
verges fast only for several iterations and has lower MSE and
PSL values especially for the lower SNR region and larger
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number of the structured signals, in comparison with LS and
CS algorithms.
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