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ABSTRACT This paper addresses the use in different stages of pregnancy of ultrasound imaging and
to examine the tumors diagnosed during lactation or pregnancy. There are recent advancements in the
application of obstetric ultrasound and imaging techniques helpful for improving the outcome of the
pregnancy using various Learning techniques. This paper addresses the need to implement sustainable
ultrasound standards with an acceptably high maternal and perinatal mortality rates to provide better and
more affordable, quality Ultrasonic Flaw (UT) equipment which can improveObstetric health care. The state-
of-the-art learning approach for obstetric ultrasound is a category of methods in machine learning that are
gaining popularity and attracting interest in various fields, including image processing and computer vision.
In this paper advanced Machine learning processes map a raw input image to the desired output image using
logistic regression classifier(LRC) and Convolution neural networks (CNNs) are of particular interest among
all Machine learning methods. Furthermore, we have utilized the Internet of Medical Things (IoMT) for
obstetric tumor image segmentation and identification of tumors for the medical experts. The experimental
results show the LRC based on CNN can be utilized to predict the output of the ultrasound of obstetric with
increased maternal and perinatal mobility rates.

INDEX TERMS Machine learning, convolution neural network, logistic regression model, obstetric ultra-
sound, IoMT.

I. BACKGROUND AND INTRODUCTION
Presently, Ultrasound (US) imaging is a safe, noninvasive
diagnostic method for internal organ diagnosis. The ultra-
sound image is more portable and prevalent, compared with
other imaging tools, such as Magnetic Resonance image
(MRI), computerized tomography (CT), etc., [1]. It helps
in the assessment and management of medical conditions,
diagnosing the causes of infection, pain, and swelling of
internal organs. Ultrasound imaging has become a general
prenatal check-up tool [2]. The fetal abdominal circumfer-
ence, biparietal size, head circumference, humerus length,
femur and the duration of the crown-rump, are used to analyze
and calculate biometric fetus parameters [3]. To estimate
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gestational size, age, and weight, monitor growth and detect
fetal abnormalities, the circumference of the head (HC) is
measured [4].

Ultrasound imaging is the most common technique for
monitoring fetal diagnostic factors in obstetrical settings [5].
Fetal biometric measurements are useful to predict the
intrauterine growth constraints and fetal fetusmaturity aswell
as to estimate the gestational age (i.e. fetal biparietal diameter
estimates (BPD), head circumferences (HC) and abdominal
circumferences (AC) [6]. For diagnosis, the organ images
are analyzed by an obstetrician and gynecologist using var-
ious effective techniques. When a sufficient sound wave
beam is sent through a transducer in the human body, the
ultrasound image is molded. Appropriate ultrasound images
are produced by replication from internal organisms [7].
Besides, due to their properties, the sprocket, attenuation,
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missing borders, and artifacts could influence them, making
the segmentation task more complicated [8].

Pregnancy scanning and fetal development remained
primitive and its applications in the field of obstetric
imaging increased dramatically as sonographic technology
progressed [9]. The ultrasound today provides a detailed
image of the fetus, placenta, uterus, cervix, and adnexa
as well as the dynamic visualization of the heart of the
fetus, fetal motion, and fetal patterns of breathing with
the actual two-or three-dimensional (3D) scans and spectral
and Doppler color sonography [10]. While the photographs
of the pregnant patient or otherwise used, none provides
the safety [11], flexibility [12], and clarity that the ultra-
sound provides [13], [14]. Recently, the Machine Learning
Convolutional Neural Networks(ML-CNN) have been an
important choice for various image processing activities,
including detection [15], classification [16], registration, and
segmentation. ML-CNNs have been a strong choice for Fetal
ultrasound research and the Machine learning workflow in
obstetric image processing has been shown in Figure.1.

FIGURE 1. Machine learning workflow.

In this study, the cause-specific survival of pregnant or
lactating women diagnosed with malignant as well as those
women pregnant with the post-cancer disease test data in the
preprocessing stage of the training phase has been analyzed.
The report results for the most common malignancies in
premenopausal women, namely cervical, breast, thyroid and
ovarian cancers [16], malignant lymphoma [17], malignant
melanoma [18], leukemia and brain tumors in the test phase
with testing and evaluation. Besides, to allow accurate detec-
tion and treatment during pregnancy in maternal tumors.
The Internet of Medical Things (IoMT) and its recent devel-
opments include a new dimension to the improvement and
creation of an intelligent system in the medical industry [19].
However, due to growing peripherals in inpatient care,

the medical data of IoMT systems are constantly increasing
in the present scenario.

Based on the study the main involvement of this paper as
follows as,
• A Machine Learning-based Convolutional Neural Net-
work (ML-CNN) framework for an obstetric image col-
lection is molded and trained in the training phase.

• The learned features are used for a highly efficient
obstetric imaging system, which works for a large
multi-modal data set collection which has been analyzed
in the test phase.

• The logistics regression algorithm has been proposed for
the high-level feature and fine-tunes the whole model
with testing and evaluation.

The remainder of the paper as follows in section 1 and
section 2 discussed the background study of the research.
In section 3 the modeled ML-CNN for extracting the image
with LRC has been mathematically analyzed. In section 4
the experimental results with numerical outcomes. Finally,
section 5 concludes the research paper.

II. LITERATURE SURVEY
Kim et al. [20] proposed the ML-based Automatic iden-
tification of fetal abdominal circumference (AIFAC) from
images of ultrasound. This paper introduced a method for the
automatic estimation of fetal Biometry from 2D ultrasound
data through multiple processes consisting of a specially
designed neural convolution (CNN) and a U-Net network for
each process. These techniques of machine learning take into
account the decisions of clinicians, anatomical structures, and
the characteristics of ultrasound images. Finally, clinical data
validate the effectiveness of the AIFAC approach. TheAIFAC
method of Machine learning is a hierarchical system that
imitates the abdominal circumstances calculation technique
of a clinician procedure.

Kirk et al. [21] introduced the pregnancies of unknown
location (PUL) approaches to identify the model in an early
clinical environment of pregnancy. A logistic regression
model was previously developed to predict where the PULs
become ectopic. The chorionic gonadotropin (hCG) based
on the human model is a logistic regression model. The
hormonal information was entered into the model that was
available in the Microsoft Excel kit on the clinic computer
and for each case, the predicted outcomes were reported
according to this model. The template was calculated against
the cost of failed PULs and intrauterine pregnancies to detect
an ectopic pregnancy.

Brattain et al. [22] suggested the machine learning
approach (MLA) for ultrasound medical and clinical work-
flow. The ultrasound is the ability to create a video in
real-time key strength. The advantages of spatiotemporal data
have beenwidely used to improve results bymachine learning
method which is applied to echocardiography and obstet-
rics. Machine learning is an especially powerful method to
extract nonlinear characteristics of the information. This is
especially promising in ultrasound, which typically has no
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simple or hand-designed predictable acoustic patterns. The
machine learning-based smart diagnostic assistant framework
for learning multiscale and multimodal observations over the
period is converted into the aggregated machine intelligence
will be able to observe, lead the end-user, assess new data and
assist with decision making in medical sustainable quantita-
tive models. This system is likely not only the overall result
of treatment to improve the clinical workflow significantly.

Huang et al. [23] introduced the Ultrasound Computer-
aided diagnosis (US-CAD) utilizing Machine learning for
fetal ultrasound standard plane detection. One category of
fetal ultrasound, a standard plane is the fetal facial standard.
The clinical data can evaluate the biparietal diameter of the
fetus from the fetal facial standard plane and detect the
malformation. The efficient features will increase precision
and reduce the computational complexity. The collection of
data is not consistent with ultrasound CAD systems. The
selection of features affects the quality of the final diagnosis
in the conventional ultrasonic CAD System. The Traditional
ultrasound system CAD’s common feature can be separated
into four types: descriptor features, textural, morphological,
and model-based.

Salehi et al. [24] suggested the voxel wise fully con-
volutional network (VFCN) for Fetal MRI automatic brain
extraction using Machine learning. They have developed and
assessed an architecture of a voxel-wise network using a
3-way system, the post processing based on the algorithm of
the linked components and a morphological closing proce-
dure as the final step. They have used completely convolu-
tional layers rather than fully connected layers to accelerate
testing. To ensure that the whole image is tested in a network
of convolutional layers, while voxels are tested in a network
of fully connected layers.

To overcome these issues, a method of Machine learning
consisting of multiple CNNs (ML-CNN) and a U-Net that
are intended to achieve many goals such as an initial esti-
mate, manipulation of many ultrasound objects such as spin-
ning and acoustic shadowing, spinal location identification,
semantic segmentation of ripe regions, and acceptance for a
proper identification of ovarian tumors. The proposedmethod
is beneficial over the previous CNN-based approaches with
a relatively low amount of data due to the combination of
several CNNs and a U-Net. Themain benefit of IoMT sensors
for healthcare is to reduce the time between assessment,
identification, and treatment.

III. OBSTETRIC ULTRASOUND IMAGE SEGMENTATION
USING MACHINE LEARNING-BASED CONVOLUTIONAL
NEURAL NETWORKS (ML-CNN) METHOD
In this paper, a Machine Learning-based Convolutional Neu-
ral Network model for obstetric image ultrasound to detect
ovarian tumors during pregnancy. The activations from pre-
vious layers have been converted in convolutional layers with
a set of small filters, often of size 3 × 3, in a tensor S(j, i)
where j the layer number and i is filter number. By sharing the
same weights with each filter across the entire input domain,

that is translation equivalence with each layer, the number of
weights that have to be learned can be reduced considerably.
The explanation for this weight-sharing is the fact that fea-
tures in one part of the picture are possibly present in other
pieces. If you have a filter that can detect horizontal lines,
you can use it to detect wherever it occurs. in this research,
the datasets have been taken from stanford.edu/datasets.

A nonlinear active function provides feature maps of a con-
volutional layer. This allows nearly every nonlinear function
to be approximate for the entire neural network. In general
the activation functions are extremely simple, straight-linear
units or ReLUs stated as ReLU(y) = max(0,y), or variants
such as leaky ReLUs or variable ReLUs. The functional maps
are fed to new tensors utilizing activation functions. Each
functionality map generated by feeding a data layer or more
is typically pooled into a pooling layer. Pooling actions take
input in small grid areas and generate individual numbers for
every field. Typically, the number is determined using zero
or the mean function. As the input image changes little in
the activation maps, the pooling layers give the convolutional
neural network some translation invariance. Figure 2 shows
the basic building blocks of the proposed ML-CNN system.

CNN has been used to detect the dark area of the
polar ultrasound image transformed. To obtain the initial
abdominal circumstances estimation, we applied the Hough
transform to the semantically segmented image. From the
conventional neural network, we gathered labeled training
data {(yl, xl) |l = 1, . . .M} from fetal ultrasound images,
where yl Refers to 128× 128, the target pixel centered patch
and xl = (xl1, . . . xl4) ∈ <4 Indicates the target pixel class.
The objective of this CNN is to develop the function f ∗,

which is capable of classifying an input patch y into four
classes. The labeled training data enable this feature to be
measured,

f ∗ = argminf
∑M

l=1
‖f (yl)− xl‖ (1)

Then, the minimization problem (1) in determining f ∗ is
equivalent to the definition of satisfying parameters θ∗,

θ∗ = argminθ
1
M

∑M

l=1
K (yl, xl; θ ) (2)

As shown in equation (2) where the cross-entropy loss func-
tion K is to calculate the error between the true label x and
inferred output qj(y; θ ) for every class:

K (yl, xl; θ) = −
∑M

j=0
xl logqj(yl; θ ) (3)

We have calculated the minimization problem for batch
training.

In this research, the datasets have been taken from
stanford.edu/datasets which has been shown in Figure.3.
The optimal treatment for ovarian cancer phase involves
salpingo-oophorectomy dual, para-aortic lymphadenectomy,
and total hysterectomy as well as omentectomy. The key
surgeries for the diagnosis included unilateral salpingo-
oophorectomy, ovarian cystectomy only, USO plus multi-
ple biopsies, or more extreme USO, pelvic and paraaortic
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FIGURE 2. ML-CNN system with Logistic vectorized analysis.

FIGURE 3. primary ovarian tumor histopathologic appearances.

lymphadenectomy, peritoneal biopsies, infrasonic omentec-
tomy, appendectomy, and even lymphatic and paraaortic
lymphadenectomy. Figure.3(a) shows the anterior abdom-
inal wall and abdominal organs have been tumor-free.
Figure.3 (b) shows the Tumor abdominal wall with
Histopathology revealed mucinous cystadenocarcinoma
(intestinal type) of the right ovary. Antineoplastic chemother-
apy is used to prevent newly inserted tumors or residual
ovarian cancer cell growth to continue the pregnancy. Each
anti-neoplastic agent is cytotoxic theoretically. A key concern
is the trans placental transfer of the agent to the fetus has been
classified using feature map case analysis which has been
discussed below.

A. MATHEMATICAL CASE ANALYSIS: 1-FEATURE
CLASSIFICATION
For classification, CNN with a logistic regression model is
applied based on high-level features. The data for high-level
classification and extraction of features will be given below.
First, feature maps are generated from the spectral feature
with the offset η, the initial spectral vector is split into τ
simple spectral. The spectral vector can be expressed,

aj=u (w) , 1 ≤ j ≤ η, τ (j− 1)+ 1 ≤ w ≤ τ (j− 1)+ s

(4)

As shown in equation (4) where u is the original spectral
vector, aj is the jth spectral vector with the length s. To obtain
a spectral feature map, we have set the independent variable
two basic spectral vectors. The feature map is then given,

Nl = sqrt
(
ajaTj

)
, 1 ≤ j, i ≤ η, 1 ≤ l ≤ m (5)

As shown in equation (5) where m is the number of feature
maps and Nl is the lth spectral feature map and received
nth spectral vector to spectral feature maps the spectral input
data as the ML-CNN inputs based on the computation using
the logistic regression model.

B. MATHEMATICAL CASE ANALYSIS:2-LOGISTIC
REGRESSION MODEL AND ML-CNN TRAINING
As inferred from the algorithm.1. ML-CNNs have two types
of layers: the convolution layer and the down sampling layer.
The forward propagation of the CNN layer can be defined as,

bki = f
(∑

j∈P
bk−1j ∗ lkji + a

k
i

)
(6)

As shown in equation (6) where f is the sigmoid function,
P denotes an input maps election, bki Indicates the feature map
activation value output I in layer k, lkji is the bias linked with
feature map output i in layer k, lkji is the kernel connection
feature map input j in layer k-1 to feature map output i in
layer k. ∗ denotes the convolution multiplication.
The down-sample layer forward propagation can be com-

puted as,

bki = f
(
δki down

(
bk−1i

)
+ aki

)
(7)

As shown in equation (7) were down denotes a subsampling
function. Usually, this function is summed up the output
feature map over every single patch so that in both spa-
tial dimensions the output feature map is y times smaller.
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Algorithm 1 Single Modality Classification
Input: j, i, l
Output: f ∗, aj , bki , Q
#Preprocessing
For (i=0)

f ∗ = argminf
M∑
l=1

∥∥f (yl)− xl
∥∥

For (j=0)

K
(
yl , xl; θ

)
= −

M∑
j=0

xl logqj(yl; θ)

#Feature Map
For (i=1)
aj = u (w) ,1 ≤ j ≤ η, τ (j − 1)+1 ≤ w ≤ τ (j − 1)+ s
For (j=1)
bki = f

(
δki down

(
bk−1i

)
+ aki

)
#Segmentation
If (l=0)
βki = δ

k+1
i

(
f
′ (
vki
)
◦up

(
βk+1i

))
Else
Q(X = j |U, S, a) = w (SU + a) = eSjU+aj∑

i e
SjU+ai

End if
End for
End for
End for
End for
End
Return

Output feature map i in layer k is multiplicative by δki .
aki is the output bias map i in layer k.
To evaluate the sensitivities of CNN layers, the up sampling

and sensitivity map down sampling layers are used, Further,
it has been multiplying it with the activation derivative map
at layer k element-wise. It can be expressed as,

βki = δ
k+1
i

(
f ′
(
vki
)
◦ up

(
βk+1i

))
(8)

As shown in equation (8) where βki is the feature map sen-
sitivity value i in CNN layer k, ◦ indicates the element-wise
multiplication, βki Indicates the inputs to map total weighted
sum myself in layer k and Up (.) indicates an Up-sampling
function.

Now that the sensitivities of the convolution layer are
present, the gradients can be determined as follows for bias
and kernel weights based on the corollary computation.
Corollary 1:

∂G
∂ai
=

∑
v,u

(βki )vu (9)

∂G

∂lkji
=

∑
v,u

(
βki

)
vu
(qk−1j )

vu
(10)

As shown in the above equation where (v,u) is the coordinate
in the convolution map, E is the squared error, bki and q

k−1
j is

the patch in layer bk−1i Which is multiplied element-wise by

using lkji during forwarding propagation to assess the element
at the coordinate (v,u) in the output CNN map bki .
The use of full convolution with the convolution layer

kernel and multiply it with the activating derivative layer map
at layer k element-wise to calculate the sensitivities of the
down sampling layer.

βki = f ′
(
vki
)
◦

(
1k+1
i ∗ lk+1ji

)
(11)

As shown in equation (12) where1k+1
i is the increasing sen-

sitivity map in the Downsampling Layer with the input fea-
ture map with the weak positive stain as shown in Figure.4(a).
The additive bias can be measured using Equation (9). The
sensitivities of the down sampling layer have been identified.
The multiple bias δ included the original down-sampled map
calculated during forwarding propagation in the current layer.

rki = down
(
bk−1i

)
(12)

FIGURE 4. Stains of the ovarian samples.

The gradient is then given to the multiplication bias.

∂G
∂δi
=

∑
v,u

(βki ◦ r
k
i )vu (13)

The utilized different samples are taken from stanford.edu/
datasets. Figure 4 (a) shows the samples of ovarian
tumors with a stain indicator are weakly positively stained.
Figure 4(b) shows Ovarian samples with a marked staining
index aremoderately positive. Figure 4 (c) Samples of ovarian
tumors with marked staining index have strongly positive.
Figure 4(d) shows the Normal ovarian samples with marked
staining index are negative or weakly positive.

The logistic regression model is added to the top of the
functional extraction layers to form a CNN. To finalize
the entire model, the backward propagation algorithm is
utilized. The classification of logistic regression applies to
Multi-classification soft-max regression tasks to analyze the
moderate positive value as shown in Figure.4.(b). The input U
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function is flattened by the ML-CNN’s output features, thus
the likelihood of the input feature of class j,

Q(X = j |U , S, a) = w (SU + a) =
eSjU+aj∑
i e
SjU+ai

(14)

As shown in equation (14) where X is the classification result,
S is the weight and a is the bias, Sj and aj indicate the
bias connecting and weight the output unit j, and w is the
softmax function. The output layer unit number is the total
class number which helps to identify the strong positive value
of the stains as shown in Figure.4(c). The ML-CNN’s-LR
classification is built into a Machine learning system. The
labels created by most ML-CNN / LR classifiers will then be
labeled as each pixel. The input layer is the same dimension
as the last ML-CNN layer is used to detect the negative stain
as shown in Figure.4(d).

C. MATHEMATICAL CASE ANALYSIS: 3: CLASSIFICATION
PERFORMANCE
In this paper, the Machine learning-based convolutional neu-
ral network (ML-CNN) method for the detection and diag-
nosis of the ovarian tumor during pregnancy. The single
modality classification algorithm has been proposed for the
neural network feature extraction of the obstetric image
with ultrasound technology. A typical CNN consists of two
components: an extractor for a feature and a classifier.
The extractor function is used for sorting input pictures on
‘‘feature maps,’’ which represent different object features.
The characteristics may include corners, lines, circular
arches, etc., which are relatively invariant to position distor-
tions or shifting. The function extractor may, for example,
be made up of several optional sub-sampling and convolu-
tional layers. The proposed algorithm achieves high accuracy
of an obstetric tumor image. Here the input layers are of
elements that are connected to the convolutional in order
to shape the parameters of the input layer and with filter
assistance, it is transferred to the pooling layer for the purpose
of reducing the sizes of the elements and identification of
tumors. Then the maximum value is taken and connected to
the convolutional layer to remove the filters.

Here all the input numbers of data are collected in the form
of n and that is determined as the maximum length of the
Logic regression model with input function y. The error data
are collected in the form of data and it is calculated to form
a reference value for each segment to analyze the tumor. The
reference equation is determined as

Bref =
(yn−1 − y0)

n
(15)

Here the sum of values of the above equation is determined
as

Sum Y =
∑n−1

j=0
yj (16)

The above equation which can be written in the form of
logistic manner as

Surprise Y =
∑n−1

j=0
Y 2
j (17)

When the above equation is calculated in the form of step
format and the equation can be denoted as

Step Y =
∑n−1

j=0
jyj (18)

Here the entire modules end with the initial phase compo-
nents and it transfers all the input parameters in Bref and each
and every value of the first segment is denoted as yref and the
initial point is denoted as p0 and termed as a node point for
the identification of tumors.

In the proposed model the entire learning algorithm is
formulated and integrated with the IoMT platform. Here
y= {y1, y2,y3, . . . ..,yk}. And the polynomial function of the
equation is denoted as follows in the Corollary metric:3

Algorithm 2 Logistic Classification Learning Algorithm
Input
Output
Begin
If(K=1)
g (K) =

∑t
j=0 bj(kj − k0) +e (k0) +ε;

xij = xij − α
δp(Q,a)
δxij

aij = xij − α
δp(Q,a)
δxij

else
g0(km)= g (km)
g1(km)=gq−1(km)− gq−1(km−1)
End if
End begin

As inferred From the algorithm.2. The activation param-
eters aij are denoted with a number of different parameters
and that weighed with a various coefficient (bj, kj − k0) and
the values for the normal function distribution are determined
in g (K). Here the constant coefficients are determined as
bj and e as a stream of functions. ε denotes as standard
normal distribution ( δp(Q,a)

δxij
) of the normal value as denoted

as xij, aij . The points are denoted as k1 − k0 = kj − kj−1 for
j = 1, 2. . . n this is equated in above algorithm.2 for tumor
analysis. Therefore bj(kj − k0) = Bref then the correspond-
ing data model equation can be represented as an estimated
model and behavior stream model. From the algorithm.2. the
mth model of input is simplified as

g(km) = Bref + ε (19)

In the above equation, the prediction analysis model is
expressed as m+1 that is chosen from the stream data points
and g (K) that can be an approximately denoted as

gt (km+1) ≈ Bref (20)

Therefore, in the above equation, the qth factor is calculated
as

gq(km+1) ≈ gq−1(km+1)+ gq−1(km) (21)
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Here the restricted values and the intermediate points are
expressed in the data stream points. Thus the proposed mod-
els are denoted with various sampling rates of the equation.
Here again, the predicted tumor value can be determined as
follows:

Bq = H [gq(km)]; (22)

Here H [.] denotes the average value of the function, here the
problem will be raised when placing the random values that
are expressed in the total sensor values that possess negative
effects.

The negative effects are determined as the variance func-
tion of the threshold value θ . Thus the independent random
noise standard deviation is expressed as follows

VAR(
∑n

j=1
(g1(km−j+1)) =

√
n(VAR(gq(km))) =

√
nσ.

(23)

And finally, the estimated value is determined as follows

Bq = H[

∑n
j=1 gq(km−j+1)

n
] (24)

Here the error of estimation is denoted as σ√
n . Thus the

independent random noise standard deviation is derived.
In terms of average precision (AP), the average recall (AR),

accuracy and the measurement of F1 the performance of the
proposed classification task framework is measured based on
corollary metrics.
Corollary2:

AP =
1
M

∑M

j=1

TPj
TPj + FPj

(25)

AR =
1
M

∑M

j=1

TPj
TPj + TNj

(26)

Accuracy (ACC) =
1
M

∑M

j=1

TPj + TNj
TPj + TNj + FPj + FNj

(27)

F1 Score = 2×
AP× AR
AP+ AR′

(28)

As shown in the above equation where, TP is truly positive
and refers to the number of images of class l and properly
classified (FP is thewrong positive) and the number of images
of class l, TN is true negative and indicates the number of
images correctly categorized as non-class l, FN is false neg-
ative and denotes images of class l but not classified or ‘M’
denotes the total number of class where TP is truly positive
and indicates the number of frames of class l. The proposed
ML-CNN with a logistic regression classifier achieves a bet-
ter classification accuracy of the ovarian tumor images than
previous hyperspectral classification methods.

IV. NUMERICAL ANALYSIS AND VALIDATION
Machine learning becomes even more important by con-
stantly improving technological features for accurate and
multidimensional IoMT data to improve diagnostic accu-
racy. Overall, the inclusion of Machine education in IoMT

can offer radical innovations in medical image processing,
disease diagnostics, analytics of medical big data and
breakthrough medical applications. Here the image database
analysis has been shown in Figure 5 shows the classification
analysis based on the IoMT platform using the logistic learn-
ing model. The accurate measurements of different ultra-
sound signs, including sensitivity, specificities and likelihood
ratios are measured. A meta-analysis was carried out with
more than three studies recording the ultrasound sign and
datasets of 12 images taken for analysis have been shown
below in Figure.6. Precision estimates for the individual
studies with estimated sensitivity and distinction, Further
the accuracy between ectopic and intrauterine pregnancies
has been analyzed. The proposed ML-CNN method achieves
a high specificity ratio when compared to other existing
methods.

FIGURE 5. Obstetric tumor detection using machine learning technique
on IoMT platform.

FIGURE 6. Datasets of 12 images taken for analysis from the pathological
information database.

Figure. 6. shows the test samples of partitioned images
from the main dataset, the trained neural network can be
tested. The test data were not in any way used in the prac-
tice and therefore provide the network with ‘‘out-of-sample’’
data. This offers an evaluation of the network’s performance
with real-world data.

Historical or medical risk factors that may show an
increased likelihood of fetal abnormality should be carefully
tested for the obstetric population. The methodical and com-
plete screening ultrasound test should include the exami-
nation of each of several recommended scan plane views
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FIGURE 7. Specificity Vs cross-entropy.

to optimize the sensitivity of diagnosis with a high speci-
ficity ratio as shown in Figure.7(a). Further, to show that
a standard healthcare service was provided, the completion
and methodical examination should be closely documented
with descriptive text and image documents. Here as shown
in Figure.7(b) the original spectral vector, aj is the jth spectral
vector with the length s. To obtain a spectral feature map,
the set of independent variables two basic spectral vectors for
validation and test. In addition, as shown in Figure.8. the per-
formance ratio of the proposed ML-CNN method. To ensure
diagnosis accuracy as well as increasing the need for repeat
scans by insufficient testing, it is important to improve the
performance and consistency of ultrasound screening. The
design and implementation of quality assurance protocols are
a way to improve the testing, leading in the course to higher
visualization levels of the ovaries among recorded clinics.

As inferred from the equation (6) where f is the sigmoid
function, P denotes an input map selection, bki Indicates the
feature map activation value output I in layer k, lkji is the bias
linked with feature map output i in layer k, lkji is the kernel
connection feature map input j in layer k-1 to feature map
output i in layer k. ∗ denotes the convolution multiplication
with a high sensitivity ratio as shown in Figure.9.

FIGURE 8. Performance ratio.

FIGURE 9. Sensitivity ratio.

Feature depictions have been used for the recovery of
medical objects in all three fully linked layers of the training
model. The performance of the retrieval results has been
evaluated using both methods, i.e. with and without the pre-
dicted class label. For class prediction, the improvement in
performance in terms of precision is evident. Figure 10 shows
the precision ratio of the proposed ML-CNN method. The
precision ratio is high when compared to other existing
methods.

Table 1 shows the precision ratio of the proposed system.
The precision ratio and accuracy ratio are ways to explain
the error between the two image values. Figure 8 displays the
precision plots for representation features extracted with class
prediction and without class prediction.

In this paper, two parameters for comparison have been
used, one classification accuracy, average accuracy and mean
classification alert and the other mean average precision [25].
The precision-recall curve is a pixel dependent calcula-
tion using an uncertainty matrix for the evaluation of the
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FIGURE 10. Precision ratio.

TABLE 1. Precision ratio.

performance [26] of the algorithm. Precision informs about
the validity of the segmentation results and recalls the cor-
rectly identified pixels on the edges of an image. Higher
precision and reminder value mean that the segmentation
method shows good results.

Table 2 shows the recall ratio of the proposed ML-CNN
method. The segmentation approach is accomplished when
the alert quality is small and when the value of precision
is higher over-segmentation is achieved. The percentage of
true positive pixels sensitivity or true positive values or recall
(figure 11).

TABLE 2. Recall ratio.

In this paper, the growth chart showing the fetal weight
as compared with the gestational age. The calculated from
a combination of measured and predictive error ratios
of 10-20%. Abdominal circumference measurement is the
measurement of fetal growth which is most useful, repre-
senting a fetal subcutaneous fat volume and liver length,

FIGURE 11. Recall ratio.

which are in turn correlated with fetal nutrition. The proposed
ML-CNN method has less error rate in terms of image
segmentation when compared to other existing methods.
Figure 12 shows the Error Rate analysis of the proposed
system.

FIGURE 12. Error rate.

The experimental results show the logistic regression clas-
sifier (LRC) based on CNN can be utilized to predict the
output of the ultrasound of obstetric with increased maternal
and perinatal mobility rates. Here the entire modules end
with the initial phase components and it transfers all the
input parameters where each and every value of the first seg-
ment analysed for the identification of tumor in an effective
manner.

V. CONCLUSION
This paper presents Machine learning framework for the
detection of ovarian tumor images from content by training
for the classification task in a Machine learning-based con-
volutional neural network. We used a logistic regression clas-
sifier for the feature map, segmentation, and classification.
Furthermore, a Single modality classification algorithm has
been proposed. Fortunately, the ultrasound is a non-invasive
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and effective instrument, which can help diagnose most of
these problems, avoid the consequences of these complica-
tions and direct care in some cases. In obstetrics, therefore,
broader use of ultrasound is encouraged. It is important
to train every obstetric doctor and sister-in-law in basic
ultrasound use in obstetrical care. A Machine model was
used directly to classify obstetric images with the inclusion
of traditional image features. The ML-CNN-LR classifiers
extract the obstetric tumor image with a high classification of
accuracy. The precision and recall have been used to test the
performance of the proposed ML-CNN for obstetric image
retrieval.
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