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ABSTRACT Wind power generation accounts for an increasing proportion of the power grid, so efficient
and accurate real-time wind power prediction is particularly important for wind power grid. In view of
the strong randomness and fluctuation of wind and the difficulty of predicting wind power, a Salp Swarm
Algorithms-Extremely Learning Machine (SSA-ELM) based ultra-short-term wind power prediction model
is proposed. In this case, the multi-input sample set is composed of historical wind speed, temperature,
wind direction, atmospheric pressure and other climatic factors that are highly correlated with wind power,
and the network parameters are determined in the training process. In order to improve the adaptability
and accuracy of the prediction model, the input weight matrix and hidden layer deviation of the Extreme
Learning Machine (ELM) are optimized by exploring and developing the Salp Swarm Algorithm in the
iterative process. Finally, the simulation experiment is conductedwith the actual data of a wind farm inHenan
Province, and the comparison with the traditional Extreme Learning Machine, Particle Swarm Optimization
Extreme Learning Machine (PSO-ELM) and Back Propagation (BP) neural network model shows that
the new method avoids falling into the local extreme value, and has faster convergence speed and higher
prediction accuracy.

INDEX TERMS Wind power prediction, salp swarm algorithms, extreme learning machine, optimization
algorithm.

I. INTRODUCTION
Wind power, which is environmental-friendly and is abundant
in nature, plays an important role in the development of
human society. Since the wind is formed by the asymmetric
flow of air, its inherent randomness and volatility result in a
large fluctuation in the output power of the wind farm when
the grid is connected. At this point, if the wind power is
accurately predicted, the impact of wind power fluctuation on
the power system can be reduced, which is beneficial to real-
ize real-time balance of power system, and avoid large-scale
blackouts [1]. Literature [31] is a document on wind power
grid-connected dispatching management standard issued by
China Energy Administration, according to which the real-
time forecast requires the grid-connected wind farm to
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report wind power prediction data and wind speed and other
meteorological data 15min to 4h in the future every
15 minutes. In order to meet this requirement, the wind farm
must adopt effective ultra-short-term wind power prediction.
Referring to literature, it can be found that with the increase of
prediction time, the prediction error will gradually increase.
For example, the margin of error for current wind power
forecasts at wind farms is usually 25% to 40%, sometimes
more [34], [35]. In order to avoid the phenomenon that
the wind power rises or falls significantly in a short time,
which brings sudden harm to the grid-connected dispatching,
increasing the power system’s ability to accept wind power,
and improving the prediction accuracy of ultra-short-term
wind power is particularly important.

At present, a lot of research has been conducted on
ultra-short-term wind power prediction around the world.
In early years, the Single-hidden Layer Feed Forwarding
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Networks (SLFNs) [2], the wavelet decomposition algorithm
[3], [4], the empirical mode decomposition [5] and the other
algorithms combined with traditional neural networks (such
as BP neural network, Support Vector Machine, etc.) can pro-
cess and predict wind power time series data. However, most
of thesemethods have complex parameters andweak general-
ization ability, so it is difficult to obtain the optimal prediction
effect. In recent years, many optimization algorithms are
widely applied to the short-term and ultra-short-term wind
power prediction, among them, Genetic Algorithm (GA) [6]
and Particle Swarm Optimization (PSO) [7], [8] are the typ-
ical algorithms. Both of them optimize the neural network
parameters, avoiding complicated process of network setup,
but they both have over-fitting phenomenon, and are easy to
fall into the local optimal solution. In recent literatures, vari-
ous scholars have proposed various solutions to the problems
commonly existed in optimization algorithms. For example,
the historical data of wind farms are processed, and the new
data after processing is taken as the input of neural network,
so as to improve the prediction accuracy [9], [10]. The Least
Squares Support Vector Machine (LSSVM) model has strong
generalization ability and learning ability. It uses Variational
Mode Decomposition (VMD) to decompose wind speed
series, and uses Bat Algorithm (BA) to optimize parameters,
so that to conduct wind speed prediction for wind speed sub-
series of different frequencies [11]. For example, through the
improvement and optimization of the neural network’s own
parameters, the extracted characteristic values of wind power
prediction are used as the training set to improve the ability
of wind power prediction [12]. Extreme Learning Machine
(ELM) is one kind of single hidden layer forward neural
network, which has the advantages of strong generalization
ability, simple structure and easy training. However, during
the training process, ELMwill have over-fitting phenomenon
when there are too many parameters, and it is easy to be
interfered by the outliers in the sample data, which affects the
prediction accuracy of the model. In [13], authors proposed to
use the Regularized Extreme Learning Machine (RELM) to
predict short-term wind speed. Compared with ELM, RELM
considers the structural error while solving the least squares
error, effectively avoiding the over-fitting problem caused
by the excessive number of hidden layers and improving
the prediction accuracy. In [14], the dynamic inertia weight
method is used to improve the Bat Algorithm (BA), and then
the Kernel Extreme Learning Machine (KELM) is optimized
to enhance the processing of data, speed up the conver-
gence, and avoid ELM randomly selecting parameter nodes.
Literature [15] uses Principal Component Analysis (PCA)
to screen the wind power data, eliminating some redundant
components, and uses ELM to predict the wind power of the
processed data to verify its effectiveness.

Salp Swarm Algorithm (SSA) is a heuristic algorithm
developed in recent years inspired by salp swarm behavior
in the ocean [16]. Since its introduction, SSA has proven
its effectiveness in various applications. In literature [17],
the feature selection problem based on SSA algorithm was

put forward. The transfer function was used to convert SSA
into binary system to maximize the classification accuracy
and extract the optimal feature set. Literature [18] proposed
the application of SSA in electrical engineering. The author
applies SSA to Complementary Metal-Oxide-Semiconductor
(CMOS) differential amplifier and comparison circuit size
optimization. The experimental results show that the CMOS
was based on SSA analog integrated circuit design has better
performance.

This paper applies SSA algorithm to ELM, and further
proposes a SSA-ELM based ultra-short term wind power
prediction model. First, SSA is used to optimize the input
connection weights and implicit bias of the single hidden
feed forward neural network for ELM, which improves the
generalization ability of ELM and avoids its over-fitting prob-
lem. Secondly, based on the SSA-ELM network, an ultra-
short-term wind power prediction model is established. The
historical data of an electric field is used to train it. Finally,
the prediction model proposed in this paper is verified
to be of high accuracy by comparing with the traditional
Extreme Learning Machine, Particle Swarm Optimization
Extreme Learning Machine (PSO-ELM) and BP neural net-
work model.

II. EXTREME LEARNING MACHINE AND SALP
SWARM ALGORITHM
A. EXTREME LEARNING MACHINE
Extremely Learning Machine (ELM) is a new algorithm pro-
posed by Huang based on Single-hidden Layer Feed Forward
Networks (SLFNs) [19]. Different from the traditional neural
network, ELM randomly calculates the connection weight
between the input layer and the hidden layer, and analyzes
the connection weight between the hidden layer and the
output layer to obtain a global optimal solution. The network
structure of ELM is shown in Fig. 1.

FIGURE 1. Structure diagram of ELM.

Given N random sample (xi, ti), where input data xi =
[xi1, xi2, . . . , x iN ]T ∈ Rn, the expected output ti =
[ti1, ti2 . . . , tiN ]T ∈ Rm, N be the quantity of the hidden
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layer neurons. Let g(x) be the activation function, then the
standard SLFNs output function can be expressed as

Ñ∑
i=1

βig
(
ωi · xj + bi

)
= oj, j = 1, . . . ,N (1)

where bi is the bias value of the i-th hidden neuron, ωi =
[ωi1, ωi2, . . . , ωin]T is the weight vector that connects the
i-th hidden neuron with the input neurons, and βi =

[βi1, βi2, . . . , βim]T is the weight vector connecting the neu-
ron in the i-th hidden layer with the output neuron [21].
When the quantity of neurons in the hidden layer is equal to

that of samples in the training set, for randomly selectedω and
b, the SLFNs with N hidden neurons and activation function
g(x) can approximate the training samples with zero error,
i.e.,

∑N
i=1

∥∥oj − tj∥∥ = 0 . Then the ELM output function with
N random samples can be obtained as:

N∑
i=1

βig
(
ωi · xj + bi

)
= tj, j = 1, . . . ,N (2)

which can be rewritten as

Hβ = T (3)

where H is the hidden layer output matrix of ELM, which can
be expressed as

H (ω1, . . . , ωN , b1, . . . , bN , x1, . . . , xN )

=

 g (ω1 · x1 + b1) · · · g
(
ωÑ · x1 + bÑ

)
...

. . .
...

g (ω1 · xN + b1) · · · g
(
ωÑ · xN + bÑ

)

N×N

(4)

β =

 β
T
1
...

βTN


N×m

T =

 t
T
1
...

tTN


N×m

(5)

Therefore, the learning process is converted into the least
squares solution of the linear system (4), whichmeans that the
connection weight β between the hidden layer and the output
layer can be obtained by solving the least squares solution of
the following equation:

min
β

∥∥Hβ − T ′∥∥ (6)

whose solution can be expressed as

β̂ = H+T ′ (7)

whereH+ is the Moore-Penrose pseudo inverse of the hidden
layer output matrix H.

To sum up, the main step of ELM learning algorithm can
be summarized as follows:

1) Determined the quantity of neurons in the hidden layer.
According to the empirical formula mentioned in the
literature and the corresponding test data [1], [36], it is
determined that the hidden layer neuron selected in this
paper is 30.

2) Randomly select the connection weight ω between the
input layer and the hidden layer and the offset value of
the hidden layer neuron b.

3) Select an infinitely differentiable function as the acti-
vation function of the hidden layer, and then calculate
the hidden layer output matrix H and itsMoore-Penrose
pseudo inverse H+.

4) Calculate the output layer weights of β̂.

ELM has the advantages of fast learning speed and good
generalization performance, which is not only suitable for
regression and fitting problems, but also suitable for classifi-
cation, pattern recognition and other fields. At the same time,
due to the research of many scholars at home and abroad,
many optimization methods and strategies for the ELM have
been proposed continuously. The performance of ELM has
been greatly improved, and its application scope has been
increasingly wide.

B. SALP SWARM ALGORITHM
Salp is a small type of far-sea colloidal chordate with a
translucent body. The salps that exist in groups in the ocean
are only the size of a human’s thumb. Billions of them gather
together to form a chain structure of the salp chain, moving
by sucking in seawater from the front and then expelling it
from the back. Researchers believe that the salps move and
forage through this chain structure.

Salp Swarm Algorithm (SSA) is a heuristic algorithm pro-
posed by Mirjalili et al. in 2017 based on the group behavior
of salps in nature. Salps are different from wolves, fish and
birds in group behavior, which keep a ‘‘group’’ distribution,
with one leader as the leader’s guide and the other individuals
keep absolute obedience to the leader and constantly update
their positions as the leader moves. Salps are distributed in a
‘‘chain’’ mode, where the leader is at the top of the chain and
the followers follow each other closely for chain food capture
and movement [16].

Because SSA is iterative, it iteratively generates and
evolves some random salp individuals in the boundary box of
the research problem. When building a mathematical model
of the salp swarm algorithm, all salps update their posi-
tions after identifying the leader and follower of the salp
chain. Salp as leader will attack in the direction of the food
source (F) and all followers can be able to follow each
other in the direction of the leader. Fig. 2 shows the salp
chain.

Suppose that the population of salps X consists ofN agents
with d-dimensions. Hence, it can be Expressed as follows:

Xi =


x11 x12 · · · x1d
x21 x22 · · · x2d
...

... · · ·
...

xN1 xN2 · · · xNd

 (8)
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FIGURE 2. Salp chain structure.

In SSA, the position of leader changes with the change of
food source (F), which can be calculated by:

x1j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj − c1
((
ubj − lbj

)
c2 + lbj

)
, c3 < 0.5

(9)

where x1j stands for the position of the leader, which changes
only according to the position of food source, Fj is the posi-
tion vector of food source in the j-th dimension, ubj and lbj are
the upper and lower bounds of the j-th dimension respectively,
c2 and c3 are random values in the interval [0,1], which
are related to whether the leader’s next position in the j-th
dimension should be positive infinity or negative infinity and
the step size. c1 is the main parameter for balancing search
and development in SSA, and its expression is [21]:

c1 = 2e
−

(
4k

Kmax

)2
(10)

where k is the number of iterations and Kmax is the maximum
number of iterations. As the number of iterations increases,
the c1 value decreases. Therefore, in the final stage of opti-
mization with SSA, more emphasis can be placed on the
diversification tendency of the initial stage.

The position update of followers can be calculated by using
the following equation (Newton’s law of motion):

x ij =
1
2
at2 + v0t (11)

When i ≥ 2, x ij means the position of the i-th follower in the
j-th dimension, t is time, v0 is initial velocity, satisfying that
when v = x−x0

t , a = vfinal
v0

. Since the time of optimization
is iterative, the difference of the iteration is 1, and v0 = 0,
the equation can be expressed as follows:

x ij =
x ij + x

i−1
j

2
(12)

Firstly, we can randomly select all the salps of the SSA
in space using the SSA algorithm, and conduct the initial

evaluation to select the most suitable salp chain for capturing
the food source F, forming the form as shown in Fig. 2.
Secondly, the variable c1 is adjusted by equation 10, and the
positions of leaders and followers are constantly updated by
the calculation of equations (9) and (12). Finally, before com-
pleting the number of iterations, except for the initialization
step, the rest steps are updated repeatedly until the food is
captured, that is, the global optimal solution is obtained.

III. SALP SWARM OPTIMIZATION EXTREMELY
LEARNING MACHINE
The output layer weight matrix of the ELM is obtained
from the pseudo inverse matrix of the hidden layer output
matrix, and the excessive number of nodes in the hidden layer
can lead to over-fitting. Moreover, the input weight of the
ELM and the offset value of the hidden layer are randomly
generated, which may result in the appearance of multiple
output layer weight matrix. Salp swarm algorithm optimizes
the input weights and hidden layer bias values in the ELM
to avoid the deviation caused by random selection of the
two. Then the global optimal solution is obtained through
continuous updating and optimization.

This section mainly according to the literature [21]
describes the design and the process of SSA-ELM training
algorithm. In SSA-ELM, the operator of SSA is used to
optimize the ELM network, where each salp’s path represents
a candidate ELM network. To achieve this representation,
SSA is designed to preserve the network parameters we want
to optimize, i.e. the connection weights ω between the input
layer and the hidden layer and the bias value b of the hidden
layer neurons. Therefore, the length of each salp can be
calculated as L = I ×N +N , where I is the quantity of input
variables. Structural design of SSA-ELM is shown in figure 3.

FIGURE 3. Structure design of the salp used in the proposed SSA-ELM.

Specific implementation steps of SSA-ELMare as follows:

1) Set the maximum quantity of iterations, the quantity of
variables, and the upper and lower bounds of the search
space. Determine the scale of the salp swarm according
to (8). Set the maximum number of iterations, number
of variables(input sample set) and upper and lower
bounds of search space, and determine the size of a salp
swarm according to equation (8).

2) Initialize the fitness function value. For the application
of this paper, the fitness function is set as the minimize
root mean square error (RMSE) obtained by training
calculation.

3) Determine the arrangement of salp chains. According
to the fitness value, the optimal fitness value of the salp
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is the location of food source F. Half of the remaining
salps are leaders and half are followers.

4) Update the location. Salp chain leaders and followers
are updated according to equations (9) and (12), and the
corresponding fitness value of each salp is updated. The
fitness value obtained in this iteration is compared with
the optimal fitness value obtained in the previous iter-
ation, and the global optimal fitness value is updated,
that is, the position of the food source F is updated.

5) Repeat steps 3 and 4 until the global optimal solution
is output.

IV. ULTRA-SHORT TERM WIND POWER
PREDICTION MODEL
A. TYPES OF GRAPHICS
In order to verify the feasibility of SSA-ELM mentioned
above, in this section, we will combine the historical data of
actual wind farms and extract the main influencing factors
according to the literature and formula 13.

P =
1
2
ρAV 3 (13)

where P is the wind power output power (kW ), ρ is the air
density (kg/m3), A is the area swept by the wind wheel (m2),
V is the wind speed (m/s), CP is power coefficient.
According to the formula of output power, the main param-

eters that affect the wind power are the air density, the area
swept by thewind turbine, thewind speed and the power coef-
ficient of the wind turbine.Wind power output is proportional
to air density ρ, which is closely related to atmospheric pres-
sure and temperature. Therefore, the influence of atmospheric
pressure and temperature should be considered in the analysis
of wind power. According to the formula, the output of wind
power is proportional to the cubic of wind speed V, so the
wind speed has a great influence on the output of wind power.
Wind direction will also have a greater impact on the use of
wind energy.

Based on the above discussion, this section selects the wind
speed, temperature, wind direction, atmospheric pressure and
other factors that have a great influence on the power of the
wind farm as the input variables of the neural network to
predict the ultra-short-term wind power.

The specific steps are as follows:
1) The historical data of a wind farm in Henan

Province are selected as experimental data. Accord-
ing to the definition in Section II, a set of N data
of wind speed, temperature, wind direction, atmo-
spheric pressure and other factors over a period of
time are randomly extracted as input variables, i.e.
X = [x11, x12, · · · , x1N , x21, · · · , x2N , x31, · · · , x3N ,
x41, · · · , x4N , · · · ] and output variables are the wind
power corresponding to each moment, i.e. Y =

[y1, y2, · · · , yN ]
2) The input and output variables of the model are divided

into training set and prediction set are normalized for
preprocessing.

FIGURE 4. The graph of SSA iterations and objective function.

3) According to the SSA-ELM optimization steps men-
tioned in the literature [21], combined the historical
data of actual wind farms, take the training set samples
for network training. Input the data to be predicted into
the trained network and the corresponding wind power
prediction results is output.

4) In order to determine the validity of the forecast results,
the normalized wind power data obtained from the
prediction are reversely normalized, and the validity
is identified according to the evaluation indexes in the
‘‘wind power forecast function specification’’ issued by
State Grid.

B. THE EXAMPLE ANALYSIS
In this paper, the historical data of a wind farm in Henan
Province in 2015 are selected, and the wind speed, wind
direction, temperature, atmospheric pressure and other dates
are sampled every 10 minutes at the turbine height. BP, ELM,
PSO-ELM and SSA-ELM models are established respec-
tively, and the errors of prediction results are compared and
analyzed from various angles. Among them, the BP has
double hidden layers with fifteen neurons in each layer.
PSO-ELM has double hidden layers with thirty neurons,
the maximum velocity is 0.5, the minimum error is 0.00001,
the max and min inertia weight are 0.9 and 0.3 respectively.
All algorithms are realized by programming in MATLAB.

1) ERROR EVALUATION INDEX
The following four error evaluation criteria are used to
analyze the feasibility and effectiveness of each model,
namely, Mean Absolute Percentage Error (MAPE), Root
Mean Square Error (RMSE), Mean Absolute Error (MAE)
and determination coefficient (R2).

MAPE =
1
n

n∑
i=1

∣∣∣∣PMi − PPiPMi

∣∣∣∣ (14)

44474 VOLUME 8, 2020



L. Tan et al.: Ultra-Short-Term Wind Power Prediction by SSA-Based Optimizing ELM

FIGURE 5. SSA-ELM, PSO-ELM, ELM and BP performance evaluation of wind farm winter prediction results
(sample size 894).

RMSE =

√√√√1
n

n∑
i=1

(PMi − PPi)2 (15)

MAE =
1
n

n∑
i=1

|PMi − PPi| (16)

R2 = 1−

n∑
i=1
(PMi − PPi)2√

n∑
i=1

(
PMi − PMi

)2 (17)

where n is the quantity of the prediction sample PMi and PMi
are the actual power and the average values of actual power
at i-th moment, respectively, PPi and PPi are predicted value
and average value at i-th moment.

2) ITERATIONS AND OBJECTIVE FUNCTION
In this section, the convergence of SSA-ELM algorithm is
empirically studied. The objective function of the neural
network was determined to be RMSE. By random selection
of historical data, wind speed, wind direction, temperature,
atmospheric pressure and other major factors were taken as
input characteristics for network training. As can be seen
from Fig. 4, the objective function changes with the change
of iteration number. When the number of iterations is 50-150,
the objective function is large; when the number of iterations
changes from 150 to 250, the objective function plummets
and starts to stabilize. During the iterations in 250-300,
the objective function has no fluctuation and steady conver-
gence. Therefore, when SSA-ELM, PSO-ELM, ELM and BP

TABLE 1. MAE data comparison of rolling prediction error between
10 and 480min.

prediction models are established, the number of iterations is
determined to be 300.

3) SAMPLE SIZE AND ERROR ANALYSIS
Using the historical data of wind farm to train the neural net-
work can make it have the ability of predicting wind power.
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FIGURE 6. SSA-ELM, PSO-ELM, ELM and BP performance evaluation of wind farm winter prediction results (sample
size 1788).

FIGURE 7. MAE comparison results of different sample sizes.

In addition to the influence of neural network parameters on
its learning ability and prediction ability, the input sample
of the network is also one of the main influencing factors.
Therefore, on the basis of determining the types of input
features, it is particularly important to study and analyze the
influence of sample size and error.

The annual historical data of a wind farm in Henan
Province can be divided into four seasons: spring, summer,
autumn and winter. Historical data in the four seasons are

randomly selected, and the data collection interval was one
sample point every 10 minutes. The sample sizes are set
as 894 and 1788 respectively. Among them, 894 is a small
sample size (750 data are training samples, 144 represents
24-hour test samples), and 1788 is a large sample size
(1500 data are training samples, 288 represents 48-hour test
samples). Fig. 5 and Fig. 6 show the comparison of two
samples and four prediction models’ prediction results of
wind farm in winter respectively. According to the results,
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FIGURE 8. MAPE comparison results of different sample sizes.

FIGURE 9. RMSE comparison results of different sample sizes.

the corresponding histogram of the data comparison between
894 and 1788 samples in January, April, July and October for
SSA-ELM, PSO-ELM, ELM and BP model prediction errors
is drawn. It can be intuitively seen from the figure 7, 8 and 9,
compared with the small sample size used for training, ver-
ification and testing, the larger sample size will lead to a
slight increase in the values of MAE, MAPE and RMSE
generated by the neural network during the prediction. This
anomaly is mainly due to the strong randomness of wind
power generation. Therefore, the larger the sample size is,
the greater the randomness of wind power included in the
prediction will be, that is, the error will be increased.

4) ROLLING ERROR ANALYSIS
According to article 6 of the second chapter of Literature [31],
real-time predict requires wind farms connected to the grid

to report wind power forecast data and real-time wind speed
and other meteorological data in the next 15 mins to 4 hours
rolling every 15 minutes. In order to report the prediction
data of wind power in real time, this paper adopts ultra-
short-term prediction and randomly selects the historical
data of January in 2015 in Henan Province as training sam-
ples (10min/time sample point) to test the wind power on
January 18 (Fig. 10). The 4-hour period stipulated in Liter-
ature [31] is used as the time scale for calculating rolling pre-
diction. The predicted values of SSA-ELM, PSO-ELM, ELM
and BP model and actual values in the period of 10-240 min
are selected to calculate its error, and the sequential error is
updated to the period of 250-480min successively.

The results shown in Fig. 10 (b) are obtained by train-
ing four algorithms in the same time, and it can be seen
that the SSA-ELM prediction model has a better tracking
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FIGURE 10. (a) Prediction results of January 18, 2015; (b) Comparison of prediction results between 10-480min.

effect than the ELM and BP models, and compared with the
PSO-ELM model, the prediction effect of both models in
the first 100 min is very good, with only a small error with
the actual power. However, with the increase of prediction
time, the wind power fluctuates with a high frequency for
a period of time, and the prediction deviation between BP
and ELM model is large. PSO-ELM model can basically
have the same fluctuation range as the actual value, but the
actual power cannot be tracked correctly. Only SSA-ELM

model still has good prediction accuracy in this case. There-
fore, rolling prediction is adopted to calculate the prediction
errors of each model in different time. It can be seen intu-
itively from Fig. 11 (a) and (c) that the MAE and RMSE
of the SSA-ELM prediction model are relatively small, and
Fig. 11 (b) cannot accurately distinguish which model has a
slightly lower MAPE in the sample points 1-13. Combined
with Table 2, it can be clearly seen that the error of SSA-ELM
is smaller. Therefore, comparing the rolling error data lists
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FIGURE 11. Rolling prediction error of 10-480min segment on
January 18, 2015. (a) is MAE,(b) is MAPE, and (c) is RMSE.

of the four models, SSA-ELM prediction model has a better
performance in real-time power prediction.

5) CASE ERROR ANALYSIS
750 data in January, April, July and October of the four
seasons from the historical data were extracted to training
samples, and the trained network was used to predict the
ultra-short-term wind power within one day after the pre-
diction point. For the prediction samples of each model,
144 prediction samples of January 18, April 18, July 18, and

TABLE 2. MAPE data comparison of rolling prediction error between
10 and 480min.

TABLE 3. RMSE data comparison of rolling prediction error between
10 and 480min.

October 18 are respectively used in this paper to compare the
prediction curves as shown in Fig. 10 (a) and Fig. 12-14.

The average temperature in the winter of 2015 in Henan
Province was−3◦C−6◦C, and the wind force varied greatly.
According to the sample moments of 0-100min section
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FIGURE 12. Prediction results on April 18, 2015.

FIGURE 13. Prediction results on July 18, 2015.

in figure 10 (a), SSA-ELM, PSO-ELM have better track-
ing ability than ELM and BP when the power fluctuation
range is large. Combined with the MAPE index in Table 4,
the prediction error of SSA-ELM is smaller. The spring wind
is bigger and change speed, as shown in figure 12, namely
power is high, the frequency of the wave SSA-ELM although
there are more time tracking on actual sample output, but
according to the R2 data can be seen in Table 4, the SSA -
ELM decision coefficient than other two kinds of model is
closer to 1, shows that SSA-ELM network prediction fitting

performance better.When the summer temperature is too high
and the wind speed changes slowly (as shown in Fig. 13),
the actual sample output changes steadily in the 40-80min
segment. All the four prediction models can keep up with
the variation trend of samples, but the SSA-ELM tracking
and prediction effect is better. In late autumn, the wind in
Henan Province is fluctuates. In figure 14, the actual value
is suddenly small or large. SSA-ELM can better adapt to
the abrupt change of wind power and effectively track wind
power in a timely manner.
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FIGURE 14. Prediction results on October 18, 2015.

FIGURE 15. Predction results from 0:00 to 4:00 on May 17, 2019.

6) TIME COMPLEXITY
Time complexity is a key problem in the application of neural
network in wind power prediction. Because the prediction
results of neural network are random, historical data of Jan-
uary are selected for 20 times of wind power prediction
training to obtain the running time of the four models and
analyze the mean results. As shown in Table 5, the training
time for ELM prediction model is the shortest, followed by
BP neural network, and the prediction model for the longest

training time is PSO-ELM, the training time of SSA-ELM is
moderate compared with the three models. Where, since the
input weight of ELM and the bias value of the hidden layer
are generated randomly, only the output weight of the hidden
layer needs to be calculated, so its average training time is
the minimum. BP neural network is based on the feedback
transmission of the predicted output error, so as to calculate
the output error of the upper layer of the neural network,
and continuously reduce the error through iterative operation.
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TABLE 4. Comparison of evaluation indexes.

Compared with ELM, the training time is longer. The training
time of PSO-ELM model is too long because it needs to seek
optimization through continuous iteration in the disordered
particle swarm. The SSA-ELM prediction model optimizes
the input weight value and hidden layer bias value of ELM
in the training process through the SSA algorithm, so as
to ensure its prediction accuracy. Compared with ELM and
BP model, its training time average is the longest. However,
compared with PSO-ELM which also optimizes the weight
and offset value of ELM, training time of SSA-ELM is much
shorter. Through the comparison of time complexity, it is
verified again that SSA-ELM has better performance when
predicting wind power.

C. THE PRACTICAL APPLICATION
Combined with the above example analysis, the advantages
and disadvantages of BP, ELM, PSO-ELM and SSA-ELM
in terms of time complexity and error were discussed by
changing the number of iterations and sample size. The
results showed that compared with the other three models,
SSA-ELM had higher prediction accuracy and stronger abil-
ity to track the actual wind power. In order to further prove
the effectiveness of this method in grid-connected schedul-
ing, according to the requirements of real-time scheduling,
the ultra-short-term prediction time scale is generally less
than 4 hours. The wind power of a wind farm in Henan
was predicted from 0:00 to 4:00 on May 17, 2019, and the
prediction results of BP, ELM, PSO-ELM and SSA-ELM
were compared and analyzed. As shown in FIG. 15, there
is a deviation between the predicted value and the actual
value of the four models, but the comparison shows that

TABLE 5. Comparison of training time.

SSA-ELM and PSO-ELM has a strong ability to follow the
actual wind power, and the prediction deviation is small.
At 50-150 minutes, the wind power had a sudden rise and
drop. At this time, compared with PSO-ELM, it could be
found that SSA-ELM had higher prediction accuracy and
stronger ability to track the sudden change of wind power.
Although PSO-ELM has strong prediction ability compared
with BP and ELM, it still cannot accurately predict and
track the sudden change of wind power, and there is still a
certain gap between the predicted value and the actual value.
Moreover, the MAE of SSA-ELM is only 3%, which shows
that the SSA-ELM has more higher accuracy, compared with
8% of PSO-ELM, 19% of BP and 17% of ELM.

V. CONCLUSION
In order to realize real-time wind power dispatching, reduce
the damage of wind power grid caused by random changes of
wind power, and strengthen the emergencymeasures taken by
the dispatching agency for sudden wind power instability in
the process of grid connection, the main task of this paper
is to improve the accuracy of ultra-short-term wind power
prediction. In this paper, a Salp Swarm Algorithm (SSA) is

44482 VOLUME 8, 2020



L. Tan et al.: Ultra-Short-Term Wind Power Prediction by SSA-Based Optimizing ELM

proposed, which is to optimize the Extreme Learning
Machine (ELM) and avoid the over-fitting phenomenon of
the ELM, and improve its generalization ability. By pre-
processing the historical data of a wind farm in Henan,
a classic BP prediction model, ELM prediction model,
Particle Swarm Optimization Extreme Learning Machine
(PSO-ELM) and SSA-ELM prediction model of the Salp
Swarm Algorithm optimization Extreme Learning Machine
are respectively established and compared through simula-
tions. It is verified that the SSA-ELM model is superior to
other models in prediction, it fills the blank of SSA-ELM
in the field of wind power prediction and thus has good
engineering research value.
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