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ABSTRACT In this paper, suffering from both parameter perturbation and unknown ocean currents,
the spatial trajectory tracking problem of an underactuated unmanned undersea vehicle (UUV) is investigated
in the absence of full state information. The equivalent output injection sliding mode observer is applied to
estimate the linear and angular velocities of underactuated UUVs in finite time. Meanwhile, the spatial
trajectory tracking controller is developed based on the bioinspired filtering backstepping technique and
integral sliding mode control principle, which guarantees to steer the underactuated UUV to track the
desired trajectory and stabilizes all tracking errors to the bounded neighborhood of the origin. Numerical
simulation results are presented and analyzed to demonstrate the preferably control performance of the
proposed tracking control scheme.

INDEX TERMS Adaptive sliding mode observer, output feedback, parameter perturbation, spatial trajectory
tracking, underactuated UUV.

I. INTRODUCTION
In recent years, the control problems of underactuated
unmanned undersea vehicles (UUVs) have been the hot topic
in the marine engineering [1]–[8]. These attentions origi-
nate from huge theoretical challenges arising from highly
nonlinear, parameter perturbation, unmeasurable velocities
and unknown environmental disturbances [2]–[4], [9], [10],
and a wide range of the applications including explo-
ration and exploitation of resources locating at deep oceanic
environments, geological sampling, oceanographic obser-
vation, search and inspection of underwater structures,
intelligence/surveillance/reconnaissance (ISR) and anti-
submarine warfare (ASW) [1], [11], [12]. The motion control
technique of underactuated UUVs is necessary and prereq-
uisite for successfully and efficiently performing various
complex missions. In practice, for decreasing the cost and
weight of UUVs, they are configured to underactuated mode.

The number of motion-control actuator for underactuated
UUVs is fewer than degrees-of-freedom (DOF). For the UUV
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type considered in this work, the one is equipped with only
three independent motion-control actuators, namely a pair
of the identical stern thrusters, a pair of sternplanes and a
pair of rudders, which are mounted symmetrically in the aft.
It is clear that the research object of this article belongs to
a class of underactuated mechanical systems with second-
order nonholonomic constraints and drift items [13], [14].
The underactuated UUVs are not stabilized by any smooth
or continuous time-invariant feedback controllers, in the light
of the famous Brockett’s necessary condition [15], [16].
Therefore, the trajectory tracking control problem of underac-
tuated UUVs is extremely challenging and great meaningful,
which is a hot and active research topic [3]–[11], [17]–[30].

Generally speaking, the traditional trajectory tracking con-
trol algorithms ofmarine vehicles (including ship, submarine,
USV, UUV, ROV and so on) are developed under the con-
dition that all the motion states are measurable. These full
state feedback tracking controllers are proposed based on
numerous nonlinear control methods, such as backstepping
technique [3], [8], [17], [18], [24], [25], [29], Lyapunov’s
direct method [3], [17], [18], sliding mode control (SMC)
[4], [10], [20], [23]–[26], [31], [32], adaptive control
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[17]–[19], [26], [27], etc. All the aforementioned control
schemes require that all states of marine vehicles are
measurable, including the linear and angular velocities in
the body-fixed reference frame and the position and atti-
tude in the inertial reference frame. The motion states of
underwater vehicles can be measured by sensors and navi-
gation, such as the position and attitude of undersea vehi-
cles measured by the inertial navigation system (INS) and
their linear velocities measured by the Doppler velocity log
(DVL) [9], [33]. Specifically, the type localization systems of
undersea vehicles typically comprise the navigation satellite
system (GPS/GLONASS/BDS), acoustic positioning system
(USBL/SBL/LBL/PLBL/UTP), inertial navigation system
(SINS/PHINS), and geophysical navigation [2]. However,
these navigation equipment can only be partially equipped
with UUVs, due to total mass or cost limitations. In particular,
low-cost UUVs can hardly be equipped with expensive SINS
and DVL. According to the principle of DVL, its measure-
ment may be invalid due to change in seabed topography or
sea state. In addition, the angular velocities are difficult to
measure accurately by existing sensors. All of these reasons
will cause those full state feedback trajectory tracking control
scheme to fail.

Over the last decade, many scholars have gradually begun
to care about the output feedback trajectory tracking prob-
lems [34]–[38]. S. Li et al. proposed a finite-time out-
put feedback trajectory tracking controller of full-actuated
UUVs based on the fractional power integrator approach [9].
Y. Wang et al. addressed the output tracking problem of ROV
in 4-DOF using nonsingular terminal sliding mode [21], [36].
Reference [39], authors addressed the output feedback tra-
jectory tracking problem of underactuated ships based on
high-gain observer, parameter compression algorithm and
performance function. Among the above research results,
there are not the output feedback spatial trajectory tracking
of underactuated UUVs. Accordingly, the output feedback
spatial trajectory tracking problem of underactuated UUVs
is extremely valuable and challenging.

Sliding mode control principle is a famous efficient non-
linear control theory to deal with control problems under
parameter perturbation, bounded uncertainty/disturbances
and parasitic dynamics of nonlinear system [40], [41].
Accordingly, the SMC is widely applied to develop the
controllers of many nonlinear systems in recent decades,
in view of the strong robustness, decoupling, fast response,
and good dynamic characteristics of SMC [41], [42]. After
more than half a century of development, the traditional
SMC algorithm has evolved into a series of robust non-
linear control methods, including terminal SMC (TSMC),
nonsingular terminal SMC (NTSMC), fast terminal SMC
(FTSMC), proportional-integral-derivative SMC (PID-SMC)
and so on [43]–[46]. In recent decades, SMC-class algo-
rithms have been employed to solve the full-state-feedback
motion control problem of underactuated marine vehicles [4],
[10], [20], [23]–[26], [42], [47], [48]. For the discussed
earlier, however, the full-state feedback control strategies

may be inappropriate in many practical applications because
not all states of the marine vehicles are measurable.
The output feedback controllers have been proposed based
the SMC-class control and sliding mode observer (SMO)
algorithms [37], [38], [49]–[53]. Zhao et al. [38] proposed a
novel output feedback TSMC approach for a class of second
order nonlinear systems by using TSMC and the equiva-
lent output injection SMO. For the motion control problem
of ROV, a multivariable output feedback adaptive NTSMC
scheme was developed [21], [36]. However, these motion
control strategies of ROV cannot be directly applied to solve
the trajectory tracking problem of underactuated UUV.

In this work, an output feedback control strategy is pro-
posed for the spatial trajectory tracking of underactuated
UUVs with parameter perturbation and external disturbances
by using the equivalent output injection SMO, backstep-
ping and first-order integral SMC. The motion state observer
with excellent robustness against parameter perturbation can
reconstruct the linear and angular velocities of underactu-
ated UUVs in finite time, which is developed to adopt the
equivalent output injection SMO. Then, the tracking con-
troller of underactuated UUVs is designed based on the
bioinspired filtering backstepping and first-order integral
SMC, which can drive it to the desired trajectory and stabi-
lize all tracking errors to the bounded neighborhood of the
origin.

The remainder of this article is organized as follows.
Section II describes the motion model of underactuated UUV
and problem formulation. In section III, the output feedback
spatial trajectory tracking control scheme for underactuated
UUVs is presented. In section IV, numerical simulations
are performed to validate the effectiveness of the proposed
tracking control scheme. Finally, brief conclusions are drawn
in section V.

II. PROBLEM FORMULATION
A. UUV KINEMATICS AND DYNAMICS
In this work, the type of underactuated UUVs is equipped
with three independent motion control actuators, including
a pair of the identical stern thrusters, a pair of sternplanes
and a pair of rudders which are mounted symmetrically in
the aft. For an underactuated UUV, its motion is six degrees
of freedom (6-DOF) in the three-dimensional undersea space,
described in the inertial reference frame {n} and body-fixed
reference frame {b}. In practical engineering, the roll motion
of underactuated UUVs is usually neglected to simplify the
design of the motion controller, because it is self-stabilized,
small amounts compared to other degrees of freedom and
not directly controlled by any motion control actuators.
Therefore, the spatial motion for the type of underactuated
UUVs can be described by the 5-DOF kinematic equations,
as follows:

[
ṗnb/n
2̇nb

]
=

[
Rn
b(2nb) 03×3
03×3 T2(2nb)

][
νbb/n
ωbb/n

]
(1)
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where, the matrices Rn
b(2nb) and T2(2nb) are given by:

Rn
b(2nb) =

 cosψ cos θ − sinψ cosψ sin θ
sinψ cos θ cosψ sinψ sin θ
− sin θ 0 cos θ

 (2)

T2(2nb) =
[
1 0
0 1/cos θ

]
(3)

where pnb/n = [x, y, z]T and 2nb = [θ, ψ]T denote
the position and orientation of UUVs, respectively. Here,
θ ∈ (−π/2, π/2) and ψ ∈ (−π, π]. Then, the position
and orientation of an underactuated UUV are summed up
η = [pnTb/n,2

T
nb]

T. The symbols νbb/n = [u, v,w]T and ωbb/n =
[q, r]T represent the linear and angular velocities in {b}, and
they are summed up ν = [νbTb/n,ω

bT
b/n]

T.
In practical engineering, the hull of UUVs can be a neu-

trally buoyant rigid body that its mass distribution is homo-
geneous. Meanwhile, in order to facilitate the analysis and
design of motion control for underactuated UUVs, the order
of the hydrodynamic drag terms is lower than two in the
dynamic equations. According to the above assumption,
the kinetic equations for a neutrally buoyant underactuated
UUVwith three planes of symmetry are simplified as follows

m11u̇ = m22vr − m33wq− Xuu− Xu|u|u |u| + τ1
m22v̇ = −m11ur − Yvv− Yv|v|v |v|

m33ẇ = m11uq− Zww− Zw|w|w |w|

m55q̇ = (m33 − m11)uw−Mqq−Mq|q|q |q|

−(zGW − zBB) sin θ + τ5
m66ṙ = (m11 − m22)uv− Nrr − Nr|r|r |r| + τ6

(4)

where τ1, τ5 and τ6 denote the forward force, pitch torque and
yaw torque, respectively. The constants mii (i = 1, 2, 3, 5, 6)
are the inertia including added mass effects. Xu, Yv, Zw, Mq
and Nr are hydro-dynamic coefficients of the linear drag
terms. Xu|u|, Yv|v|, Zw|w|, Mq|q| and Nr|r| indicate hydrody-
namic coefficients of the quadratic drag terms. The insignias
zG and zB represent the zb-coordinate component of the center
of gravity and the CB in the body-fixed coordinate frame {b},
respectively; W and B are gravity and buoyancy of the vehi-
cle, respectively. In this work, the parameter perturbation is
considered, i.e., there are±20% uncertainties in the hydrody-
namic coefficients of this underactuated UUV. The nominal
values of rigid body and hydrodynamic coefficients for this
underactuated UUV are given as [54].

B. CONTROL OBJECTIVES
For a practical UUV, the desired reference trajectory pnR(t) =
[xR, yR, zR]T must be a sufficiently smooth vector-function of
time in the three-dimensional underwater space. Considering
that the motion of the underactuated UUV is constrained by
its own characteristics (including mechanical properties and
security constraints), the desired reference trajectory pnR(t)
must satisfy the following geometric conditions:

KR=
|ẋRÿR − ẍRẏR|

(ẋ2R + ẏ
2
R)

3/2
≤

1
ξm
,

|żR|√
ẋ2R + ẏ

2
R

≤ tan θmax (5)

where ξm and θmax denote the minimum turning radius
and maximum pitch angle of this underactuated UUV
respectively, KR is the curvature of the desired reference
trajectory pnR(t), and the variables ẋR, ẍR, ẏR, ÿR and żR are
he first- and second-order time-derivatives of the position
coordinate component xR, yR and zR, respectively.

Under the designed spatial trajectory tracking control strat-
egy, the motion states pnb/n(t), 2nb(t), νbb/n(t) and ωbb/n(t)
of this underactuated UUV can converge to their respective
desired value pnR(t),2R(t), νR(t) and ωR(t), i.e.

lim
t→∞

(pnb/n(t)−p
n
R(t))= 0, lim

t→∞
(2nb(t)−2R(t))=0 (6)

lim
t→∞

(νbb/n(t)−νR(t))= 0, lim
t→∞

(ωbb/n(t)−ωR(t))=0 (7)

At the same time, all other motion states of this under-
actuated UUV are kept bounded for any initial conditions
pnb/n(t0),2nb(t0), νbb/n(t0) and ω

b
b/n(t0).

III. OUTPUT FEEDBACK TRAJECTORY TRACKING
CONTROL STRATEGY
The design procedure of spatial trajectory tracking control is
composed of three parts, including the tracking error equa-
tion construction, the motion-state observer design and the
output feedback trajectory tracking controller design. First,
the spatial trajectory tracking error dynamic equations are
derived for the tracking controller design. Then, the motion
state observer is developed to employ the equivalent output
injection SMO, to reconstruct the motion states of an under-
actuated UUV. Finally, the output feedback trajectory track-
ing control scheme is proposed, involving the bio-inspired
filtered backstepping, integral SMC and themotion-state slid-
ing mode observer, to achieve the spatial trajectory tracking
tasks of underactuated UUVs.

A. TRACKING ERROR EQUATIONS
For the spatial trajectory tracking of underactuated UUVs,
the primary task is how to steer the position and attitude of
underactuated UUVs to track the desired reference trajectory
pnb/n(t). The following tracking position error variables pne in
{n} are defined as

pne = pnb/n − p
n
R (8)

Then, using the coordinate transformation matrix(2),
the tracking position error variables pbe in {b} are written as

pbe = Rn
b(2nb)−1pne (9)

Because the coordinate transformation (9) is orthogonal,
the tracking position error variables in {n} and {b} are equiva-
lent to each other, namely pbe = [0, 0, 0]T ⇔ pne = [0, 0, 0]T.
That is to say, the stabilization of the tracking errors (8)
and (9) are equivalent to each other.

Since the surge velocity of underactuated UUVs is much
larger than its own sway and heave velocity, its sideslip angle
and angle of attack can be considered approximately equal
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to zero. Thus, the desired pitch and yaw angle of underactu-
ated UUVs are calculated as

θR = − arctan
żR√

ẋ2R + ẏ
2
R

, ψR = arctan
ẏR
ẋR

(10)

The tracking attitude errors are defined as

θe = θ − θR, ψe = ψ − ψR (11)

Calculating the derivative of the tracking error transfor-
mation Eq. (9) and substituting into the kinematic Eq. (1),
the dynamic equations of the tracking position errors are
obtained as follows:

ẋe = u− uR(cosψe cos θ cos θR + sin θ sin θR)
+rye − qze

ẏe = v+ uR sinψe cos θR − r(xe + ze tan θ )
że = w− uR(cosψe sin θ cos θR − cos θ sin θR)
+qxe + rye tan θ

(12)

where, the notation uR is the desired surge velocity of the

underactuated UUV and equals
√
ẋ2R + ẏ

2
R + ż

2
R. Since the

underactuatedUUVs lack the direct control inputs in the sway
and heave DOF, the desired sway and heave velocities equal
zero, that is, vR = 0 andwR = 0. Next, tacking the derivatives
of the tracking attitude errors, the dynamic equations of the
tracking attitude error variables are calculated as follows:{

θ̇e = q− qR
ψ̇e = r/cos θ − rR/cos θR

(13)

where qR and rR indicate the desired pitch and yaw angular
velocities, and their specific expressions are{

qR = θ̇R = (żRν̇t − z̈Rνt)/u2R
rR = ψ̇R cos θR = (ÿRẋR − ẏRẍR)/νtuR

(14)

where the auxiliary variable νt equals
√
ẋ2R + ẏ

2
R.

B. THE MOTION-STATE OBSERVER
In this subsection, the motion-state observer is designed
based on the equivalent output injection SMO, which can
reconstruct the motion state of underactuated UUVs in finite
time. To facilitate the design procedure of the motion-stare
observer, the motion model of underactuated UUVs is rewrit-
ten as vector form in the inertial reference frame {n}. The
rewritten motion model is expressed as

ẋ1 = x2
M̂n(x1)ẋ2 = −Ĉn(x1, x2)x2 − D̂n(x1, x2)x2

−gn(x1)+ τn

(15)

where, x1 = η and x2 = J(η)ν denote pose (including the
position and orientation) and generalized velocity in {n}. The
parameter matrixes in Eq. (15) can be described as

M̂n(x1) = J(η)M̂J−1(η);

Ĉn(x1, x2) = (Ĉ(J−1(η)x2)− M̂J−1(η)J̇(η))J−1(η);

D̂I (x1, x2) = J(η)D̂(J−1(η)x2)J−1(η);

gn(η) = J(η)g(η);

τ I = J(η)τ .

The transformation matrix J (η) is defined as

J(η) =
[
Rn
b(2nb) 03×3
03×3 T2(2nb)

]
(16)

And, the matrix M̂ , Ĉ(ν), D̂(ν), g(η) and τ are

M̂ = diag(m̂11, m̂22, m̂33, m̂55, m̂66)

Ĉ(ν) = −Ĉ
T
(ν) =


0 −mr mq −Ẑẇw Ŷv̇v
mr 0 0 0 −X̂u̇u
−mq 0 0 X̂u̇u 0
Ẑẇw 0 −X̂u̇u 0 0
−Ŷv̇v X̂u̇u 0 0 0


D̂(ν) = diag(X̂u, Ŷv, Ẑw, M̂q, N̂r )

+ diag(X̂u|u| |u| , Ŷv|v| |v| , Ẑw|w| |w| ,

× M̂q|q| |q| , N̂r|r| |r|)

g(η) = [0, 0, 0,BGzW sin θ, 0]T

τ = [τ1, 0, 0, τ5, τ6]T

The motion state x1 in Eq. (15) is measurable state variables,
that is, the measured outputs of the system(15). The motion
state x2 is unmeasurable and need to be estimated by the
motion state observer. The design procedure of the motion
state observer is organized as follows:
Theorem 1: Consider the motion model (15) of under-

actuatedUUVswith parameter perturbation. Themotion state
observer

˙̂x1 = x̂2 + γ 1sgn(x1 − x̂1)
M̂n(x1) ˙̂x2 = −Ĉn(x1, x̂2)x̂2 − D̂n(x1, x̂2)x̂2

−gn(x1)+ τ n + γ̂ 2sgn(x̄2 − x̂2)
(17)

can reconstruct the motion states of this underactuated UUV,
and can ensure that the estimation error x̃1 converges to the
origin in a finite time and the estimation error x̃2 converges
to a neighborhood of the origin in a finite time.
Remark 1: x̂1 and x̂2 are the estimated values of the

motion states x1 and x2, respectively. The estimated errors
x̃1 and x̃2 are x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2.
γ 1 = diag(γ11, γ12, γ13, γ15, γ16) with γ1i > 0 (i = 1, 2,
3, 5, 6) is the gain coefficient matrix of the motion state
observer. x̄2 = x̂2 + (γ 1sgn(x̃1))bo, and (γ 1sgn(x̃1))bo is the
equivalent output injection, which can be obtained by passing
the signal γ 1sgn(x̃1) through a low pass filter [21]. γ̂ 2 =

diag(γ̂21, γ̂22, γ̂23, γ̂25, γ̂26) is the adaptive gain coefficient
matrix of the state observer, and ˙̂γ2i = −ε0iγ̂2i+ε1i

∣∣x̄2i − x̂2i∣∣
(ε0i > 0 and ε1i > 0, i = 1, 2, 3, 5, 6).
Proof: The proof is composed of two steps. To analyze

the convergence of the estimated errors x̃1 and x̃2 for the
motion state observer (17), the dynamic equations of the esti-
mated errors x̃1 and x̃2 are developed by subtracting Eq. (15)
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from Eq. (17).{
˙̃x1 = x̃2 − γ 1sgn(x1 − x̂1)
˙̃x2 = M̂n(x1)−1(δ(x1, x2, x̂2)− γ̂ 2sgn(x̄2 − x̂2))

(18)

where, δ(x1, x2, x̂2) = Ĉn(x1, x̂2)x̂2 − Ĉn(x1, x2)x2 +
D̂n(x1, x̂2)x̂2 − D̂n(x1, x2)x2.
Step1: To analyze the convergence of the estimated

errors x̃1, the following Lyapunov function is chosen as

Vo1 =
1
2
x̃T1 x̃1 (19)

The derivative of the Lyapunov function (19) is calculated
according to the first formula of Eq.(18):

V̇o1= x̃T1 ˙̃x1= x̃
T
1 (x̃2 − γ 1sgn(x̃1))=−

∑
i∈S

(γ1i − |x̃2i|) |x̃1i|

with S = {1, 2, 3, 5, 6}. The motion equations (15) of under-
actuated UUVs does not exist the finite escape time and the
control inputs τ n belong to the extended Lp space, that is,
the cutoff values in any finite-time are bounded. Therefore,
the observer errors x̃1 do not exist the finite escape time
and belong the extended Lp space. Then, the observer gain
coefficient γ1i(i = 1, 2, 3, 5, 6) are selected to satisfy the
following conditions γ1i > |x̃2i| + σ1i (σ1i > 0), so that
the derivative V̇o1 of the Lyapunov function can satisfy the
following inequality:

V̇o1≤−
∑
i∈S

σ1i |x̃1i|≤−min
i∈S

(σ1i)
∑
i∈S

|x̃1i|

≤ −
√
2min
i∈S

(σ1i)V
1
2
o1 (20)

According to Lemma 1 in [10], the observer error x̃1 can
converge to the equilibrium point in finite time, and the
convergence time of the observer error x̃1i meet the following
conditions respectively:

t1i ≤ t0 +
|x̃1i|
σ1i

, i ∈ S (21)

where t0 is the initial time. When t ≥ t1i, the observer
error x̃1 and their derivative are all zero. Then, x̃1, ˙̃x1 and
x̃2 = (γ 1sgn(x̃1))bo are on the sliding surface. Thus,
the dynamic equations (18) of the estimated errors become{
˙̃x1 = 0
˙̃x2 = M̂ I (x1)−1(δ(x1, x2, x̂2)+ τ dI − γ̂ 2sgn(x̄2 − x̂2))

(22)

Step2: Next, the convergence of the state estimation
error x̃2 is analyzed. Consider the following Lyapunov
functions:

Vo2 = Vo1 +
1
2
x̃T2 M̂ I (x1)x̃2 +

1
2

∑
i∈S

γ̃ 2
2i (23)

where γ̃2i = γ2i− γ̂2i, and γ2i are constants greater than zero.
When t ≥ t1i, the derivative of the Lyapunov function (23) is

calculated according to the second formula of Eq.(18):

V̇o2 = x̃T2 M̂ I (x1) ˙̃x2 +
∑
i∈S

γ̃2i ˙̃γ2i

= x̃T2 (δ(x1, x2, x̂2)+ τ
d
I − γ̂ 2sgn(x̄2 − x̂2))

−

∑
i∈S

γ̃2i(−ε0iγ̂2i + ε1i
∣∣x̄2i − x̂2i∣∣)

≤ −

∑
i∈S

|x̃2i| (γ̂2i + ε1iγ̃2i −
∣∣∣δ(x1, x2, x̂2)+ τ dI ∣∣∣i)

+

∑
i∈S

ε0iγ̃2iγ̂2i (24)

Then, by selecting the appropriate γ̂2i ≥ −ε1iγ̃2i +∣∣δ(x1, x2, x̂2)∣∣i + σ2i (σ2i > 0), it is obtained as follows:

V̇o2 ≤
∑
i∈S

(−σ2i |x̃2i| + ε0iγ̃2iγ̂2i)

=

∑
i∈S

(−

√
2σ 2

2i

m̂ii
(
1
2
m̂iix̃22i)

1
2 −

√
2σ 2

2i

m̂ii
(
1
2
x̃21i)

1
2

−

√
2σ 2

2i

m̂ii
(
1
2
γ̃ 2
2i)

1
2 +

√
2σ 2

2i

m̂ii
(
1
2
γ̃ 2
2i)

1
2 + ε0iγ̃2iγ̂2i)

≤ −

∑
i∈S

√
2σ 2

2i

m̂ii
V

1
2
o2 +

∑
i∈S

(

√
σ 2
2i

m̂ii
|γ̃2i| + ε0iγ̃2iγ̂2i)

(25)

According to Lemma 2 in [21], when |γ̃2i| ≥ 1, the derivative
of the Lyapunov function (23) satisfies:

V̇o2 ≤ −
∑
i∈S

√
2σ 2

2i

m̂ii
V

1
2
o2 +

∑
i∈S

ε20i

√
m̂ii

4(ε0i
√
m̂ii − σ2i)

γ 2
2i (26)

Thus, according to Lemma 3 in [21], the state observer
error x̃2 can converge to the neighborhood of an origin within
a finite time, and the neighborhood of the origin is as follows:

lim
θ→θ0

x̃2 ∈ (V
1
2
o2 ≤

∑
i∈S

ε20im̂ii

2
√
2(ε0i
√
m̂ii−σ2i)σ2i

γ 2
2i

(1− θ )
)

where θ0 ∈ (0, 1). And the convergence time satisfies:

t2i ≤ t1i +

√
2m̂iiV

1
2
o2(x̃2)

σ2iθ0

When |γ̃2i| < 1, the derivative of the Lyapunov function (23)
satisfies:

V̇o2 ≤ −
∑
i∈S

√
2σ 2

2i

m̂ii
V

1
2
o2 +

∑
i∈S

(

√
σ 2
2i

m̂ii
+ ε0iγ2i) (27)

Then, according to Lemma 3 in [21], the state observer
error x̃2 can converge to the neighborhood of an origin within
a finite time. Thus, it is proved that regardless of the value of
the observer adaptive gain error γ̃2i, the state observer error x̃2
can converge to a neighborhood of the equilibrium point in a
finite time. �
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Remark 2: To simplify design procedure of the output
feedback tracking controller, the motion state observer (17)
is converted from {n} to {b}:

˙̂η = J(η)ν̂ + γ 1sgn(η̃)
M̂ ˙̂ν = −Ĉ(ν̂)ν̂ − D̂(ν̂)ν̂ − g(η)+ τ
+J−1(η)γ̂ 2sgn(J(η)ν̄ − J(η)ν̂)

(28)

where γ̂ 2 = diag(γ̂21, γ̂22, γ̂23, γ̂25, γ̂26) is the adaptive
gain coefficient matrix of the state observer, and ˙̂γ2i =
−ε0iγ̂2i +ε1i

∣∣J(η)ν̄ − J(η)ν̂∣∣i (ε0i > 0 and ε1i > 0, i =
1, 2, 3, 5, 6). J(η)ν̄ = J(η)ν̂2 + (γ1sgn(η̃))eq, η̃ = η − η̂.
Remark 3: From the motion state observer(28), the lin-

ear and angular velocities of underactuated UUVs can be
obtained. To develop the tracking dynamic controller, the sec-
ond equation of the motion state observer (28) is transformed
into component form:

m̂11 ˙̂u = m̂22v̂r̂ − m̂33ŵq̂− X̂uû− X̂u|u|û
∣∣û∣∣+ τ1 + fû

m̂22 ˙̂v = −m̂11ûr̂ − Ŷvv̂− Ŷvv|v| v̂
∣∣v̂∣∣+ fv̂

m̂33 ˙̂w = m̂11ûq̂− Ẑwŵ− Ẑw|w|ŵ
∣∣ŵ∣∣+ fŵ

m̂55 ˙̂q = (m̂33 − m̂11)ûŵ− M̂qq̂− M̂q|q|q̂
∣∣q̂∣∣

−BGzW sin θ + τ5 + fq̂
m̂66r̂ = (m̂11 − m̂22)ûv̂− N̂r r̂ − N̂r|r|r̂

∣∣r̂∣∣+ τ6 + fr̂
(29)

where, fû, fv̂, fŵ, fq̂ and fr̂ are defined as

fû = γ̂21sgn((ū− û) cosψ cos θ − (v̄− v̂) sinψ

+ (w̄− ŵ) cosψ sin θ ) cosψ cos θ

+γ̂22sgn((ū− û) sinψ cos θ + (v̄− v̂) cosψ

+ (w̄− ŵ) sinψ sin θ ) sinψ cos θ

− γ̂23sgn(−(ū− û) sin θ + (w̄− ŵ) cos θ ) sin θ

fv̂ = −γ̂21sgn((ū− û) cosψ cos θ − (v̄− v̂) sinψ

+ (w̄− ŵ) cosψ sin θ ) sinψ

+ γ̂22sgn((ū− û) sinψ cos θ + (v̄− v̂) cosψ

+ (w̄− ŵ) sinψ sin θ ) cosψ

fŵ = γ̂21sgn((ū− û) cosψ cos θ − (v̄− v̂) sinψ

+ (w̄− ŵ) cosψ sin θ ) cosψ sin θ

+ γ̂22sgn((ū− û) sinψ cos θ + (v̄− v̂) cosψ

+ (w̄− ŵ) sinψ sin θ ) sinψ sin θ

+ γ̂23sgn(−(ū− û) sin θ + (w̄− ŵ) cos θ ) cos θ

fq̂ = γ̂25sgn(q̄− q̂)

fr̂ = γ̂26sgn((r̄ − r̂)/cos θ ) cos θ

C. CTHE OUTPUT FEEDBACK TRACKING CONTROLLOR
To achieve the spatial trajectory tracking of underactuated
UUVs, the tracking errors xe, ye, ze, θe and ψe should be
stabilized. Therefore, the control Lyapunov function is set as:

Vkin=
1
2
x2e +

1
2
y2e +

1
2
z2e + (1− cos θe)+ (1− cosψe)

(30)

Tacking the time-derivative of (30) the solution of Eqs. (12)
and (13), it is obtained as follows:

V̇kin = (u− uR(cosψe cos θ cos θR + sin θ sin θR))xe
+ (q− qR − uRze cosψe) sin θe
+ (r/cos θ − rR/cos θR + uRye cos θR) sinψe
+ (uR(1− cosψe) cos θ sin θR + w)ze + vye (31)

To ensure that Eq.(31) is negative, the surge velocity u,
pitch angular velocity q and yaw angular velocity r are treated
as the virtual control inputs of the kinematic subsystem, and
they are set to

δu = uR(cosψe cos θ cos θR + sin θ sin θR)− kxxe
δq = qR + uRze cosψe − kθ sin θe
δr = (rR/cos θR − uRye cos θR − kψ sinψe) cos θ

(32)

where kx , kθ and kψ are the adjustment gain coefficients and
all positive. To avoid complex differential calculations for the
virtual controller(32), the bioinspired filter based the Shunt-
ing Neural Dynamics Model is introduced [55]–[57]. The
Shunting Neural Dynamics Model is derived from Hodgkin’s
and Huxley’s research concerning the ionic mechanisms
related to the excitation and inhibition of the peripheral and
central parts of nerve cell membranes [55], [56]. The dynam-
ics of voltage across the membrane can be expressed by
differential equations as follows:

Cm
dVm
dt
=−(Ep+Vm)gp+(ENa − Vm)gNa−(EK+Vm)gK

(33)

where Vm is the voltage across the membrane. The nota-
tion Cm is the membrane capacitance, and the parameters
EK , ENa and Ep are the Nernst potentials for potassium
ions, sodium ions, and passive leak current in the membrane,
respectively. The symbols gK , gNa and gp are the conduc-
tance of potassium and sodium, and the passive channels are
functions of input signals that vary with time. Substituting
Cm = 1, x = Ep+Vm, A = gp, B = ENa+Ep,D = EK −Ep,
S+ = gNa and S− = gK into Eq. (33), the Shunting Neural
Dynamics Model can be obtained [55], [56]

dx
dt
= −Ax + (B− x)S+(t)− (D+ x)S−(t) (34)

where, x is the neural activity (membrane potential) of the
neuron. A, B and D are the passive decay rate, the upper and
the lower bounds of the neural activity, respectively, and are
all nonnegative constants. S+(t) and S−(t) are the excitatory
and inhibitory inputs, respectively. The virtual controller (32)
is set to the inputs of this bioinspired filter, that is,

δ̇∗u = −Auδ
∗
u + (Bu − δ∗u )f (δu)− (Du + δ∗u )g(δu)

δ̇∗q = −Aqδ
∗
q + (Bq − δ∗q )f (δq)− (Dq + δ∗q )g(δq)

δ̇∗r = −Arδ
∗
r + (Br − δ∗r )f (δr )− (Dr + δ∗r )g(δr )

(35)

where, f (x) = max(x, 0) denotes the excitatory; g(x) =
max(−x, 0); δ∗u , δ

∗
q , δ
∗
r are outputs of the bioinspired filter.

This bioinspired filter is a continuous differential equation,
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which guarantees that its output remains in a region [−D,B]
for any excitatory and inhibitory inputs. However, the track-
ing controllers (32) and (35) are not actual control inputs.
Therefore, the tracking controller (32) or (35) does not
achieve the trajectory tracking task of underactuated UUVs.
To thoroughly implement the spatial trajectory tracking
objectives, the dynamic tracking controller is developed to
extend the virtual control law(35). Since the linear and angu-
lar velocities of underactuated UUV need to be estimated by
the state observer(28), the following tracking error variables
are introduced

ûe = û− δ∗u
q̂e = q̂− δ∗q
r̂e = r̂ − δ∗r

,


eu = δ∗u − δu
eq = δ∗q − δq
er = δ∗r − δr

(36)

Further, substituting Eqs. (32) and (36) into Eq. (31),
the derivative V̇kin becomes

V̇kin = −kxx2e − kθ sin
2 θe − kψ sin2 ψe

+ (ue + eu)xe + (qe + eq) sin θe
+ ((re + er ) sinψe)/cos θ

+ (uR(1− cosψe) cos θ sin θR + w)ze + vye (37)

To ensure that Eq. (37) is negative, the dynamic tracking
controller should be developed. Considering the parameter
perturbation of underactuated UUVs, the dynamic equations
of the tracking error variables ûe, q̂e and r̂e can be obtained
by tacking the derivatives of these tracking error variables and
substituting the kinetic equations (4).

m̂11 ˙̂ue = m̂22v̂r̂ − m̂33ŵq̂− X̂uû− X̂u|u|û
∣∣û∣∣− m̂11δ̇

∗
u

+τ1 + fû + d
∗

1

m̂55 ˙̂qe = (m̂33 − m̂11)ûŵ− M̂qq̂− M̂q|q|q̂
∣∣q̂∣∣

−BGzW sin θ − m̂55δ̇
∗
q + τ5 + fq̂ + d

∗

5

m̂66 ˙̂re = (m̂11 − m̂22)ûv̂− N̂r r̂ − N̂r|r|r̂
∣∣r̂∣∣− m̂66δ̇

∗
r

+τ6 + fr̂ + d
∗

6

(38)

where, d∗1 = m̃11u̇ − m̃11δ̇
∗
u , d

∗

5 = m̃55q̇ − m̃55δ̇
∗
q ,

d∗6 = m̃66ṙ − m̃66δ̇
∗
r .

To thoroughly achieve the spatial trajectory tracking objec-
tives, the following three integral terminal sliding surface are
introduced

Su = ûe + λu

∫ t

0
sigαu (ûe(τ ))dτ

Sq = q̂e + λq

∫ t

0
sigαq (q̂e(τ ))dτ

Sr = r̂e + λr

∫ t

0
sigαr (r̂e(τ ))dτ

(39)

where λu, λq and λr are all positive constants representing
integral coefficient of the integral terminal sliding surface.
Parameters αu, αq and αr are positive numbers belonging to
(1, 2). sigα(x) = |x|α sgn(x).

Calculating the derivative of sliding surface (39) yields
Ṡu = ˙̂ue + λusigαu (ûe)
Ṡq = ˙̂qe + λqsigαq (q̂e)
Ṡr = ˙̂re + λrsigαr (r̂e)

(40)

Without considering parameter perturbation, the equivalent
control law can be derived by solving Ṡu = 0, Ṡq = 0 and
Ṡr = 0 along the solution of Eq.(38).

τ1eq = −m̂22v̂r̂ + m̂33ŵq̂+ X̂uû+ X̂u|u|û
∣∣û∣∣

+m̂11δ̇
∗
u − fû − λum̂11sigαu (ûe)

τ5eq = (m̂11 − m̂33)ûŵ+ M̂qq̂+ M̂q|q|q̂
∣∣q̂∣∣

+BGzW sin θ + m̂55δ̇
∗
q − fq̂ − λqm̂55sigαq (q̂e)

τ6eq = (m̂22 − m̂11)ûv̂+ N̂r r̂ + N̂r|r|r̂
∣∣r̂∣∣

+m̂66δ̇
∗
r − fr̂λr − m̂66sigαr (r̂e)

(41)

However, the equivalent controllers cannot perform good
trajectory tracking with parameter perturbation. Therefore,
the reaching laws are introduced to this tracking control
scheme, eliminating the effect of the parameter perturbation
and disturbance. 

τ1r = −Kusgn(Su)
τ5r = −Kqsgn(Sq)
τ6r = −Krsgn(Sr )

(42)

where, Ku, Kq and Kr are the reaching law gains and specifi-
cally expressed as:

Ku = m̃22
∣∣v̂r̂∣∣+ m̃33

∣∣ŵq̂∣∣+ X̃u ∣∣û∣∣+ X̃u|u| ∣∣û∣∣2
+m̃11

∣∣δ̇∗u ∣∣+ λum̃11
∣∣ûe∣∣αu + ηu

Kq = (m̃11 + m̂33)
∣∣ûŵ∣∣+ M̃q

∣∣q̂∣∣+ M̃q|q|
∣∣q̂∣∣2

+m̃55

∣∣∣δ̇∗q ∣∣∣+ λqm̃55
∣∣q̂e∣∣αq + ηq

Kr = (m̃11 + m̃22)
∣∣ûv̂∣∣+ Ñr ∣∣r̂∣∣+ Ñr|r| ∣∣r̂∣∣2

+m̃66
∣∣δ̇∗r ∣∣+ λr m̃66

∣∣r̂e∣∣αr + ηr
(43)

where, ηu, ηq and ηr are all positive constants to be deter-
mined. Then, the total state feedback tracking controller is as
follows

τ1 = τ1eq + τ1r = −m̂22v̂r̂ + m̂33ŵq̂+ X̂uû+ X̂u|u|û
∣∣û∣∣

+m̂11δ̇
∗
u − fû − λum̂11sigαu (ûe)− Kusgn(Su)

τ5 = τ5eq + τ5r = (m̂11 − m̂33)ûŵ+ M̂qq̂+ M̂q|q|q̂
∣∣q̂∣∣

+BGzW sin θ + m̂55δ̇
∗
q − fq̂ − λqm̂55sigαq (q̂e)

−Kqsgn(Sq)
τ6 = τ6eq + τ6r = (m̂22 − m̂11)ûv̂+ N̂r r̂ + N̂r|r|r̂

∣∣r̂∣∣
+m̂66δ̇

∗
r − fr̂ − λr m̂66sigαr (r̂e)− Krsgn(Sr )

(44)

The detailed block diagram of the output feedback spatial
trajectory tracking control scheme is shown in Fig.1. Under
the proposed trajectory tracking controller, the stability of
the closed loop system for the trajectory tracking errors is
organized as follows:
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FIGURE 1. The block diagram of the output feedback spatial trajectory
tracking controller.

Theorem 2: Consider the dynamic equations(12), (13)
and (38) of the spatial trajectory tracking errors for underac-
tuated UUVs with parameter perturbation and unmeasurable
velocities. Under the output feedback spatial trajectory track-
ing control law (44), (32) and (35), the tracking error variables
xe, ye, ze, θe, ψe, ûe, q̂e, r̂e, eu, eq and er are stabilized to the
bounded neighborhood of the origin.
Proof: To analyze the stability of the closed-loop tracking

control system, the control Lyapunov function are chosen as

Vall =
1
2
(m11S2u + m55S2q + m66S2r )+

1
2
(e2u + e

2
q + e

2
r )

+Vkin + Vo2 (45)

Tacking the derivative of the Lyapunov function (45)
under the output feedback spatial trajectory tracking control
law (44), (32) and (35), and substituting Eqs. (24) and (37),

V̇all = −kxx2e − kθ sin
2 θe − kψ sin2 ψe + vye

+ (uR(1− cosψe) cos θ sin θR + w)ze+(ue + eu)xe
+ (qe + eq) sin θe + ((re + er ) sinψe)cos θ

+m11SuṠu + m55SqṠq + m66Sr Ṡr
+ euėu + eqėq + er ėr

+ x̃T2 M̂ I (x1) ˙̃x2 +
∑
i∈S

γ̃2i ˙̃γ2i (46)

From the definition of functions f (x) and g(x), f (x)+ g(x) =
|x| and f (x) − g(x) = x. If the upper and lower bounds of
the neuron activity are equal (i.e. B(·) = D(·)), the bioinspired
filter (35) become as follows

δ̇∗u = −(Au + |δu|)δ
∗
u + Buδu

δ̇∗q = −(Aq +
∣∣δq∣∣)δ∗q + Bqδq

δ̇∗r = −(Ar + |δr |)δ
∗
r + Brδr

(47)

Then, the dynamic equations of the error variables eu, eq and
er are derived

ėu = −(Au + |δu|)δ∗u + Buδu − δ̇u
ėq = −(Aq +

∣∣δq∣∣)δ∗q + Bqδq − δ̇q
ėr = −(Ar + |δr |)δ∗r + Brδr − δ̇r

(48)

Substituting Eqs. (38), (40) and (44), the derivative of the
control Lyapunov function (45) can become as follows

V̇all ≤ −ηu |Su| − ηq
∣∣Sq∣∣− ηr |Sr | − l1x2e − λyy2e − λzz2e

− l2(1− cos θe)−l3(1− cosψe)− l4e2u−l5e
2
q−l6e

2
r

−

∑
i∈S

√
2σ 2

2i

m̂ii
V

1
2
o2 +11

= −ξ1Vkin − ηu |Su| − ηq
∣∣Sq∣∣− ηr |Sr | − l4e2u

−l5e2q − l6e
2
r

∑
i∈S

√
2σ 2

2i

m̂ii
V

1
2
o2 +11 (49)

V̇all ≤ −ξ1Vkin −
ηuµ7

2
S2u −

ηqµ8

2
S2q −

ηrµ9

2
S2r

−µ10

∑
i∈S

√
2σ 2

2i

m̂ii
Vo2 − l4e2u − l5e

2
q − l6e

2
r +12

≤ −ξ2Vall +12 (50)

where the definitions of the above parameters are:

11 =
1

2µ1
92
u +

1
2µ2

92
q +

1
2µ3

92
r +

1
2µ4

u2e +
1

2µ5
q2e

+
1

2µ6
r2e +

1
2
(uR(1−cosψe) cos θ sin θR+w)2+

1
2
v2

+ (λy +
1
2
)y2e + (λz +

1
2
)z2e

+

∑
i∈S

(

√
σ 2
2i

m̂ii
|γ̃2i| + ε0iγ̃2iγ̂2i);

l1 = kx −
µ4

2
, l2 = kθ −

µ5

2
,

l3 = kψ −
µ6

2 cos2 θ
, l4 = Bu −

µ1

2
,

l5 = Bq −
µ2

2
, l6 = Br −

µ3

2
;

ξ1 = min(2l1, 2λy, 2λz, l2, l3);

12 =
1

2µ1
92
u +

1
2µ2

92
q +

1
2µ3

92
r +

1
2µ4

u2e +
1

2µ5
q2e

+
1

2µ6
r2e +

1
2
(uR(1−cosψe) cos θ sin θR+w)2+

1
2
v2

+ (λy +
1
2
)y2e + (λz +

1
2
)z2e

+

∑
i∈S

(

√
σ 2
2i

m̂ii
|γ̃2i| + ε0iγ̃2iγ̂2i)

1
2µ7
+

1
2µ8
+

1
2µ9
+

1
2µ10

ξ2 = min(ξ1, ηuµ7, ηqµ8, ηrµ9, 2l4, 2l5, 2l6, µ10

×

∑
i∈S

√
2σ 2

2i

m̂ii
)

And the symbolsµi (i = 1, . . . , 10), λy and λz are all positive
constants to be determined. The notation 9u, 9q and 9r are

9u = xe − δ̇u, 9q = sin θe − δ̇q, 9r = sinψe/cos θ − δ̇r

From Eq.(50), it can be seen that all tracking error variables
xe, ye, ze, θe, ψe, ûe, q̂e, r̂e, eu, eq and er are stabilized to the
bounded neighborhood of the origin. �

IV. NUMERICAL SIMULATIONS
In this section, the proposed spatial output-feedback tra-
jectory tracking control scheme is applied to the 5-DOF
motion model of the underactuated UUV shown in section II.
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FIGURE 2. Helical trajectory tracking, UUV predefined reference trajectory
(solid line), actual trajectory without current disturbance (dashdot line),
actual trajectory with current disturbance (dotted line), and estimated
trajectory (dashed line).

The typical numerical simulation results are provided to
demonstrate that the designed output-feedback trajectory
tracking controller can effectively force an underactuated
UUV to track the desired spatial trajectories, and is robust
to parameter perturbations and unknown ocean currents. The
nominal values of hydrodynamic parameters of the simula-
tion model are given in the table: [54]

TABLE 1. Rigid body parameters and nominal values of hydrodynamic
parameters.

To illustrate the robustness of the trajectory tracking con-
troller, the simulation motion model is added the ±20%
parameter perturbation in all hydrodynamic coefficients.
In one of the numerical simulations, the constant ocean cur-
rents with speed 0.75 m/s and direction 60o is introduced to
the kinetic equations(4), which is used to reveal the robust-
ness concerning the ocean currents. The kinetic equations (4)
become as follows [33]:

m11u̇ = m22vrr − m33wrq− Xuur − Xu|u|ur |ur | + τ1
m22v̇ = −m11urr − Yvvr − Yv|v|vr |vr |

m33ẇ = m11urq− Zwwr − Zw|w|wr |wr |

m55q̇ = (m33 − m11)urwr −Mqq−Mq|q|q |q|

−(zGW − zBB) sin θ + τ5
m66ṙ = (m11 − m22)urvr − Nrr − Nr|r|r |r| + τ6

(51)

FIGURE 3. The projection of the spatial trajectory tracking results:
a) onxnyn projection, b) onxnzn projection.

where, ur = u − uc, vr = v − vc and wr = w − wc
are the relative velocities. The symbols uc, vc and wc are
ocean current velocity in {b}, which are summed up νbc =
[uc, vc,wc]T. The ocean current velocity vector νbc can be
obtained

νbc = Rn
b(2nb)−1νnc (52)

where, νnc = [Vc cos(βc),Vc sin(βc), 0]T is the ocean current
velocity vector in {n}, Vc and βc are the ocean speed and
direction in {n}. Then, the ocean current velocity vector νnc is
equal to νnc = [0.38m/s, 0.65m/s, 0m/s]T. In all of following
simulations, the identical output-feedback trajectory tracking
controller is adopted to force the underactuated UUV to track
the spatial desired reference trajectory. The gain coefficients
of the equivalent output injection SMO are set as follows:
γ11 = 8, γ12 = 20, γ13 = 8, γ15 = 0.1, γ16 = 1.8, ε01 = 0.5,
ε02 = 0.5, ε03 = 0.5, ε05 = 0.1, ε06 = 0.1, ε11 = 1, ε12 = 1,
ε13 = 1, ε15 = 4, ε16 = 8 and T0i = 0.04 (i = 1, 2, 3, 5, 6).
The gain coefficients of the designed tracking controller are
set as follows: kx = 0.6, kθ = 4.9, kψ = 3.9, Aj = 0.08,
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FIGURE 4. The tracking response for the position of the underactuated
UUV and their tracking errors: a) xn− axes tracking response and error,
b) yn−axes tracking response and error, c) zn−axes tracking response
and error.

Bj = 0.5, Cj = 0.3 (i = u, q, r), λ̂u = 0.8, λ̂q = 0.7,
λ̂u = 0.6, α̂1 = 0.1, α̂5 = 0.12, α̂6 = 0.2, η̂u = 0.1,
η̂q = 0.8 and η̂r = 0.5. In all simulations, the predefined
reference trajectory is the helical trajectory in the inertial
reference frame {n}, and is described as:

xR = 100 sin(0.01t)
yR = 100 cos(0.01t)
zR = 0.1t + 0.6

(53)

Under the spatial output-feedback trajectory tracking con-
troller (32), (35) and (44), the underactuated UUV starts from
the stationary state. The initial position and attitude of the
UUV are x = −10 m, y = 100 m, z = 11.6 m, θ = 0

◦

and ψ = 0
◦

. The numerical simulation results are shown in
Fig. 2 to Fig.8. The actual, estimated and desired trajecto-
ries in the underwater three-dimensional space are displayed
in Fig. 2, and their projections in the onxnyn and onxnzn
are shown in Fig.3. The tracking response and errors of the
position for the underactuated UUV in {n} are demonstrated
in Fig.4. These simulation results indicate that the estimation
position and the actual position of the underactuated UUV
can quickly converge to the desired reference trajectory. The
absolute values of the tracking and estimated errors with-
out current disturbance are less than 0.13m, 0.95m, 0.01m
(xe, ye, ze) and 0.39m, 0.41m, 0.2m (x̃, ỹ, z̃), and their absolute
values with current are 2.6m, 2.63m, 3.14m (xe, ye, ze) and
0.42m, 0.46m, 0.31m (x̃, ỹ, z̃). In Fig.5, the tracking response
and errors of the attitude angle are revealed. When the current
disturbance exist, it can be seen from Fig.4 that the pitch
angle θ appears−20

◦

limit pitch angle for a long time, and the
yaw also has±50

◦

tracking error (more than 300
◦

yaw angu-
lar error is mainly due to the jump of the yaw angle at±180

◦

).

FIGURE 5. a) The tracking response of the pitch angle θ and its tracking
error, b) The tracking response of the yaw angle ψ and its tracking error.
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The attitude tracking errors are almost zero without current
disturbance. The estimated errors all are almost zero.

Fig.6 shows the tracking responses of the linear velocities
and their tracking errors. Due to the initial position-tracking
error, there is a significant transient process in the tracking
response of the surge velocity. When the current disturbances
exist, there are some certain errors in the tracking responses of
all linear velocities. The absolute values of the linear velocity

FIGURE 6. a) The tracking response of the surge velocity u and its
tracking error, b) The tracking response of the sway velocity v and its
tracking error, c) The tracking response of the heave velocity w and
its tracking error.

tracking errors and estimated errors without current all are
less than 0.03 m/s, while these linear velocity tracking errors
and estimated errors under current are −0.35 m/s ≤ ue ≤
0 m/s, |ũ| ≤ 0.80 m/s, |ve| ≤ 0.75 m/s, |ṽ| ≤ 0.75 m/s,
−0.30 m/s ≤ we ≤ 0.13 m/s and −0.35 m/s ≤ w̃ ≤
0.17 m/s. When the underactuated UUV with current distur-
bance changes its depth, its heave velocity comes into being
spikes. Compared to the no-current disturbances, all linear
velocities of the UUV have large tracking errors under the
current disturbances, especially yaw and heave velocity.

The tracking response of the pitch and yaw angular
velocities and their tracking errors are displayed in Fig.7.
The tracking errors and estimated errors of the pitch and
yaw angular velocities without current meet the following
conditions: |qe| ≤ 0.002 rad/s, |re| ≤ 0.005 rad/s, |q̃| ≤
0.003 rad/s and |r̃| ≤ 0.004 rad/s, respectively, while the
pitch and yaw angular velocity with current appears the
maximum angular velocity tracking error of −0.1 rad/s and
−0.026 rad/s, respectively. Simultaneously, there is a certain
fluctuation in the estimated value of yaw angular velocity.
Fig.8 shows the control inputs of the underactuated UUV,
including the surge control force τ1, the pitch control
torque τ5 and the yaw control torque τ6.

FIGURE 7. a) The tracking response of the pitch angular velocity q and its
tracking error, b) The tracking response of the yaw angular velocity r and
its tracking error.
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FIGURE 8. The surge control force τ1, the pitch control torque τ5 and the
yaw control torque τ6.

V. CONCLUSION
This work addressed the tracking problems of the spatial
trajectory for underactuated UUVswithout linear and angular
velocity measurements. Firstly, the state-feedback tracking
controller has been developed based the bioinspired filtering
backstepping and first-order integral SMC. To obtain the
velocity information (including linear and angular velocities)
for feedback, a finite-time convergent observer has been pro-
posed in the light of the equivalent output injection SMO,
to reconstruct the full motion states of underactuated UUVs
in the three-dimensional underwater space. Well, the spatial
output-feedback trajectory tracking control scheme has been
designed by combining the corresponding the state-feedback
tracking controller and the finite-time convergent motion
state observer together. The proposed output-feedback tra-
jectory tracking controller is strongly robust with regard to
model parameter perturbation and constant unknown current,
and stabilize all tracking errors to the bounded neighborhood
of the origin. All analysis results show that the proposed
tracking control scheme is provided with the preferably con-
trol performance.
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