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ABSTRACT An accurate frequency estimator of complex sinusoid in additive white noise is proposed. It is
based on interpolation of Fast Fourier Transform (FFT) and Discrete-Time Fourier Transform (DTFT). Zero-
padding is firstly performed before the FFT of the sinusoid sampled data, and the coarse estimate is obtained
by searching the discrete frequency index of the maximum FFT spectrum line. Then the fine estimate is
obtained by employing the maximum FFT spectrum line and two DTFT sample values located on the left
and right side of the maximum spectrum line. The correlation coefficients between the Fourier Transform of
the noises on two arbitrarily spaced spectrum lines are derived, and theMSE calculation formula is derived in
additive white noise background based on the correlation coefficients. Simulations results demonstrate that
the proposed algorithm has lower MSE than the competing algorithms, and its signal-to-noise ratio (SNR)
threshold is lower compared with Candan algorithm, AM algorithm and Djukanovic algorithms.

INDEX TERMS Frequency estimation, FFT, DTFT, interpolation.

I. INTRODUCTION
Sinusoidal frequency estimation can be applied in numer-
ous fields such as radar, sonar, measurement, instrumen-
tation, power systems, communications and so on. Many
sinusoidal frequency estimators have been proposed and
they can be categorized into time-domain estimators [1]–[3]
and frequency-domain estimators [4]–[28]. Time-domain
estimators generally have low computational efficiency, and
are not appropriate to be used in real-time applications. On the
other hand, frequency-domain estimators based on FFT have
the advantage of high computation speed and can easily be
realized in hardware.

The sinusoidal frequency can be described as f0 = (m +
δ)1f , where m is the index of the peak magnitude of FFT,
and δ is the residual frequency with the value range of
[−0.5, 0.5]. 1f is the FFT frequency resolution. The FFT
based sinusoidal frequency estimators can usually be carried
out in two stages. Firstly, the coarse estimate is obtained by
searching the discrete frequency index of the maximum FFT
spectrum line. Next, the fine estimate is usually obtained by
interpolation with the maximum FFT spectrum line and the
neighboring spectrum lines.

The associate editor coordinating the review of this manuscript and
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The maximum likelihood (ML) method produces the least
MSE [1] at the cost of low computational efficiency. The
maximum FFT spectrum line and the second largest spectrum
line are utilized to perform frequency estimation [4], [5]. But
when the signal frequency is close to an integral multiple
of 1f , the estimation error increases obviously. In consid-
eration of the above disadvantage of frequency interpolation
with two FFT spectrum lines, different improved methods
have been proposed [6]–[12]. Three samples around the peak
in the FFT spectrum are utilized for the frequency estima-
tion [6], [7]. Zero-padding is carried out before the FFT of
the sinusoid sampled data, and the two neighboring spectrum
line of the maximum FFT spectrum line are used for the fine
estimation [8]. RCTSL estimator [9] utilizes three samples
around the peak in the 2N -point FFT spectrum to get the
fine estimate. AM estimator [10] makes use of the two DFT
samples located on the left and right side of the maximum
FFT spectrum line, and its estimation variance is very close
to the Cramer-Rao lower bound (CRLB) after two iterations.
Based on the best linear unbiased estimation fusion rule, all
the spectrum lines can be used for the fine estimation [12],
and the precision after iterations is similar to that of the
estimator in [10]. When there are interfering signals, win-
dowing methods can be utilized [20]–[28]. The estimation
expression of Candan estimator [6] is generalized in [20]
when window functions are adopted. When generic cosine
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windows are used, Candan method [6] and AM method [10]
are generalized in [21].

An accurate sinusoidal frequency estimation algorithm
based on interpolation of FFT and DTFT is proposed in
this paper. Zero-padding is performed before the FFT of the
sinusoid sampled data. The coarse estimate is obtained by
finding the discrete frequency index of the maximum FFT
spectrum line. The fine estimate is obtained by employing
the maximum FFT spectrum line and two DTFT sample
values of the sinusoid located on the left and right side of
the maximum FFT spectrum line. These two DTFT sam-
ple values are closer to the DTFT peak of the sinusoid
than the spectrum lines used by the estimators in [6]–[10].
Therefore, these two DTFT sample values utilized by the
proposed estimator are less affected by the noise, and the
proposed estimator should outperform the existing estimators
in [6]–[10] in additive white noise. As the intervals between
the spectrum lines utilized by the proposed algorithm are
smaller than 1f which is the frequency resolution of
N -point FFT, the noise on these spectrum lines are correlated.
The correlation coefficients between the Fourier Transform
of the noises on two arbitrarily spaced spectrum lines are
derived. With these correlation coefficients, the MSE calcu-
lation formula is derived in additive white noise. Simulations
are performed, and the results demonstrate that the proposed
algorithm has lowerMSE than the competing algorithms, and
its signal-to-noise ratio (SNR) threshold is lower compared
with Candan algorithm [6], AM algorithm [10], Djukanovic
algorithms [13], [14].

The rest of the work is structured as follows. In Section II,
the estimation expression is derived and the iterative proce-
dures are described. In Section III, the MSE calculation for-
mula is derived. In section IV, the MSE calculation formula
and the performance of the proposed estimator are verified
through simulations. Finally, Section V concludes the work.

II. PROPOSED ALGORITHM
The signal can be expressed as [11]:

x(n) = s(n)+ z(n), n = 0, 1, . . . ,N − 1 (1)

s(n) = Aej(2π fn/fs+ϕ), n = 0, 1, . . . ,N − 1 (2)

where the complex white noise term z(n) has zero mean and
its variance is σ 2. A is the amplitude, f is the frequency and
ϕ is the initial phase. fs is the frequency of sampling. N is the
samples number. The SNR can be defined as SNR = A2/σ 2.

Pad N zeros to s(n), s′(n) is obtained. The 2N -point FFT
of s′(n) in a noiseless case is

S (k) =
N−1∑
n=0

Aejφej2π
f
fs
ne−j

π
N nk

= Aejφe
jπ (N−1)

(
f
fs
−

k
2N

) sin [πN ( f
fs
−

k
2N

)]
sin
[
π

(
f
fs
−

k
2N

)] ,

k = 0, 1, . . . , 2N − 1 (3)

The coarse estimate is obtained by finding the discrete
frequency index of the maximum FFT spectrum line which
is denoted as m. And the coarse estimate is m1f , where
1f = fs/(2N ) is the FFT frequency resolution.

The complex values of the maximum FFT spectrum line
and two DTFT sample values of s′(n) at the location f = (m±
0.5)1f are utilized to get the fine estimate. These two DTFT
sample values are closer to the DTFT peak of the signal than
the spectrum lines utilized by the estimators in [6]–[10].

At the location f = (m+ p)1f , the DTFT sample value of
s′(n) is

Sp =
N−1∑
n=0

s(n)e−j2π fn|f=(m+p)1f (4)

By substituting f = (m + δ)fs/(2N ) into (3), formula (4)
can be expressed as

Sp =
Aejϕ

2N
·

1− ejπ (δ−p)

1− ejπ (δ−p)/N
(5)

When N � π (δ − p), ejπ (δ−p)/N ≈ 1 + jπ (δ − p)/N.
Formula (4) can be expressed as

Sp =
bp
δ − p

(6)

where

bp =
jAejϕ

2π

[
1− ejπ (δ−p)

]
(7)

In (6) and (7), let p equal to 0, 0.5 and −0.5 respectively.
After some deduction, the following expressions are obtained

S−0.5
S0

(
1+

0.5
δ

)
− 1 = ejπδ

[
S−0.5
S0

(
1+

0.5
δ

)
− j
]

(8)

S0.5
S0

(
1−

0.5
δ

)
− 1 = ejπδ

[
S0.5
S0

(
1−

0.5
δ

)
+ j
]

(9)

After some deduction with (8) and (9), δ can be estimated
as follows:

δ̂ = Re

{
0.5

[
(1− j)S0.5 + (1+ j)S−0.5

]
(1− j)S0.5 + 2jS0 − (1+ j)S−0.5

}
(10)

where the real part of the expression is taken in order to obtain
a real-valued estimate of δ in the noise background.

The sinusoidal frequency is

f̂ = (m+ δ̂) ·1f (11)

Inspired by the literature [10], the frequency can be esti-
mated in an iterativemanner to further improve the estimation
performance. The iterative procedures are shown as follows.

III. THEORETICAL ANALYSIS
The 2N-point DFT of is as follows:

X (k) = S(k)+ Z (k), k = 0, 1, 2, . . . . . .N − 1 (12)

At the maximum spectrum line location, X (k) can be
expressed as

X0 = S0 + Z0 (13)
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TABLE 1. Iterative procedures of the estimator.

The two DTFT sample values of s′(n) at the location
f = (m± 0.5)1f are as follows:

X0.5 = S0.5 + Z0.5 (14)

X−0.5 = S−0.5 + Z−0.5 (15)

Replace S0, S0.5 and S−0.5 in (10) with X0, X0.5 and X−0.5
respectively, then δ̂ can be expressed as

δ̂

=
0.5[(1− j)X0.5 + (1+ j)X−0.5]

(1− j)X0.5 − (1+ j)X−0.5 + 2jX0

=
0.5[(1−j)S0.5+(1−j)Z0.5+(1+j)S−0.5+(1+j)Z−0.5]

(1−j)S0.5−(1+j)S−0.5+2jS0+(1−j)Z0.5−(1+j)Z−0.5+2jZ0

=
0.5[(1−j)S0.5+(1+j)S−0.5+(1−j)Z0.5 + (1+ j)Z−0.5]

1+ (1−j)Z0.5−(1+j)Z−0.5+2jZ0
(1−j)S0.5−(1+j)S−0.5+2jS0

·
1

(1− j)S0.5 − (1+ j)S−0.5 + 2jS0
(16)

Under high SNR, the following expression is obtained[
(1− j)Z0.5 − (1+ j)Z−0.5 + 2jZ0

]
�
[
(1− j)S0.5 − (1+ j)S−0.5 + 2jS0

]
(17)

Then a first order Taylor series expansion of (16) is made.
And (16) can be expressed as

δ̂

=
0.5

[
(1−j)S0.5+(1+j)S−0.5+(1−j)Z0.5+(1+j)Z−0.5

]
(1−j)S0.5−(1+j)S−0.5+2jS0

·

[
1−

(1−j)Z0.5−(1+j)Z−0.5+2jZ0
(1−j)S0.5−(1+j)S−0.5+2jS0

]
≈

0.5
[
(1−j)S0.5+(1+j)S−0.5

]
(1−j)S0.5−(1+j)S−0.5+2jS0

+
0.5

[
(1−j)Z0.5+(1+j)Z−0.5

]
(1−j)S0.5−(1+j)S−0.5+2jS0

−

[
(1−j)S0.5+(1+j)S−0.5

][
(1−j)Z0.5−(1+j)Z−0.5+2jZ0

]
2
[
(1−j)S0.5−(1+j)S−0.5+2jS0

]2
(18)

In the last step of (18), the assumption that[
(1− j)Z0.5 + (1+ j)Z−0.5

]
�

[
(1− j)S0.5 + (1+ j)S−0.5

]
under high SNR is used. Under the noiseless circumstance,
the estimate of δ is close to the true value. So the following
expression is obtained

0.5[(1− j)S0.5 + (1+ j)S−0.5]
(1− j)S0.5 − (1+ j)S−0.5 + 2jS0

≈ δ (19)

Substituting (19) into (18), (18) can be expressed as

δ̂ ≈ δ +
0.5

[
(1− j)Z0.5 + (1+ j)Z−0.5

]
(1− j)S0.5 − (1+ j)S−0.5 + 2jS0

−δ ·

[
(1− j)Z0.5 − (1+ j)Z−0.5 + 2jZ0

][
(1− j)S0.5 − (1+ j)S−0.5 + 2jS0

] (20)

After simple algebra, the following expression is obtained

δ̂−δ≈

[
(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0

]
(1−j)S0.5−(1+j)S−0.5+2jS0

(21)

Since the mean values of Z0, Z0.5 and Z−0.5 are all zero,
it can be concluded that E

(
δ̂
)
≈ E (δ). Therefore,δ̂ is the

unbiased estimate of δ.
The expression on the left of (21) is real-valued. Therefore,

the real part of the expression on the right of (21) is taken in
order to obtain a real-valued result as follows:

δ̂−δ≈Re

{[
(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0

]
(1−j)S0.5−(1+j)S−0.5+2jS0

}
(22)

The MSE of the estimate of δ is

E
[(
δ̂−δ

)2]
≈E

[(
Re
{
(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0

(1−j)S0.5−(1+j)S−0.5+2jS0

})2
]

(23)

In order to obtain the formula ofE
[(
δ̂ − δ

)2]
, the denom-

inator of (22) is considered first. According to the definition
of DTFT, the following expression is obtained

S (m+ i) = Aejφejπ (
N−1
2N )(δ−i) sin

[
π
2 (δ − i)

]
sin
[
π
2N (δ − i)

] (24)

When N is large, (24) can be expressed as

S (m+ i) ≈ Aejφej
π
2 (δ−i)

2N sin
[
π
2 (δ − i)

]
π (δ − i)

(25)

Let i equals to 0, 0.5 and -0.5 respectively, the following
expressions are obtained

S0 ≈ ejφej
π
2 δ ·

2AN sin
(
π
2 δ
)

πδ
(26)

S0.5 ≈ ejφe
j π2

(
δ− 1

2

)
·
2AN sin

[
π
2 (δ − 0.5)

]
π (δ − 0.5)

(27)
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S−0.5 ≈ ejφej
π
2 (δ+

1
2 ) ·

2AN sin
[
π
2 (δ + 0.5)

]
π (δ + 0.5)

(28)

By substitution of (26)∼(28) into the denominator of (22),
the following expression is obtained

(1− j)S0.5 − (1+ j)S−0.5 + 2jS0

≈ −j2Aejφej
π
2 δN

[
−δ cos (πδ/2)+ 0.5 sin(πδ/2)

πδ(δ + 0.5)(δ − 0.5)

]
(29)

By substitution of (29) into (22), the following expression
is obtained

δ̂−δ≈Re

{
je−jφ−j

π
2 δ [πδ(δ+0.5)(δ − 0.5)]

AN [sin(πδ/2)−2δcos (πδ/2)]

·
[
(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0

]}
(30)

So the MSE of the estimate of δ can be expressed as

E
[(
δ̂ − δ

)2]
=

1
A2N 2 ·

[
πδ(δ + 0.5)(δ − 0.5)

sin(πδ/2)− 2δcos (πδ/2)

]2
·E
(
B2
)

(31)

where

B = Re
{
je−jφ−j

π
2 δ
[
(1− j)(0.5− δ)Z0.5

+(1+ j)(0.5+ δ)Z−0.5 − 2jδZ0
]}

(32)

B can be expressed as

B = Re
{
je−j

π
2 δ
[
(1− j)(0.5− δ)Z ′0.5

+(1+ j)(0.5+ δ)Z ′
−0.5 − 2jδZ ′0

]}
(33)

where Z ′0.5 = e−jφZ0.5, Z ′−0.5 = e−jφZ−0.5, Z ′0 = e−jφZ0.
Let Z ′0 = U0 + jV0,Z ′0.5 = U0.5 + jV0.5 and Z ′

−0.5 =

U−0.5 + jV−0.5. Then (33) can be expressed as

B = [(0.5− δ) (U0.5 + V0.5)+ (0.5+ δ) (U−0.5 − V−0.5)

+ 2δV0] sin(πδ/2)− [(δ − 0.5) (U0.5 − V0.5)

+ (0.5+ δ) (U−0.5 + V−0.5)− 2δU0] cos(πδ/2) (34)

As the intervals between the spectral lines X0, X0.5 and
X−0.5 used by the proposed estimator are smaller than 1f
which is the frequency resolution of N -point FFT, the noise
on different spectral lines are correlated. In order to com-
pute E

(
B2
)
, the correlation coefficients between X0, X0.5 and

X−0.5 are derived in the Appendix.
Using (34), (57), E

(
Uf1Uf2

)
= E

(
Uf2Uf1

)
, E

(
Vf1Vf2

)
=

E
(
Vf2Vf1

)
, and E

(
Uf1Vf2

)
= −E

(
Uf2Vf1

)
, the following

expression is obtained

E
(
B2
)
≈

(
8δ2 + 1

)
E
(
U2
0

)
− 8δ2E (U0U0.5)

+ (4δ2 − 1)E (U0.5V−0.5)+ 8δ2E (U0V0.5) (35)

Zero-padding is performed before the 2N -point FFT
of the sinusoid sampled data. Therefore, the frequency

interval between X0 and X0.5 is −0.25/T , the frequency
interval between X0 and X−0.5 is 0.25/T , and the fre-
quency interval between X0.5 and X−0.5 is 0.5/T . According
to (55) and (60), the following expressions are obtained

E (U0U0.5) ≈ Nσ 2/π (36)

E (U0V0.5) ≈ −Nσ 2/π (37)

E (U0.5V−0.5) ≈ −Nσ 2/π (38)

By substitution of (36)∼(38) into (35), (35) can be
expressed as

E
(
B2
)
≈

(
8δ2 + 1

) Nσ 2

2
−

(
12δ2 + 1

) Nσ 2

π
(39)

By substitution of (39) into (31), the following expression
is obtained

E
[(
δ̂ − δ

)2]
≈
π2
(
4δ2 + 0.5

)
− π

(
12δ2 + 1

)
4N · SNR

·

[
δ (δ + 0.5) (δ − 0.5)

δcos (πδ/2)− 0.5sin (πδ/2)

]2
(40)

When δ = 0 and δ = ±0.5, the numerator and the
denominator of the above formula are all zero. The limit of
the above formula can be calculated to obtain the values of

E
[
(δ̂ − δ)2

]
when δ = 0 and δ = ±0.5. Therefore, the MSE

of the estimate of δ can be expressed as

E
[(
δ̂ − δ

)2]

≈



π2
(
4δ2 + 0.5

)
− π

(
12δ2 + 1

)
4N · SNR

·

[
δ (δ + 0.5) (δ − 0.5)

δcos (πδ/2)− 0.5sin (πδ/2)

]2
, δ 6= 0,±0.5

π (π − 2)/
[
8 (4− π)2 N · SNR

]
, δ = 0

π (3π − 8)/
[
4 (π − 2)2 N · SNR

]
, δ = ±0.5

(41)

IV. EXPERIMENTAL RESULTS
Computer simulations were performed to verify the perfor-
mance of the algorithm presented above and the MSE cal-
culation formula. The parameters used in the experiments of
this section are as follows: A = 1, f0 = (N

/
4 + δ)fs/N , for

example, fs = 512kHz, N = 512, then f = (128+ δ)kHz =
127.5 ∼ 128.5kHz, and the initial phase ϕ is uniformly
distributed between 0 and 2π .TheCRLBofmean square error
(MSE) is [1]:

CRLB =
3f 2s

2π2N (N 2 − 1) · SNR
(42)

Fig.1 shows the simulated RMSE of the proposed
algorithm, Fang algorithm [8], RCTSL algorithm [9],
AM algorithm [10], Djukanovic algorithm 1 [13] and
Djukanovic algorithm 2 [14]. The presented algorithm, Fang
algorithm and RCTSL algorithm are based on zero-padding
and 2N -point FFT. AM algorithm, Djukanovic algorithm 1
and Djukanovic algorithm 2 are without zero-padding and
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FIGURE 1. Simulated RMSE versus δ (N = 512,SNR = 0 dB).

TABLE 2. Numerical complexity of different algorithms.

based on N -point FFT. We chose N = 512 and SNR = 0dB.
δ is the residual frequency when 2N -point FFT is performed.
It can be seen that when δ varies from−0.5 to 0.5, the RMSE
of the presented algorithm in the first iteration increases with
the increase of |δ|. When |δ| approaches zero, the RMSE
of the presented algorithm approaches its minimum and is
pretty close to CRLB. In the second iteration, the RMSE of
the presented algorithm is pretty close to CRLB in the whole
value range of δ and is lower than the RMSE of other methods
(except for the case when |δ| is very close to 0.5). When |δ|
is close to 0.5, the RMSE of RCTSL algorithm and Fang
algorithm are relatively large (except for the algorithms in
the first iteration). The reason is that under this circumstance,
the amplitude of one neighbor of the maximum FFT spectrum
line is close to its minimum, and is vulnerable to the noise.

The analytical and simulated RMSE of the presented algo-
rithm are shown in Fig.2 for SNR = 10dB. And the values of
N are 256 and 32 separately. In the first iteration, the theoret-
ical RMSE is obtained according to (41). It can be seen that
the theoretical calculation results are in good agreement with

FIGURE 2. Analytical and simulated RMSE of the proposed algorithm
(SNR = 10 dB): (a) N = 256 and (b) N = 32.

FIGURE 3. Simulated RMSE of Candan algorithm, AM algorithm, Fang
algorithm and the proposed algorithm versus SNR (N = 16).

the simulation results. The RMSE of the presented algorithm
increases as |δ| increases in the first iteration. When |δ|
approaches zero, the RMSE of the presented algorithm is
pretty close to CRLB.

Fig.3 and Fig.4 present the RMSE versus SNR of the pro-
posed algorithm, Candan algorithm [6], AM algorithm [10],
Fang algorithm [8], RCTSL algorithm [9], Djukanovic
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FIGURE 4. Simulated RMSE of RCTSL algorithm, Djukanovic algorithm 1,
Djukanovic algorithm 2 and the proposed algorithm versus SNR (N = 16).

algorithm 1 [13] and Djukanovic algorithm 2 [14] for
N = 16. δ obeys uniform distribution from −0.5 to 0.5. It
can be seen that the SNR threshold of the presented algo-
rithm is lower than that of Candan algorithm, Djukanovic
algorithm 1, Djukanovic algorithm 2 and AM algorithm, and
is identical to that of RCTSL algorithm and Fang algorithm.
It can also be seen that the RMSE of the presented algorithm
is lower than the RMSE of the other algorithms. The RMSE
of Candan algorithm is obviously higher than that of the other
algorithms.

TABLE 2 shows the numerical complexity of different
algorithms. It can be seen that the presented algorithm in
the second iteration has a bit higher computational complex-
ity than that of Fang algorithm and RCTSL algorithm which
are also based on 2N -point FFT. Some additional computa-
tional effort is needed for the presented algorithm to achieve
more accurate results and lower SNR threshold.

V. CONCLUSION
An accurate sinusoidal frequency estimation algorithm based
on interpolation of FFT and DTFT is proposed in this paper.
Zero-padding is performed before the FFT of the sinusoid
sampled data. The fine estimate is obtained by employing
the maximum FFT spectrum line and two DTFT sample
values of the sinusoid located on the left and right side of
themaximumFFT spectrum line. The correlation coefficients
between the Fourier Transform of the noises on two arbi-
trarily spaced spectrum lines are derived. With these corre-
lation coefficients, the MSE calculation formula is derived
in additive white noise. The results of theoretical analysis
and simulation show that the proposed estimator has lower
RMSE than the competing FFT interpolation based estima-
tors. The SNR threshold of the presented algorithm is lower
than that of Candan algorithm,AMalgorithm andDjukanovic
algorithms. Although some additional computational effort is
required to perform 2N -point FFT and calculate the DTFT

sample values, the presented algorithm is more accurate and
its SNR threshold is lower.

APPENDIX
The correlation coefficients between the Fourier Transform
of the noises on two arbitrarily spaced spectrum lines.

According to the DTFT definition, the DTFT of z(n) at the
location f is

Zf =
N−1∑
n=0

z(n)e−j2π fTn/N (43)

Let Z ′f = e−jφZf , the following expression is obtained

Z ′f =
N−1∑
n=0

z′(n)e−j2π fTn/N (44)

where

z′(n) = e−jφz(n) (45)

z′(n) can be expressed as

z′(n) = z′r (n)+ jz′i(n) (46)

z′r (n) is the real part of z
′(n), and z′i(n) is the imaginary part

of z′(n). Obviously z′(n) has the same property with z(n). The
following expressions are obtained

E
(
z′r (n)

)
= E

(
z′i(n)

)
= E

(
z′(n)

)
= 0 (47)

var
(
z′r (n)

)
= var

(
z′i(n)

)
=
σ 2

2
(48)

E
(
z′i(n) · z

′
i(m)

)
= E

(
z′r (n) · z

′
r (m)

)
=


1
2
σ 2, n=m

0, n 6=m
(49)

E
(
z′r (n) · z

′
i(m)

)
= 0 (50)

Using Uf and Vf to represent the real part and the imagi-
nary part of Z ′f , the following expressions are obtained

Uf=
N−1∑
n=0

[
z′r (n)cos (2π fTn/N )+ z

′
i(n)sin (2π fTn/N )

]
(51)

Vf=
N−1∑
n=0

[
−z′r (n)sin (2π fTn/N )+ z

′
i(n)cos (2π fTn/N )

]
(52)

The autocorrelation function of Uf at the location f1 and f2
which are near m1f is

E
(
Uf1Uf2

)
= E

{
N−1∑
n=0

[
z′r (n)cos (2π f1Tn/N )+ z

′
i(n)sin (2π f1Tn/N )

]
·

N−1∑
m=0

[
z′r (m)cos (2π f2Tm/N )+ z

′
i(m)sin (2π f2Tm/N )

]}
(53)
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By substitution of (49) and (50) into (53), the following
expression is obtained

E
(
Uf1Uf2

)
=
σ 2

2

N−1∑
n=0

[cos (2π (f1 − f2)Tn/N )]

=
σ 2
· sin (π (f1 − f2)T )

2 sin (π (f1 − f2)T/N )
· cos

[
πT (f1−f2)

(
1−

1
N

)]
(54)

When N is large, the following expression is obtained

E
(
Uf1Uf2

)
≈
Nσ 2 sin (2π (f1 − f2)T )

4π (f1 − f2)T
(55)

After similar derivation, the autocorrelation function
of Vf is

E
(
Vf1Vf2

)
= E

{
N−1∑
n=0

[
−z′r (n)sin

(
2π f1Tn
N

)
+ z′i(n)cos

(
2π f1Tn
N

)]

·

N−1∑
m=0

[
−z′r (m)sin

(
2π f2Tm
N

)
+ z′i(m)cos

(
2π f2Tm
N

)]}

=
σ 2

2

N−1∑
n=0

[
cos

(
2π f1Tn
N

)
cos

(
2π f2Tn
N

)
+ sin

(
2π f1Tn
N

)
sin
(
2π f2Tn
N

)]
(56)

Formula (56) is the same with the first line of (54).
Therefore, the following expression is obtained

E
(
Vf1Vf2

)
= E

(
Uf1Uf2

)
(57)

The cross correlation function between Uf and Vf is

E
(
Uf1Vf2

)
=E

{
N−1∑
n=0

[
z′r (n)cos (2π f1Tn/N )+ z

′
i(n)sin (2π f1Tn/N )

]
·

N−1∑
m=0

[
−z′r (m)sin (2π f2Tm/N )+z

′
i(m)cos (2π f2Tm/N )

]}
(58)

By substitution of (49) and (50) into (58), the following
expression is obtained

E
(
Uf1Vf2

)
=
σ 2

2

N−1∑
n=0

[
sin
(
2π f1Tn
N

)
cos

(
2π f2Tn
N

)
− cos

(
2π f1Tn
N

)
sin
(
2π f2Tn
N

)]
=
σ 2

2

N−1∑
n=0

[sin (2π (f1 − f2)Tn/N )]

=
σ 2

2
·

sin (π (f1 − f2)T )
sin (π (f1 − f2)T/N )

sin
[
πT (f1 − f2)

×

(
1−

1
N

)]
(59)

When N is large, the following expression is obtained

E
(
Uf1Vf2

)
≈
Nσ 2 sin2 (π (f1 − f2)T )

2π (f1 − f2)T
(60)
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