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ABSTRACT In order to solve the problem of slow convergence speed and long planned path when the robot
plans a path in unknown environment by using Q-learning algorithm, we propose the Experience-Memory
Q-Learning (EMQL) algorithm based on the continuous update of the shortest distance from the current
state node to the start point. The autonomous learning ability of the robot is enhanced by the different role
assignments of two tables in the proposed algorithm. EM table with (m ∗ 1) dimension is designed to record
the distance information, reflecting the learning process of the robot. Q table is adopted as an auxiliary
guidance for the experience transfer strategy and experience reuse strategy, and these strategies enable the
robot accomplish the task even if the destination is changed or the path is blocked. Further, the learning
efficiency of the robot in the EMQL algorithm is improved by the dual reward mechanism consisting of static
reward and dynamic reward. The static reward is designed to prevent the robot from exploring a state node
excessively. The dynamic reward is responsible for helping the robot avoid searching blindly in unknown
environment. We test the effectiveness of the proposed algorithm on both grid maps and road network maps.
The comparison results in planning time, iteration times and path length show that the performance of
the EMQL algorithm is superior to Q-learning algorithm in convergence speed and optimization ability.
Additionally, the practicability of the proposed algorithm is validated in a real-world experiment using the
Turtlebot3 burger robot.

INDEX TERMS Path planning, Q-learning, experience memory, experience transfer, experience reuse.

I. INTRODUCTION
In order to improve production efficiency, more and more
robots have popularized its utilization in logistics ware-
housing, intelligent services, industrial production, rescue
detection and other fields. With the expansion of robot appli-
cation, the need to improve the autonomous navigation ability
of robot in complex environment is becoming more and
more important. Therefore, as one of the core technologies
of autonomous navigation, path planning technology has
become one of the hot topics in robotics.

Path planning technology can help the robot move from the
start point to the target point without colliding with obstacles.

The associate editor coordinating the review of this manuscript and
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According to the specified requirements, the robot needs to
consider the improvement of performance indicators in the
path planning process, such as planning time, path length,
path smoothness, etc. The good path planning ability can
ensure the robot to complete the designated work safely. If the
robot lacks the adaptability to the surrounding environment
in unknown environment, it will not only unable to complete
the task, but also damage the working environment, resulting
in unnecessary losses. Therefore, to realize the path planning
in unknown environment by improving the autonomous plan-
ning ability of the robot has important realistic significance
and practical value.

Numerous algorithms used for robot path planning in
unknown environment have been proposed so far. Most of
the literatures pay attention to the improvement of obstacle
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avoidance ability for the robot, which are difficult to meet
the practical application requirements when the robot needs
to work in a completely unknown environment. To change
this situation, recently, reinforcement learning algorithm has
been applied to robot path planning. After reading the relevant
articles, it can be found that to make the robot use reinforce-
ment learning to plan a path in the real world, there are still
many bottlenecks need to be broken through. First, due to the
lack of prior knowledge, the robot needs a long learning time
to complete the path planning task, which is difficult to meet
the application requirements. Second, the robot needs to have
path replanning ability to solve unexpected problems. Third,
to improve the planning efficiency, the robot is expected to
have an ability the transfer its experience between different
tasks. Therefore, it is a challenging task to propose a robot
path planning algorithm with high learning efficiency and
suitable for dynamic scenarios.

In this paper, we propose the Experience-Memory
Q-learning (EMQL) algorithm, which combines the
Q-learning algorithm with experience memory mechanism.
This algorithm can realize robot path planning in unknown
environment, even when the environment or task changes
during the movement of the robot. In addition, the exper-
iment results show that the proposed algorithm is superior
to Q-learning algorithm in convergence speed, optimization
ability and dynamic adaptability.

Our contributions can be described in three aspects.
To begin with, we propose the dual reward, including static

reward and dynamic reward after considering that the location
of the target point is the only information that the robot can
obtain when it plans a path in unknown environment. The
static reward is related to the properties of the state nodes and
the dynamic reward changes with the distance to the target
point. The dual reward can help the robot avoid blind search
and over exploration, which improves the learning efficiency
of the robot.

Furthermore, in order to solve the problem of slow con-
vergence speed when the robot plans by using Q-learning
algorithm, we design the EM table as experience table in the
EMQL algorithm. The EM table is used to record the shortest
distance from different state nodes to the start point, which
replaces Q table to reflect the learning progress. After the EM
table converges, the robot can plan a safe and short path based
on the obtained experience. If the robot exploresm state nodes
and it has n optional actions at each state node, the dimension
of the EM table is (m ∗ 1), while the dimension of the Q
table used in the Q-learning algorithm is (m ∗ n). Obviously,
the dimension of the EM table is much smaller than that of
Q table, which greatly reduces the learning time of the robot
and meets the need of rapid path planning.

Finally, we propose two strategies to enable the robot
to complete the assigned task successfully even when the
environment or the task changes, namely experience transfer
and experience reuse. In these strategies, Q table is assigned
a new role, working as auxiliary guidance to assist the robot
to complete the new task. If the robot detects the changes in

destination or environment on its move, it will not only query
the experience memorized in the EM table, but also take the
action guidance in Q table into account. The design of these
strategies improves the efficiency of path replanning and
makes it possible for the the robot to transfer its experience
between different tasks.

In the experiment part, three kinds of experiments are per-
formed to test the applicability of the EMQL algorithm. They
are the simulation experiments on grid maps, the simulation
on the road networkmap and a practical path planning experi-
ment of Turtlebot3 burger robot. The experiment results show
that the EMQL algorithm is better than Q-learning algorithm
in terms of the path optimization ability and path planning
speed. Moreover, due to the use of the experience transfer
strategy and experience reuse strategy, the robot can also
complete the task successfully even when there are some
changes in the environment.

The rest of this paper is organized as follows. Section II
gives a summary of existing algorithms for robot path
planning in unknown environment. Section III introduces
Q-learning algorithm concisely, which is used for comparison
in the experiment part. The proposed algorithm is described
in detail in Section IV. Section V lays out the experiment
results and a brief analysis. Section VI summarizes the entire
article and discusses the implication of the findings to future
research into this area.

II. RELATED WORK
There are a wide variety of robot path planning algorithms.
The algorithm proposed in this paper is based on reinforce-
ment learning, but in order to gain a more clear understanding
of the research status of robot path planning in unknown envi-
ronment, we expand our investigation scope to the all widely
used algorithms, instead of confining our attention to rein-
forcement learning. The robot path planning algorithms can
be roughly classified into four types, which are respectively
based on the fuzzy logic, intelligent optimization, SLAM and
reinforcement learning.

The core of fuzzy logic algorithm is to construct a behavior
rule database which can be used by the robot in different
scenes. When the robot moves in unknown environment,
it can plan a path by looking up the database according to
the surrounding information obtained by sensors. Fuzzy logic
makes the autonomous control of the robot possible, so it
has been widely used in robot path planning since it was put
forward. Yang et al. proposed a layered goal-oriented motion
planning strategy using fuzzy logic in [1], which made the
size of the rule-bases and the planning time reduced. In the
explainable intelligence model proposed by Keneni et al.,
the unmanned aerial vehicles can make decisions accord-
ing to six rules when they are on the mission [2]. In [3],
Nguyen et al. improved K-Bug algorithm by introducing the
fuzzy logic for boundary following. In order to achieve 3D
AUV path planning, Sun et al. designed a fuzzy system with
accelerate/break module to enable the AUV avoid dynamic
obstacles automatically [4]. In addition, some scholars
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confirmed that the combination of fuzzy logic and genetic
algorithm can improve the planning efficiency in terms of the
distance travelled and the traveling time [5], [6].

Fuzzy logic algorithm can make the robot plan a safe path
in unknown environment with partial prior knowledge, and
it has been put into use in the factory. However, the design
of the algorithm usually involves complex control theory.
Moreover, fuzzy rules usually depend on artificial experience
and are related to the application scenarios of the robot.
Therefore, the generalization ability of fuzzy logic algorithm
is not good.

The intelligent optimization algorithm includes genetic
algorithm, immune algorithm, ant colony algorithm, particle
swarm optimization and other algorithms inspired by natural
phenomena or biological groups. This type of algorithm can
endow the robot with powerful optimization ability through
many iterations, so there are lots of research results in robot
path planning. In the algorithm proposed by Garcia et al.,
they introduced ant colony algorithm to simulate the robot
navigation and selected the optimal path by using the criterion
of a fuzzy rule [7]. Wang et al. used particle swarm algorithm
to solve the problem of path planning for the UAV swarms
and got the remarkable results [8]. Tong et al. proposed an
algorithm that combined the particle swarm algorithm with
genetic algorithm in [9], which can be used for the welding
robot path optimization. In addition, simulated annealing
algorithm [10], artificial immune network algorithm [11] and
tabu algorithm [12] are also be applied in robot path planning.

However, the process of iterative computation consumes
a lot of time while helping the robot improve the ability of
path optimization. Besides, there are usually many param-
eters in the intelligent optimization algorithm. The choice
of parameters directly determines the performance of the
algorithm. Therefore, this type of algorithm is usually used
for the theoretical research on the path planning rather than
the practical application.

Simultaneous Localization andMapping (SLAM)was pro-
posed by Smith and Cheeseman in 1986 [13]. The core of
SLAM is to deduce the observation model and motion model
of the robot by the acquired external data, and then the
real-time estimation of the motion state for the robot can
be achieved. Since the design of this algorithm takes into
account the feedback information of sensors, the SLAM algo-
rithm is commonly used in practical applications. In order to
improve the accuracy of the estimation model, many scholars
improved the SLAM algorithm. Dissanayake et al. proved
that a solution to the SLAM problem is possible and eluci-
dated the underlying structure of the SLAM problem in [14].
In [15], Blosch et al. proposed an approach to enable a micro
aerial vehicle to navigate in unknown environment based on
the visual SLAM algorithm of Klein et al. [16]. To improve
the positioning accuracy of the robot when exploring the
environment, Maurović et al. put forward a path planning
algorithm for active SLAM in [17]. In addition, the robot
can plan efficiently in the complex 3D environments while
representing the 3D environment by using the algorithm

presented by Yang et al. [18]. In a recent paper of Lee et al.,
they constructed the estimation models using the direction of
the vanishing point, by which the robot position and the line
landmark can be derived as simple linear equations [19].

When the robot plans a path by using SLAM in unknown
environment, the difference matching of point clouds is the
basis for the robot to achieve localization and mapping. How-
ever, themultiple matching calculations consume a lot of time
while improving the positioning accuracy, causing the low
planning efficiency. Therefore, when the robot do not need to
build the environmental maps in real time during the planning
process, the application of SLAM seems to waste its talent.

The reinforcement learning algorithm based on trial-
and-error mechanism has attracted much attention in recent
years because no prior data is needed to plan an optimal
or sub-optimal path. The core of this algorithm is to obtain
the maximum cumulative reward in the environment. If the
execution of an action can increase the reward of the robot,
the probability of choosing this action will be increased in the
following learning process. Reinforcement learning includes
Q-learning, Sarsa, deep Q network, deep deterministic pol-
icy gradient, and so forth. In the past few years, they have
been used in robot path planning [20]–[24]. Q-learning is
one of the most classical reinforcement learning algorithms.
In recent years, many scholars have made improvements to
expand its applications. In order to improve the efficiency of
path planning and reduce unnecessary calculation in Q table,
EQL and IQL algorithms were put forward in succession
by Konar et al. in 2010 [25] and 2013 [26]. To address the
limitation of slow convergence in the Q-learning, Soong et al.
introduced the flower pollination algorithm to improve the
initialization of the Q table [27]. The convergence speed
can also be improved by the exploration region expansion
strategy proposed by Gao et al. [28]. In addition, Q-learning
algorithm can be used for path planning ofmulti-robot system
in combination with optimization algorithms such as particle
swarm optimization [29] and differential evolution [30].

Although repeated learning can make the robot plan a
better path, the problem of low learning efficiency caused by
which makes reinforcement learning difficult to be applied
in practical applications. Thus, increasing the convergence
speed of the algorithm will help to promote the develop-
ment of reinforcement learning. In addition, almost all robot
path planning algorithms based on the reinforcement learning
aim to improve the obstacle recognition ability of the robot.
Scholars ignore that the connectivity between state nodes
can also be regarded as experience. Therefore, it is novel
and meaningful to propose a path planning algorithm that
can be applied for robots without vision module in unknown
environment.

In summary, numerous algorithms can be used for robot
path planning in unknown environment and each has its own
merits (see Table 1). However, there are still several bottle-
necks in the study of path planning. First, when the robot
needs to work in a completely unknown environment, it is dif-
ficult to guarantee the safety of the robot only by establishing

47826 VOLUME 8, 2020



M. Zhao et al.: Experience-Memory Q-Learning Algorithm for Robot Path Planning in Unknown Environment

TABLE 1. The features of typical algorithms for robot path planning in unknown environment.

FIGURE 1. The model of Q-learning and the structure of Q table.

a set of general behavior rules. Second, the lack of prior
knowledge results in a great deal of redundant calculation in
two adjacent searches of the robot. Third, most algorithms
converge slowly, which affects the efficiency of path plan-
ning. Finally, few algorithms are available for dynamic path
planning, especially when the robot has no vision module.
These problems limit the further advancement of the study on
path planning. Consequently, it is essential to propose a path
planning algorithm that can be used in unknown environment
with strong generalization ability, fast convergence speed
and minor calculation. In this paper, inspired by the existing
algorithms, we propose the EMQL algorithm.

III. THE Q-LEARNING ALGORITHM
Q-learning algorithm (QL) is proposed by Watkins in
1992 [31], which is one of the most classical methods of
reinforcement learning. Enlightened by behaviorism psy-
chology, no prior knowledge is required in this algorithm,
so Q-learning has been widely used since it was proposed.
The agent gains the environment information according to the
reward obtained by performing different actions. After many
iterations, the agent can get a convergent Q table which is
used to guide it on how to obtain the maximum cumulative
reward. The model of Q-learning and the structure of Q table
are shown in Figure 1, where there are m states and n actions
in each state and 0 represents the initial value.

There are four important elements in Q-learning algorithm:
state (s), action (a), reward (R), Q table (Q). The definitions
of these elements are related to the application background of
Q-learning algorithm.When it is used for robot path planning,
the state node of the environment is usually defined as the
coordinate, and the action is the direction in which the robot
can move. In addition, in many studies, the design of reward

is related to the properties of the state nodes the robot reaches.
If the robot moves to a dangerous place, such as the positions
around the obstacles, it will receive a negative reward imme-
diately. On the contrary, a positive reward will be gained if
the robot arrives at the destination.

As the core of Q-learning algorithm, the rows in the Q table
represent the state nodes of the environment, and the columns
of the corresponding rows stand for the optional actions of the
agent at that state. In order to calculate the Q table, Watkins
used Bellman Equation to simulate the learning process of the
agent in Q-learning algorithm, as shown in (1).

Q(st+1, at+1) = (1− α) ∗ Q(st , at )+ α ∗

[R(st , at )+ γ ∗ max
a

(Q(st+1, a))] (1)

Here, α and γ are the learning rate and discount factor of
the agent respectively. If the agent performs action at in state
st at time t , it will get immediate reward R(st , at ) and delayed
reward max

a
(Q(st+1, a)). Therefore, the design of reward is

significant in Q-learning algorithm, which affects the action
selection of the agent. According to the Bellman Equation,
the agent will eventually obtain a convergent Q table and
accomplish the task in the environment by searching for the
maximum value of each state in the Q table. The pseudo code
of Q-learning is shown as follows.

Algorithm 1 Q-Learning Algorithm
1: Initial α, γ and Q table
2: if episode <= max episode then
3: Initial st
4: while st is not terminal do
5: choose at using policy derived from Q table
6: execute action at , observe R(st , at ) and st+1
7: update Q(s, a) by using Bellman Equation
8: st = st+1
9: end while
10: end if

IV. THE EMQL ALGORITHM
In Q-learning algorithm, the robot updates Q(s, a) by using
Bellman Equation according to the reward obtained at each
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FIGURE 2. The model of the EMQL algorithm.

state node. The convergence of Q table means that the robot
has the ability to plan the shortest path on the basis of its
experience. This self-learning mode makes Q-learning algo-
rithm widely used in the research on autonomous mobile
of unmanned vehicle. However, the dimension of Q table
changes with the complexity of working environment and the
number of optional actions.When theworking environment is
complex, the convergence of Q table will be a long process.
In addition, the improper reward function will also lead to
inefficient path planning.

In order to make the robot efficiently complete the plan-
ning task in unknown environment,we propose the EMQL
algorithm. This algorithm combines the experience mem-
ory mechanism and the dual reward method based on the
Q-learning algorithm. The design of the reward function and
the EM table are the shining points of this paper, which
enables the EMQL algorithm performs better than Q-learning
algorithm. In addition, the use of the experience transfer strat-
egy and experience reuse strategy can improve the dynamic
planning ability of the robot. Since the proposed algorithm is
inspired by the pathfinding strategy of human, the robot can
complete the path planning task faster and better by using the
EMQL algorithm than using Q-learning algorithm.

In this section, we will introduce the proposed algorithm
from five aspects. The framework of the EMQL algorithm
is shown in the first part. The second part describes the dual
reward method from two aspects: static reward and dynamic
reward. In the third part, the update process for the EM table

will be presented, which elaborates how a robot uses the
accumulated experience to accomplish the task in unknown
environment. Furthermore, the experience transfer strategy
and the experience reuse strategy are introduced separately
in the last two parts.

A. ALGORITHM FRAMEWORK
When the robot plans a path in unknown environment by
using the EMQL algorithm, the robot needs to go through
two stages: learning stage and planning stage. In the learning
stage, the robot has to move from the start point to the end
point many times to collect the shortest path experience.
During the path search process, the shortest distance will be
recorded in EM table and the state nodes on the shortest path
will be stored in Instructions. If the shortest path length in
the EM table is invariable no matter how the robot moves,
it means that the robot has got enough information of the
environment and can safely move to the destination by using
the experience it memorizes. In the planning stage, the robot
only needs to move with the guidance of the Instructions step
by step until it reaches the end point. In addition, the experi-
ence transfer strategy and the experience reuse strategy in the
EMQL algorithm will solve the dynamic problems the robot
encounters in the learning stage and planning stage respec-
tively. Figure 2 shows the model of the EMQL algorithm.

In the learning stage, the robot will get static reward and
dynamic reward. The static reward is related to the prop-
erty of the state node the robot reaches, which is essential
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FIGURE 3. Flow chart for robot path planning by using the EMQL algorithm in a 4*4 grid map.

to prevent the robot from failing into local optimum. The
dynamic reward associated with the distance from the current
position to the end point provides convenience for the robot
to reach the end point quickly. The sum of the reward is used
to update Q(s, a) which guides the robot to choose the action
at each state node, and the experiment results prove that the
combination of these two reward can help the robot learn a
shorter path.

In the EMQL algorithm, the robot not only needs to update
the Q table as it moves, but also is required to update the
EM table which records the shortest path length from each
state node to the start point. If the robot finds a shorter
path when it searches in the environment, the data recorded
in the EM table will be updated immediately. At the same
time, the state nodes on the shortest path will be recorded in
Instructions. After the Q table converges, the robot completes
the learning stage. If the robot searches m state nodes totally
in the learning stage and it has n optional actions at each state
node, the dimension of EM table is (m∗1), while the Q table
used in the Q-learning algorithm is (m ∗ n). Therefore, it can
be inferred that Q table will not converge when the EM table
converges. Therefore, adopting the EM table to reflect the
learning progress of the robot will save a lot of learning time.

Because the robot has obtained the shortest path based on
its experience in the learning stage, it only needs to move
along the state nodes recorded in Instructions in the planning
stage. In addition to improving the efficiency of path plan-
ning, the experience transfer strategy and experience reuse
strategy for solving the dynamic problems the robot encoun-
ters are also the highlights of EMQL algorithm. In these
strategies, Q table is adopted as the auxiliary experience to
assist the robot to plan the path.

The robot usually encounters two kinds of dynamic scenes
when it plans a path in unknown environment: the destination
is changed or the path is blocked. Therefore, in order to
improve the applicability of the EMQL algorithm, we pro-
pose corresponding strategies for these two dynamic scenes.
When the robot is asked to change the destination, it will
adopt the experience transfer strategy. Under the guidance
of this strategy, the robot will try to apply the experience
acquired in the original task to the new planning task. In addi-
tion, if the robot finds that the path ahead is blocked when it
moves along the planned path, the experience reuse strategy
will be chose. The robot will try to find a detour in Instruc-
tions, and a short-distance learning will be executed if there
is no detour can be found.

In Figure 3, we take a 4*4 grid map as an example to show
the process of path planning in unknown environment when
the robot plans a path by using the EMQL algorithm.

In the grid map shown in Figure 3, we assume that the size
of the map is 4m*4m and the robot needs to move southeast
to the position which is 4.25m away from the start point.
In the simulation environment, the robot can move forward,
backward, left and right, but it cannot collide with obsta-
cles or the edge of the environment. To facilitate recording,
the state nodes are numbered according to the order of robot
exploration. Because the action with large value in Q table
will be executed by the robot, there are several values which
correspond to the immovable directions are defined as −inf
in Q table. In addition, it can be seen that the shortest moving
distance from each state node to the state node 1 is recorded
in the EM table. The table named Instructions on the right
side of the EM table stores the waypoints of the shortest path,
which is used to guide the robot to finish the planning task.
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FIGURE 4. The static reward function designed in the EMQL algorithm.

B. DUAL REWARD
The reward function is a timely evaluation of the action
performed by the robot. A well-designed reward function will
help improve the learning efficiency of the robot in unknown
environment. Previous studies in reinforcement learning sug-
gested that we can set the default reward to a small negative
value when the robot needs to get a short path. In this way,
the average reward in free space will be small, and there is
a certain numerical distance between the reward the robot
obtains at the target point and near the obstacles. Based on this
theoretical basis, we design a static reward which is related
to the property of the state node. Apart from this common
reward function, we devise a dynamic reward in the EMQL
algorithm. The dynamic reward changes with the Euclidean
distance between the state node the robot reaches and the
end point. The combination of these two kinds of reward
prevents the robot from blind search and over exploration in
the environment. The total reward that the robot gets as it
moves is shown in (2), whereReward1 and Reward2 represent
static reward and dynamic reward respectively.

Reward = Reward1 + Reward2 (2)

1) THE STATIC REWARD FUNCTION
The state nodes in the environment can be divided into four
categories: the start point, the forbidden point, the target point
and the free point. These types of nodes are shown with
different logos in Figure 4, the purple line represents the free
space, and the blue area is the obstacle space. Based on this
classification, the robot will get different reward at different
state nodes, as shown in (3).

Reward1 =


−100, if st+1 is the start point
−500, if st+1 is the forbidden point
5000, if st+1 is the target point
−1, if st+1 is the free point

(3)

As shown in Figure 4, the forbidden point is defined as
the state node with only one reachable direction. The robot
is bound to turn back if it finds that the state node it arrives
at is not the target point and there is no direction to move
on, which will consume plenty of learning time. Therefore,
in order to improve the planning efficiency, it is necessary
to give the robot punishment when it arrives at such state
nodes.

FIGURE 5. The relationship between the total reward obtained by the
robot and λ.

2) THE DYNAMIC REWARD FUNCTION
When the robot works in unknown environment, it needs
to collect as much environment information as possible in
a shorter time to plan the path quickly. Therefore, in the
learning stage, avoiding blind search is essential for the
robot to improve the planning efficiency. In the EMQL algo-
rithm, we design the dynamic reward referring to human
path planning strategy. Based on this reward, the robot can
obtain well-directed environment information and be familiar
with the working environment quickly. The dynamic reward
is related to the change of the distance between the state
nodes the robot reaches and the target point at two moments,
as shown in (4) to (6):

dt =
√
(xgoal − xt )2 + (ygoal − yt )2 (4)

dt+1 =
√
(xgoal − xt+1)2 + (ygoal − yt+1)2 (5)

Reward2 = λ ∗
dt − dt+1
|dt − dt+1|

(6)

Here, (xt , yt ) and (xt+1, yt+1) are the coordinates of the
state nodes the robot reaches at t and t + 1 respectively, and
(xgoal, ygoal) is the target point. λ is a parameter related to the
static reward function, which is used to adjust the degree of
the robot moving towards the end point. The value of λ will
affect the proportion of static reward in the total reward the
robot obtains.

According to the definition of the dynamic reward,
the robot will get a negative reward if it moves away from
the end point. The total reward it obtains in this case is still
a negative value, which will not change the result that the
robot is punished. However, when the robot moves closer
to the destination, it will receive a positive reward. At this
time, the sum of the static reward and the dynamic reward
depends on the value of λ. If λ is too large, the impact of the
static reward that the robot gets at some state nodes will be
covered. If λ is too small, the willingness to move to the end
point of the robot is not strong, which will make the design
of dynamic reward meaningless. Therefore, according to the
definition of the static reward, the value of λ can be divided
into three intervals: [1, 100); [100, 500); [500,∞). As shown
in Figure 5, the red, blue and magenta points on the curve
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FIGURE 6. The structures of the EM table and Instructions.

represent that when the λ is 1, 100 and 500, the reward the
robot gains will be 0 when it reaches the free point, the start
point and the forbidden point.

C. EM TABLE AND INTRODUCTIONS
The design of the EM table is the core of the EMQL algo-
rithm and the information in Instructions guides the robot
move safely to the end point. Therefore, in this part, we will
give the definitions of the EM table and Instructions, and the
update process for the EM table will be shown in the end.

There are two tables designed in the EMQL algorithm.
One is the experience table for storing the shortest distance
between each state node to the start point, which is named as
the EM table. Another table is Instructions, which stores the
waypoints corresponding to the shortest distances recorded
in the EM table. The waypoints stored in Instructions are
updated according to the content of the EM table. There-
fore, the convergence of the EM table means the end of
the learning stage for the robot, and the robot can plan a
path according to the connection relationships of state nodes
recorded in Instructions. The structures of these tables are
shown in Figure 6.

In the EMQL algorithm, the shortest distance recorded
in the EM table will be continuously updated as the robot
searches the path in unknown environment. Ideally, if the
data in the EM table remains the same no matter how the
robot changes its action, then a short and safe path can be
planned by the robot. Hence the convergence of the EM table
is the sign of completing the learning stage in the proposed
algorithm. However, in terms of the simulation, due to the dif-
ferent criteria for the convergence of the EM table, the robot
will not necessarily find the global shortest path. Therefore,
the shortest path in this paper is defined on the basis of the
experience the robot has.

The update process of the EM table in the EMQL algo-
rithm is shown in Algorithm 2.

According to the update process of the EM table,
the design of the EM table has two advantages. First, if the
robot explores m state nodes in the environment, no matter
how many feasible actions at each state node, the dimension
of the EM table is m ∗ 1. However, the dimension of the
Q table used to judge the completion of learning stage in
Q-learning algorithm is m ∗ n. In terms of the dimension
of the experience list, the convergence time of EM table is
much shorter than that of Q table. Therefore, the design of the
EM table ameliorates the problem of slow convergence speed

Algorithm 2 Update of the EM Table and Instructions
1: Initial Q table=[];EM table=[];Instructions=[]
2: if episode <= max episode then
3: Initial st =the start point
4: while st is not terminal do
5: if st is not in the EM table then
6: add st and d(st , S) into the EM table
7: else
8: if d(st , S) is smaller than before then
9: update the EM table and Instructions
10: end if
11: end if
12: add reachable state nodes into Q table
13: choose at using policy derived from Q table
14: execute action at , observe R(st , at ) and st+1
15: update Q(s, a) by using Bellman Equation
16: st = st+1
17: if st+1 is not in Instructions then
18: add st+1 and st into Instructions
19: end if
20: end while
21: end if

caused by the large dimension of the Q table in Q-learning
algorithm. Second, if the robot finds a path which can help it
reach another state node faster, the data recorded in the EM
table and Instructions will be updated immediately. However,
Q(s, a) needs to be calculated by Bellman Equation many
times before the best action at a state node is changed, result-
ing in the delay of updating the optimal action. Therefore,
the EM table makes the path optimization ability of the robot
stronger in unknown environment, which is verified in the
experiment part of this paper.

D. EXPERIENCE TRANSFER STRATEGY
In our daily life, we often need to change the destination in
the middle of driving because of the change in the itinerary.
Timely adjustment of route can not only save time, but also
save energy consumption of vehicles. However, in unknown
environment, the lack of map information makes it difficult
for us to achieve rapid path replanning.We can only grope our
way forward in the experiment based on existing experience.
According to this life experience, we design the experience
transfer strategy in the EMQL algorithm. This strategy can
help the robot complete the task as usual even when the
destination is changed in the learning stage, which improves
the autonomous learning ability of robot.

Although the data recorded in Q table is not used to guide
the robot to plan the final path, it is adopted as a reference
for the action selection in the learning process. Hence to
make full use of the storage space, the Q table is used as
the auxiliary experience to assist the robot to complete the
new planning task quickly when the destination is changed.
The process of the experience transfer strategy used in the
EMQL algorithm is shown in Figure 7.
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FIGURE 7. The experience transfer strategy used by the robot in the learning stage when the destination of the planning
task is changed.

Algorithm 3 Experience Transfer Strategy in EMQL
1: Initial count = 0
2: if the target point is changed then
3: if count < 5 then
4: choose at according to the Q table
5: execute action at , observe st+1 and d(st+1,T )
6: if d(st+1,T )>d(st ,T ) then
7: count = count + 1
8: else
9: count = 0

10: end if
11: else
12: choose at using policy derived from Q table
13: execute action at , observe R(st , at ) and st+1
14: end if
15: end if

Since the experience in the EM table is collected in the
original task, the robot cannot use it all for the task with new
destination. However, the Q table can be used in the new task
because there is reference information of each action in the Q
table. Therefore, we regard it as an assisted experience list of
the robot. As shown in Figure 7, when the robot detects the
change of the target point in the learning stage, it will abandon
the ε-greedy strategy and choose the action corresponding to
the maximum value of the state node in the Q table. If the
deviation of the moving direction is detected five times in
a row, the ε-greedy strategy will be used again to select the
action until the completion of the new task. Because part of
the experience gained in the old task is transferred to the
new task, the relearning time is decreased and the planning
efficiency in the new task is improved.

The pseudo code of the experience transfer strategy in the
EMQL algorithm is shown in Algorithm 3.

E. EXPERIENCE REUSE STRATEGY
In addition to planning a safe path, the robot also needs
to have the ability of relearning to ensure that it can
adjust its path according to the changes of the environment.

Therefore, in order to help the robot search a detour as soon
as possible while having the ability to replanning, we propose
the experience reuse strategy in the EMQL algorithm. The
whole process of the experience reuse is shown in Figure 8.

If the robot detects that part of the path is blocked when it
moves along the planned path, it has two methods to bypass
the blocked path. First, to maximize the use of existing expe-
rience and avoid spending a lot of time relearning, the robot
will try to find a detour in Instructions. The start point and
the end point of the detour are the current state node, and
the first feasible state node in the remaining planned path
respectively. If there is a detour in the Instructions, the robot
will first follow the detour and then continue moving along
the remaining planned path. On the contrary, if no detour can
be found, the robot will perform a short-distance relearning
and plan a new path to bypass the terrible path. In addition,
there is a post processing procedure after relearning, which
aims to avoid the extra energy consumption caused by the
overlap between the original planned path and the new path.

The pseudo code of the experience reuse strategy in the
EMQL algorithm is shown in Algorithm 4.

Algorithm 4 Experience Reuse Strategy in EMQL
1: if st+1 is blocked then
2: find the detour in the Instructions
3: if no detour can be found in the Instructions then
4: relearn
5: post processing
6: end if
7: move along the detour
8: else
9: move along the (remaining) planned path
10: end if

V. EXPERIMENT AND ANALYSIS
We design simulation experiments and application experi-
ments of robot path planning to test the performance of the
EMQL algorithm. In simulation experiments, we validate the
algorithm on MATLAB based on the grid maps and road
network maps respectively. Since grid maps are the most
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FIGURE 8. The experience reuse strategy used by the robot in the planning stage when the planned path is blocked.

commonly used model in robot path planning, we conduct
experiments on the grid maps obtained by sampling the city
maps to ensure the feasibility of EMQL. Here, we only
show the planning results and compare them with Dijkstra
algorithm in terms of the path length without analyzing them
in depth. However, considering that the road network maps
have more practicality than the grid maps, we analyze the
experiment results on the road network maps from various
aspects, and compare them with Q-learning algorithm to
clarify the superiority of the EMQL algorithm. In addition,
we design two dynamic path planning scenes and perform
some experiments to further verify the adaptability of the
algorithm. Finally, Turtlebot3 burger robot completes the path
planning task in the indoor environment by using the pro-
posed algorithm and some snapshots are shown in the text.

A. SIMULATION BASED ON THE GRID MAP
In order to verify the effectiveness of the EMQL algorithm,
we conduct the experiments on the grid maps obtained from
the Real-World Benchmarks proposed by N. Sturtevant [32].
Figure 9 shows the paths planned by the robot in the simu-
lation environment, where the size of the robot is assumed
as one pixel. In addition, we compare the experiment results
with Dijkstra algorithm in terms of path length, and the
comparison results are shown in Table 2.

It can be seen obviously that the robot can accomplish the
planning task in unknown environment by using the EMQL
algorithm, and the length of the planned path is the shortest in
most cases. As the data shown in Table 2, when the obstacles
on the line between the start point and the end point are
relatively dense, the path planned by the robot is not the
shortest. The reason for this result is that the robot is asked
to move towards the end point under the guidance of dual
reward mechanism in the EMQL algorithm. If there are many

obstacles in the direction of the end point, the robot will
temporarily fall into the local optimum around the obstacles,
which affects the length of the final planned path.

B. SIMULATION BASED ON THE ROAD NETWORK MAP
In our daily life, some coordinates of special positions can
represent a map of a region. Therefore, compared with grid
maps, road network maps with intersections as state nodes
have more reference value in the study of path planning.
In this part, to verify the practicability of the EMQL algo-
rithm, we regard the robot as a particle to perform the exper-
iments on the road network map.

The experiment data is derived from Beijing 2008 road
network GIS data set [33]. The map is shown in Figure 10,
the scale of which is 1:100000. It is remarkable that the two
lines intersected in the map are not necessarily connected in
real life, because the road network map is 2D and these roads
may be projections of overpasses on the ground. In addition,
because the robot has sensor feedback information in actual
operation, it can see where it can reach at each intersection.
Considering that the robot cannot get any feedback informa-
tion of sensors in the simulation environment, we assume
that the robot can get the corresponding road connectivity
information at any intersection in unknown environment.

To test the performance of the proposed algorithm,
we design experiments based on the road network map from
two aspects: static path planning and dynamic path plan-
ning. In the experiments of static path planning, we compare
the performance of the EMQL algorithm with Q-learning
algorithm in terms of the convergence speed and optimiza-
tion ability. In the dynamic path planning experiment, two
dynamic scenes including destination change and road block-
age are designed for the robot to test the dynamic adaptability
of the EMQL algorithm.
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FIGURE 9. The planned paths on the grid maps when the robot plans by
using the EMQL algorithm. The red dot, the red pentagram and the
magenta line in the figure represent the start point, the target point and
the planned path respectively.

1) STATIC PATH PLANNING
We set the coordinate of the start point to (948210.71,
4332801.27) and randomly select 10 points distributed at
different places of the map as the target point. Because of
the randomness of the action selection in the learning stage,
the paths planned by the robot may be different in each exper-
iment. In order to ensure the reliability of the experiment
results as far as possible, we repeat the experiment of the same
path planning task 50 times. Then we calculate the average
values of planning time, iteration times and path length,

TABLE 2. The results of the planned path based on the grid maps.

FIGURE 10. The map of Beijing road network in 2008, where the
coordinate system used is GCS Krasovsky.

and the comparison results are shown in Table 3, Table 4 and
Table 5, respectively.

It can be seen from the date in the tables that the path
planning efficiency of the robot in the EMQL algorithm is sig-
nificantly higher than that in Q-learning algorithm. Besides,
the length of the path searched by the robot is shorter when
using the proposed algorithm. These results indicate that the
optimization ability of the EMQL algorithm is better than
that of Q-learning algorithm, and the learning efficiency can
be guaranteed when the robot plans the path by using the
proposed algorithm. In the rest of this part, we will take the
experiment with the target point of (958508.87, 4355976.17)
as an example, and prove that the use of dual reward and
experience memory makes the EMQL algorithm perform
better than Q-learning algorithm.

Figure 11 shows the paths planned by using Q-learning
algorithm and the EMQL algorithm. The red dot, the red
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TABLE 3. The comparison of planning time when planning by using Q-learning algorithm and the EMQL algorithm.

TABLE 4. The comparison of iteration times when planning by using Q-learning algorithm and the EMQL algorithm.

TABLE 5. The comparison of path length when planning by using Q-learning algorithm and the EMQL algorithm.

pentagram and the magenta line in the figure represent the
start point, the target point and the planned path respectively.
In addition, the lines marked blue in the picture are the roads

the robot searches in the learning stage, and the magenta
curve is the path the robot ultimately plans. In the picture
shown on the left, the roads searched by the robot almost
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FIGURE 11. The results of path planning of the Q-learning algorithm (left) and the EMQL algorithm (right).

FIGURE 12. The boxplot for comparing the number of nodes searched by the robot in path planning without considering the
outliers.

cover the whole map, which illustrates that the robot searches
blindly when it plans by using Q-learning algorithm. How-
ever, in the EMQL algorithm, most of the searched nodes are
located on both sides of the line between the start point and
the target point. Obviously, such a search costs less time than
the blind search in Q-learning algorithm. Therefore, we can
draw a preliminary conclusion that if a robot needs to plan a
path in unknown environment, this dual reward mechanism
would improve the learning efficiency of the robot, which
meets the practical application requirements.

Despite that the number of nodes searched by the robot in
Q-learning algorithm is much more than that searched in the

EMQL algorithm, the performance of the EMQL algorithm is
better than Q-learning algorithm in terms of the length of the
planned path. In order to explore the reasons for this result,
we record the number of nodes searched by the robot of each
iteration in one experiment.

The completion of an iteration represents that the robot
completes a path search from the start point to the target point,
but the number of nodes searched is different due to the dif-
ferent experience memorized in the process. Figure 12 shows
the boxplot for the number of state nodes the robot searches
during the learning stage in each iterations. Here, the outliers
refer to the number of nodes that the robot searches less
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TABLE 6. Number of nodes searched by the robot in the first experiment
obtained from the boxplot.

frequently in many iterations. For example, the robot has
experienced 3000 iterations to complete the path planning
task. It only searches 400 state nodes of the environment in
two iterations, and 400 is the abnormal value of the experi-
ment data. In addition, we take the first group of experiments
as an example, and list the relevant data obtained from the
boxplot in Table 6.

As the data shown in Table 6, in the EMQL algorithm,
the robot searches 99 to 138 nodes in most cases during each
search, and the information of these nodes helps the robot
plan the final path. As for Q-learning algorithm, the upper

adjacent of the nodes the robot searches in the environment
is 100, which is almost equal to the lower adjacent of that the
robot searches in the EMQL algorithm. This result insinuates
that most nodes searched by the robot are repetitive when the
robot plans by using Q-learning algorithm. This conclusion
can also be verified from Table 7 which lays out the propor-
tion of outliers in the total number of node the robot searches.

The median of the number of searched nodes are marked
in Figure 12, which represents the general level of all data.
Obviously, the median number of searched nodes in the
EMQL algorithm is higher than that of the Q-learning algo-
rithm in each experiment. Over exploring the same node will
limit the useful information of the environment obtained by
the robot, which leads to the loss of the opportunity to explore
a better path. Therefore, the robot is more likely to get the
shortest path when it plans by using the EMQL algorithm
in unknown environment because the diversity of nodes the
robot searches in the proposed algorithm is higher than that
of Q-learning algorithm.

Another highlight of the EMQL algorithm is the experi-
ence memory mechanism, using the EM table to judge the
completion of the planning task. In order to verify that the
use of EM table enables the robot to complete the planning
task more quickly, we take one of the 50 experiments as

TABLE 7. The proportion of outlier in the total number of nodes searched by the robot when planning by using Q-learning algorithm and the EMQL
algorithm.
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FIGURE 13. Length of the path for each training when planning by using
Q-learning algorithm.

FIGURE 14. Length of the path for each training when planning by using
the EMQL algorithm.

an example, and record the length of the paths that the robot
moves from the start point to the end point each time in the
learning stage. Figure 13 and Figure 14 show the path length
in each training when the robot plans by using the EMQL
algorithm and Q-learning algorithm respectively.

As the curve shown in Figure 13, the robot searches the
‘‘shortest’’ path quickly based on the search strategy of
Q-learning algorithm. However, the path searched by the
robot is almost unchanged after 1300 iterations, which can
be inferred that it falls into local optimum too early. The
reason for this result is that the optimal action choice at a
node only be changed after many iterations due to the large
dimension of the Q table. The delayed update makes the robot
lack the ability to adjust actions in time. In order to make
the experiment result more intuitive, we randomly select five
moving paths of the robot in its learning stage and draw them
in Figure 15. Obviously, when the robot plans the path by
using Q-learning algorithm, most of the paths it searches are
similar.

However, according to the experience memory mechanism
in the EMQL algorithm, the distance between a state node and
the start point is constantly comparedwith the existing experi-
ence. If a shorter path to a state node is found, the information
recorded in the EM table and Instructions will be updated
immediately. Therefore, even the nodes explored few times
can help the robot get the experience of the optimal path
in time. As illustrated in Figure 16, the paths searched by
the robot in the learning stage are more diverse than that of
Q-learning algorithm.

Therefore, the shortcoming of Q-learning algorithm which
is easy to fall into local optimum in the process of path

FIGURE 15. The five paths searched by the robot in the learning stage
when it plans a path by using Q-learning algorithm, which are labeled in
five different colors. The red dot and the red pentagram in the
figure represent the start point and the target point respectively.

FIGURE 16. The five paths searched by the robot in the learning stage
when it plans a path by using the EMQL algorithm, which are labeled in
five different colors. The red dot and the red pentagram in the
figure represent the start point and the target point respectively.

planning can be made up by the use of the EM table. Besides,
the EMQL algorithm has better optimization ability than the
Q-learning algorithm in robot path planning.

The EMQL algorithm is not only better than the Q-learning
algorithm in the path optimization, but also in the conver-
gence speed. In the experiments of this paper, the criterion of
convergence is that the difference of experience table is less
than 0.0001 for 100 consecutive times. The experience lists
in Q-learning algorithm and the EMQL algorithm are Q table
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FIGURE 17. Difference curve of Q table and EM table in two adjacent trainings.

and EM table respectively. Figure 17 shows the difference
curve of Q table and EM table in two adjacent trainings,
where the difference of the Q table and EM table are defined
as (7) and (8) respectively.

i
Q = |

m∑
i=1

n∑
j=1

Qt+1 −
m∑
i=1

n∑
j=1

Qt | (7)

i
EM = |

m∑
k=1

EMt+1 −

m∑
k=1

EMt | (8)

As shown in Figure 17, the EM table converges after
3720 iterations in the EMQL algorithm, while the robot needs
16894 iterations to make the Q table converge. Therefore,
the convergence speed of the EMQL algorithm is obviously
faster than Q-learning algorithm.

From the perspective of dimension of experience list, if the
robot finds m nodes in unknown environment and the max-
imum number of the optional actions for each node is n.
The experience list of Q-learning algorithm is Q table whose
dimension ism∗n, while the dimension of the EM table used
in the EMQL algorithm is m ∗ 1. The difference between the
two table dimensions indicates that there would be a huge
gap in the convergence time between them if the robot works
in a large unknown environment. Moreover, in the problem
of path planning, achieving convergence means that the robot
completes the learning stage and has the ability to accomplish
the task. Therefore, the learning efficiency of the robot will
be improved in the proposed algorithm due to the use of the
EM table.

To sum up, due to the experience memory mechanism
and dual reward in the EMQL algorithm, the robot can find
a shorter path on the premise of fast convergence, which

FIGURE 18. The planned path in the new task when the robot is let to
arrive another destination in the stage of learning. The red dot, the red
pentagram, the brown pentagram and the magenta line in the
figure represent the start point, the original target point, the new target
point and the final planned path respectively.

makes it possible for the robot to plan a short path quickly
in unknown environment.

2) DYNAMIC PATH PLANNING
In order to verify the effectiveness of experience trans-
fer strategy and experience reuse strategy, we design two
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TABLE 8. The comparison of the iteration times when planning the path using the experience reuse strategy or not.

FIGURE 19. The new planned path when the original planned path is
blocked. The red dot, the red pentagram, the bold black line and the
magenta line in the figure represent the start point, the target point,
the blocked road and the final planned path respectively.

experiments of robot dynamic path planning in the road
network map: destination change and path blockage.

a: DESTINATION CHANGE
In this dynamic scene, the node (958508.87, 4355976.17)
is set as the original target point, which will change after

FIGURE 20. Turtlebot3 burger robot.

1000 iterations. In order to ensure the reliability of the exper-
iment results, we select four nodes located in different posi-
tions in the environment as the new target points, and show
one of the replanning paths in fifty experiments in Figure 18.
The red pentagram in the picture is the original target point,
while the new destination is marked as brown pentagram.
In this experiment, the process of the robot directly reach-
ing the new target point is defined as inexperienced path
planning, while the process of robot reaching the new target
by using the experience transfer strategy is regarded as the
experienced path planning. In order to verify the effectiveness
of the experience transfer strategy, we count the average
iterations times needed by the robot to complete the plan-
ning task under the experienced and inexperienced conditions
in 50 experiments, and compare them in Table 8.

Obviously, when the planning task is identical, the robot
with experience can complete the path work faster than the
robot with no experience. This conclusion has nothing to do
with the relative position of the new and original target points
in the environment. Therefore, it is proved that the experience
transfer strategy can help the robot adjust the path in time
and improve the efficiency of path replanning in unknown
environment.

b: PATH BLOCKAGE
In addition to the dynamic scene of destination change,
the robot also needs to adjust its moving path when it finds
that the planned path is blocked. Therefore, to prove that the
experience reuse strategy is effective, we randomly block the
road when the robot moves along the planned path. Some of
the replanning results are shown in Figure 19. The blue curves
in the picture are the roads the robot searches in the process of
short-distance relearning and the thick black lines represents
the blocked path. Obviously, the robot can adjust the route in
time and accomplish the task safely.
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FIGURE 21. Some snapshots of the robot as it moves from the start point to the target point when the task and environment is
constant.

FIGURE 22. Some snapshots of the robot as it moves from the start point to the target point when the task is changed.

The experiment results show that the short-distance
relearning can improve the ability of robot path replanning by
reusing the original experience as much as possible. There-
fore, the use of experience reuse strategy enables the robot
to adapt to dynamic working scenes, which further illustrates
that the EMQL algorithm is applicable to the path planning
of the robot in unknown environment.

C. RUNNING ON Turtlebot3 BURGER ROBOT
Turtlebot3 burger (see Figure 20) is a miniature robot
equipped with a 360◦ laser radar, the size of which is 138 *
178 * 192 (L * w * h, mm). Because it is low-cost and
open-source while ensuring function and quality, it has been
widely used in the field of robot path planning.

In this paper, we do three experiments on Turtlebot3 burger
to test the practicability of the EMQL algorithm, and some
of the snapshots are shown in each experiment. Because the
maximum speed of the robot is 0.22m/s, it will take a lot of
time for the robot to repeatedly move from the start point to
the end point hundreds of times. In order to better present the
experiment results, the learning process of robot in unknown
environment is executed in the simulation environment. After
the learning stage is over, the robot will complete the planning
stage in the actual environment according to the information
memorized in the EM table, Q table and Instructions.

In the first experiment, the robot needs to plan a path
in unknown environment. Both of the planning task and
the environment is constant in this experiment. Therefore,
the robot only needs to learn the shortest distance from each
state node to the start point in the simulation environment,
and then move along the state nodes recorded in Instructions
in the actual environment. Figure 21 shows the planned path
of the robot and some snapshots of the moving process.

In the second experiment, the effectiveness of the experi-
ence transfer strategy in the EMQL algorithmwill be verified.
Figure 22(a) shows the original planned path. The robot
knows that the target point is changed in the position shown
in Figure 22(b), and then it continues moving by referring
to the Q(s, a). According to the experience transfer strategy,
the robot will adopt the ε-greedy strategy again to select the
action if it detects that there is a deviation in the moving
direction until the task is completed. Figure 22(d) shows the
actual movement path of the robot.

The third experiment is designed to verify that the experi-
ence reuse strategy in EMQL algorithm can help the robot
arrive the end point safely even when the path is blocked
suddenly. In Figure 23, the robot finds that it cannot reach
the next waypoint (see Figure 23(c)) when it moves along
the planned path. Then, with the guidance of the experience
reuse strategy, it learns a detour shown in Figure 23(d). After
the post-processing of the detour, the robot continues moving
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FIGURE 23. Some snapshots of the robot as it moves from the start point to the target point when the environment is changed.

to the destination. The actual moving path of the robot is
shown in Figure 23(f), which is different from the original
planned path shown in Figure 23(a) because of the change of
the environment.

D. SUMMARY
Based on the experiment results and the comparison with
Q-learning algorithm, it can be found that the EMQL algo-
rithm has good applicability for robot path planning in
unknown environment. Also, the dual reward mechanism
combining static reward and dynamic reward can help the
robot avoid search blindly in unknown environment and
make the learning efficiency of the robot improved. Besides,
the dimension of the EM table used in the proposed algorithm
is far smaller than that of the Q table, and the robot will
spend less time completing the learning stage when using
the EMQL algorithm. In addition, it has been verified from
the repeatability of the paths and the diversity of the state
nodes searched by the robot each time that the path opti-
mization ability of the EMQL algorithm is stronger than
that of Q-learning algorithm. Moreover, Q table is employed
as the auxiliary experience list in the experience transfer
strategy and the experience reuse strategy. With the guidance
of these strategies, the robot can accomplish the path planning
task safely even when the target is changed or the path is
blocked. Overall, the EMQL algorithm performs better than
Q-learning algorithm in terms of the applicability, conver-
gence, optimization ability and dynamic adaptability.

VI. CONCLUSION
Path planning in unknown environment is a significant
research area in robotics. In order to improve the path plan-
ning ability of the robot, we propose the EMQL algorithm.
There are three main highlights in the proposed algorithm.
First, the dual reward mechanism makes the robot avoid
blind search in unknown environment, increasing the like-
lihood to find a shorter path. Second, based on the experi-
ence memory mechanism, we design the EM table instead
of Q table to reflect the learning process of the robot. The
dimension of the EM table is much smaller than that of Q
table, improving the learning efficiency of the robot. Third,
two strategies are put forward in the EMQL algorithm to
ensure that the robot can successfully complete the planning
task in dynamic scenes. When the target point changes or the
road feasibility changes, the robot will adopt the experience
transfer strategy and the experience reuse strategy respec-
tively. In addition, Q table works as an auxiliary experience
in these strategies, which helps the robot accomplish the new
task efficiently. The statistical results of different experiments
illustrate that the EMQL algorithm is superior to Q-learning
algorithm in terms of convergence, optimization ability and
dynamic adaptability, and it meets the actual application
requirements.

The successful completion of the planning task when the
task changes and the environment changes illustrates the
effectiveness of experience transfer strategy and experience
reuse strategy in the EMQL algorithm. Therefore, in order
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to improve the applicability of path planning algorithm,
our future work is to improve the transfer strategy so that the
experience of the robot can be transferred in different working
environments. Most of the existing path planning algorithm
based on reinforcement learning can only be learned and
applied in the same environment. The experience gained
before becomes useless as the working environment changes
and the robot has to plan the path by relearning, which
costs plenty of time. Hence improving the experience transfer
ability of the robot is one of the great solutions to realize robot
intelligent path planning.
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