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ABSTRACT Next-hop data-ferrying is a data-driven approach to ferrying data between graph components
of a disconnected network. In contrast to pre-planned routing methods like the Traveling Salesman tour,
only the next-hop is planned, allowing the ferry to be reactive to the data flows within the network. When
multiple ferries are used, explicit coordination between them is difficult due to the data-driven approach of the
algorithm, and the distributed and disconnected nature of the problem. However, coordinated behavior can
still be produced through swarm intelligent means and while this is a useful pragmatic result, mathematical
models describing system properties are difficult to develop. This generally results in algorithm correctness
being demonstrated through simulation. In this article, we describe the development of a mathematical model
of such a next-hop ferrying swarm. We show that the closed-form expression for user data latency is a close
match to simulation results for Random Geometric Graphs under the assumption of a zero expected degree.
In non-zero degree graphs, a near constant offset between the model and simulation is observed.

INDEX TERMS Data ferrying, emergent behavior, MANET, random geometric graph.

I. INTRODUCTION
Uninhabited Aerial Systems (UAS) are an ideal platform
to support user communication networks. Their capabil-
ity to move freely and in some cases hover, coupled with
the capacity to carry communication payloads, affords the
quick and easy deployment of additional network nodes;
all while enjoying a free-space propagation environment.
With the addition of intelligent agents in control of plat-
forms, the autonomous use of such communication assets
is a viable path for enhancing user communications. For
example, in managed networks, autonomous UAS have been
proposed as roaming base stations to alleviate path loss
issues in millimeter wave networks [2]; while in the mobile
ad-hoc network (MANET) space [3], they have been pro-
posed to provide communications networks in humanitar-
ian assistance and disaster relief (HADR) efforts [4]–[6]
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as well as providing range-extension [7]–[9] and data-
ferrying [10]–[12] services in tactical military networks.

Range extension and data ferrying services both address
the problem of degraded user communications but are aimed
at different network connectivity situations. Range extension
targets semi-disconnected networks where the use of one
or more resource nodes can be used to reconnect a discon-
nected graph component, or to provide redundant network
paths to remove cut-vertices and bridges within the graph,
making it more connected and less vulnerable to individual
node losses. Data ferrying on the other hand, is appropri-
ate to situations where end-to-end connectivity cannot be
achieved. In this case, resource nodes act as courier pigeons
by transferring data between user nodes in a delay-tolerant
fashion [13]. In this approach, physical proximity is used to
overcome signal-to-noise ratio deficits imposed by a hostile
radio-frequency (RF) environment and/or large geographic
operating areas. Ferry routes can be static such as in Traveling
Salesman tours, or dynamic by only planning the next-hop.
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In both cases, the data latency associated with platformmove-
ment dominates that associated with RF transmission and so
the use of multiple ferrying platforms is desirable; and as
the popularity of UAS continues to grow and the enabling-
technology decreases in cost, the fielding of platforms en
masse is becoming feasible. However, HADR and military
applications will likely require distributed and decentral-
ized control, and with many interacting entities, the system
becomes a complexmulti-agent system thatmust cooperate to
achieve the desired outcome. Furthermore, the multi-hopping
of local state information around the network to produce a
global state picture is not a scalable approach. Even if it
were, agents are not guaranteed to always be in contact with
each other, further introducing the problems of information
freshness and dissemination. Fortunately, distributed control
can be achieved using the principles of swarm intelligence
and emergent behavior. While the term ‘swarm’ has been
used to refer to a collection of (many) objects, we use it here
in the context of control.

Swarm intelligence is the collective behavior that can
be observed in self-organized systems of many interacting
individuals [14]. Nature provides many examples of this
emergent phenomenon particularly in social insects [15], but
also in larger animals such as in fish schooling and bird
flocking where the three local rules of attraction, repulsion
and cohesion between neighbors produce a remarkably good
model for such behavior [16], [17]. The flocking behavior
itself is a system-level property, as are all emergent properties,
that is not present in individuals themselves. This type of
control is distributed, redundant to loss and local. But for the
same reasons that make swarms attractive, they also make it
difficult to analyze outside of simulation.

To assist with the understanding of how to develop swarm
models of wireless telecommunication networks, in this arti-
cle we describe the development of a mathematical model
of an adaptive swarm intelligent resource node system. The
algorithm, based on next-hop ferrying, is capable (although
not guaranteed) of finding relaying solutions if the topology
permits. Inspired by statistical mechanics techniques, obser-
vations of emergent structure in the resource node movement
at different levels of node density are used as the basis of
the model. We then discuss how node density affords the
development of emergent behavior (or not) by facilitating
agent interactions and look for phase changes in the latency
response of the system as resource node entropy decreases.

Hybrid analyses such as this that combine traditional net-
work modeling with statistical, complex network techniques
will become increasingly important if emergence-driven and
self-organizing network engineering become commonplace.

II. RELATED WORK
A. DATA RELAYING
A survivability-oriented network management approach is
taken in [18] to range extension where a distributed network
algorithm draws a resource node to a particular location based

on graph connectivity metrics. It addresses the problem of
making a network harder to break by creating redundant
paths. In the distributed approach, raw network state infor-
mation about a node and it neighbours within a specified hop-
count is broadcast to neighbours. Each node then builds up a
picture of its local topology which resource nodes can use to
geographically place themselves using optimisation of graph
metrics. The approach however does not consider discon-
nected networks. Both [19] and [20] consider using swarm-
based control to place multiple mobile resource nodes such
that end-to-end connectivity ismaintained in aMANET. They
use attractive and repulsive type rules based on user and peer
resource node locations to place resources.While resources in
our approach use peer locations as destinations, traffic stored
in a resource node buffer is the only driver in placing the
resource in the network. It does not consider the physical
location of peer resource nodes. A more recent range exten-
sion algorithm uses network capacity modelling to generate
force-based velocity control of individual resources to appro-
priately deploy an aerial network above a congested ground
network [21]. The work uses resource node altitude to control
the ground coverage and hence the number of connected users
to optimise capacity. Reference [22] examines the effect of
self-organising resource nodes on tactical networks utilising
current MANET military protocols. Resource nodes position
themselves in the network to increase route capacity between
user nodes. The study also considers the improvement gained
by using directional antenna to reduce interference between
transceivers. These works are viable approaches to (multi)
resource management to improve communication networks
where end-to-end connectivity is achievable but again do not
consider disconnected networks.

B. DATA FERRYING
Data ferrying algorithms for sparse networks extend from
static planning paths using Traveling Salesman Prob-
lem (TSP)-based solutions [23], [24], TSP with Neighbor-
hood solutions [25]–[27], to dynamic planning models where
only the next hop is calculated [28]–[32]. In these next-hop
models, a value function based on statistics such as the num-
ber of buffered packets, combined waiting time of buffered
packets and the time since last visit are used as heuristics
to calculate the next-hop destination. A similar approach is
used in our work to make local next-hop decisions and do
not claim novelty in this respect. We are interested in how
resource nodes implicitly work together to achieve the data
transfer. To assist with this cooperation, the work in [33]
allows resource nodes to record its visit time in user nodes
so that other resources can make better decisions. However,
our work does not use any form of signaling in the resource or
user nodes outside of the user data it is tasked with transfer-
ring. These heuristic algorithms, while comparable via simu-
lation, do not have mathematical models for latency, making
it difficult to predict performance when input variables, such
as the number of resource nodes, changes.
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C. MODELING OF SWARM SYSTEMS
Even with a complete description of a single agent or robot,
its behavior is difficult to discern in a swarm setting due to
the high number of agent-agent interactions. Further, these
microscopic models often become intractable as swarm num-
bers increase.Macroscopicmodels on the other hand describe
the collective behavior directly, reducing the number of vari-
ables to make it computationally more efficient [34]. Due
to the fluctuations in the environment, as well as noise in a
robot’s sensors and actuators, [34] argues for a probabilis-
tic approach to swarm modeling and derive a macroscopic
quantity that describes the fraction of robots in a partic-
ular state. Similar probabilistic approaches are also taken
in [35]–[37] for self-organized tasks. These probabilistic
methods are related to the ‘mean-field’ model where the
spatio-temporal evolution of a stochastic process for each
agent can be approximated as a single stochastic process in
the limit as the number of agents tends to infinity. These mod-
els describe the time evolution of the system with ordinary
differential equations, partial differential equations and dif-
ference equations depending on time continuity. For a review
of swarm systems modeled in this way, see [38]. In contrast
to this problem, we do not formulate a system description
with the intent of describing its collective motion with time;
rather, we model a metric of the swarm application (that is,
latency) using observations of a pre-determined swarm sys-
tem. In [39], it is noted that many swarm models are parame-
terized or driven by empirical measurements. Our experience
is sympathetic to this description where observation of the
emergent behavior in the systemwas used directly in building
the model.

III. BACKGROUND
A. RANDOM GEOMETRIC GRAPHS
As originally described byGilbert, vertices of a RandomGeo-
metric Graph (RGG) are generated according to a Poisson
point process with vertex pairs being connected via an edge
if they fall within a fixed range r [40]. As such, RGGs are a
useful tool for the investigation of wireless ad-hoc networks
with the communication range of nodes being approximated
by a circle of radius r . RGGs with generalized connection
functions have also been developed to allow for other com-
munication models [41], but for simplicity, we assume the
standard disc model. Further to their usefulness in modeling
wireless ad-hoc networks, RGGs have well understood con-
nectivity properties [42]. These mirror some of the properties
of tactical networks, and so are also useful in better under-
standing some properties of these networks.

Since the algorithm in which we are modeling can operate
in various connectivity environments, we choose RGGs as the
network model and formally introduce the RGG below.

Let G(n, r) represent a graph with a sequence U =

{x1 . . . xn} of independent and uniformly distributed points
on [0, 1]d , then given a fixed r > 0, connect two points if
their Lp-distance is at most r . In this article, we are only

concerned with two-dimensional results (d = 2) and the
distance measure is the L2 Euclidean norm. For graph con-
nectivity analysis, it is convenient to represent the radius r as
a function of n, that is, r = r(n) and if D is a random variable
representing the degree inG, then the expected degree is given
by [42]

E[D] = π (n− 1)r2 ∼ πnr2. (1)

A connectivity threshold occurs at E[D] = ln(n) which gives
a threshold radius of

rt ∼

√
ln(n)
πn

(2)

and holds almost surely. That is to say that the probability
of this result occurring tends to one as n → ∞. Figure 1
plots a RGG example with r = 0.1 and n = 100. The
expected degree (≈ 3.14) is below the connectivity threshold
of ln(100) ≈ 4.61 (rt ≈ 0.12). On inspecting the distance
between components, it is clear that some components could
be bridged with a resource node, while others cannot and
require ferrying. Of course, any gap can be bridged given
enough resources. However, this comes at the expense of
other components if resources are limited.

FIGURE 1. A 100 node RGG r = 0.1 RGG instantiation.

IV. ADAPTIVE RESOURCE ALGORITHM
We recently introduced an adaptive resource swarm algo-
rithm that is capable of heterogeneous macroscopic emergent
behavior dependent on the network connectivity level. The
algorithm bridges where possible and ferries where neces-
sary [1]; adaptive to different topologies, number of users and
number of resources. However, it is assumed that user node
locations are known and are static but global information
about other resource node peers is not known nor modeled.

The resource node behavior is defined by several simple
rules that govern how the nodes move and how they interact
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with other entities. These rules are described below for com-
pleteness.

A. RULES
1) RULE 1-RESOURCE NODE NEXT-HOP MOVEMENT
DECISION
The next-hop decision rule determines which user node a
resource node should visit next by inspecting its current
buffer state. That is, given a set of resource nodes R, then
each resource node i ∈ R decides on the next user to visit by
evaluating the value function

vj =

∑
k∈Bi(j)

wk

||xj − xi||
, (3)

where vj is the value in visiting user node j ∈ U , wk is the
waiting time of packet k destined for node j in node i’s buffer
Bi, xi is the two-dimensional position vector of node i and
||·|| is the Euclidean norm. Value functions that inspect traffic
buffers are a common approach to next-hop decision making
in the data ferrying literature [28]–[32]. Note that finding the
optimal value function is out of scope of the article and the
reader is directed to the references for investigations of this
nature.

Since this control rule is data-driven, only those nodes
that are packet destinations will be visited. This can be
rectified through the additional rule of visiting nodes if a
timer expires regardless of its traffic queue. In this work
however, we assume at least some traffic is generated for
all nodes. This is a reasonable assumption in, for example,
tactical military networks, where the primary purpose is to
ensure Position Location Information (PLI) of each node is
continually disseminated throughout the network.

2) RULE 2-RESOURCE NODE ROUTING
The routing rule describes how nodes interact with each
other when they come into communication range; a modified
version of geographic routing is used [43], [44]. In geographic
routing, data is exchanged between nodes based on their
geographical distance to the destination. When choosing the
next-hop destination from any connected peers, the neighbor
that is closest to the destination is selected. This rule is
implemented as part of the adaptive swarming algorithm with
a caveat. The recipient node must either be:
1) The final packet destination (or have a route to the

destination); or
2) Another resource node (or have a route to another

resource node).

This prevents ‘black hole’ data sinks from forming by only
allowing the sending resource node to deliver the packet to
the intended recipient or pass it to a peer resource node.While
an intermediate user node may be physically closer to the
destination, the sending resource node has no guarantee that
another resource node exists in the system to continue the
delivery.

3) RULE 3-USER NODE ROUTING
User nodes employ the same geographic routing rule but
without the black hole caveat. Traffic then builds up in
user nodes on the edges of graph components which helps
resource nodes to localize their behavior to component gaps.
User nodeswill also transmit all current packets in their buffer
to any connected resource node regardless of distance to the
recipient. This solves some edge cases where for example a
resource node would need to approach a solitary user node
from the correct direction in order to facilitate traffic flow
imposed by the geographic routing.

B. BEHAVIOR
The rules above produce coordinated behavior via stigmergy
[45]. In this case, the stigmergic variable is network traffic
that, in some sense, acts like a pheromone to guide node
behavior. It does this in two ways: firstly, by adding and
removing data packets at user nodes, resource nodes commu-
nicate or influence which user nodes need visiting at a later
time; and secondly, handing off traffic in a geographic way
allows resource nodes to operate within their current local
area. This produces a seemingly planned behavior where
nodes appear to be assigned to different areas. The approach
has been shown to be superior to multiple ferries optimally-
spaced around an optimal Traveling Salesman Problem tour
for various levels of connectivity [1].

It is important to note that stigmergic variables do not
convey state information. While it is assumed that user loca-
tions are known in advance and are static, resource nodes
do not have a better understanding of the network state or
the intentions of other resource nodes when data packets are
exchanged.

V. MATHEMATICAL MODEL
Swarming systems are often difficult to model mathemat-
ically due to the number of individuals and the dynamics
involved. Accordingly, in order to model the packet latency of
the algorithm we make the simplifying assumption that rout-
ing between user nodes is disabled, or equivalently, E[D] =
0. Communication is only allowed between user and resource
nodes, and between resource nodes. While this assumption
is simply to facilitate model development, such disconnected
network topologies may be representative of:
• Extreme RF denial or harsh transmission situations;
and

• Situations where nodes only wish to communicate with
resource nodes. For example, to save power in wireless
sensor networks, or in low detection probability net-
works.

It is also a conservative assumption, and hence may make
sense for allocation of resources.

With the above assumption in place we observed that the
resource nodes had a tendency to generate a grid-like struc-
ture as resource node density increased. As the communica-
tion range increases, resource nodes localize to smaller and
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smaller operating areas. This is demonstrated Fig. 2. We thus
begin by developing a model based on this behavior.

FIGURE 2. Resource node history traces for a 50 user node RGG (not
shown) and 9 resource nodes; grid like behavior is generated as resource
node range increases (best viewed in color).

FIGURE 3. The model, a grid of k cells each with their own resource node
following a TSP solution with radius r . The blue strip represents a region
where adjacent resource nodes can perform a hand-off.

A. INITIAL MODEL
Assume that a RGG of user nodes is divided into a square grid
of k cells such that there are

√
k cells along the grid side. Each

cell represents a localized operating area and contains a single
resource node as in Fig. 3. Using this grid layout and the
assumption that user forwarding is disabled, we develop an
analytic expression for the packet delay between user nodes.

1) MEAN WAIT DELAY
We begin by approximating the algorithm behavior within a
cell as following a Traveling Salesman Problem (TSP) tour
[46]. The current best bounds of an optimal TSP tour T ∗(n)
on a random set of points in a unit square is given by [47]

0.63
√
n ≤ T ∗(n) ≤ 0.92

√
n (4)

where n is the number of nodes in the unit square. In order to
be representative of the typical case, we use the value

T ∗(n) = 0.70787
√
n (5)

derived from extensive simulation [48]. If there are N total
user nodes then there are

ncell =
N
k

(6)

nodes in each cell. Assuming a constant movement speed
of one and grid size of L, the mean TSP time, or cell time,
is given by

tcell = 0.70787
√
ncell

L
√
k
. (7)

If r is the radius of the communications range, the ratio of the
resource node coverage area to its cell is given by

Ac =
πr2(
L
√
k

)2 = πr2k
L2

(8)
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where 0 < Ac ≤ 1. We approximate the mean time nodes
must wait for a resource node to visit as tcell

2 modified by the
coverage ratio to give

twait =
tcell
2
(1− Ac) . (9)

2) INTERMEDIATE CELL TIME
We now estimate the time packets spend in intermediate cells
on their way to their destination cell. Assume that if two
resource nodes are within a strip of size

r
2
L
√
k

(10)

of a cell boundary they can hand-off data to each other. The
proportion of this hand-off area per cell (ignoring overlap
when there is more than one hand-off edge) is

Ah =
rL
2
√
k(

L
√
k

)2 = r
√
k

2L
, (11)

and the mean number of hand-off edges in a grid (cells can
have 2 to 4 hand-off edges depending on their location within
the grid) is given by

h =
4(
√
k − 1)
√
k

. (12)

Therefore the hand-off area ratio is

hr = Ahh (13)

where 0 < hr ≤ 1. The approximate intermediate cell time
is then

tintermediate =
tcell
2
(1− hr ) . (14)

3) TRANSFER TIME
In order to estimate the time taken for a packet to reach its
destination cell, we must estimate the number of resource
node hand-offs (or number of intermediate cells traversed).
Assuming a uniform-random traffic distribution, the prob-
ability that no steps between cells is required because the
source and destination are in the same cell is

pno steps =
ncell
N

(15)

where 0 ≤ pno steps ≤ 1. Further assuming shortest-path
Manhattan routing between cells, we require the number of
steps between cells for data to reach their destination. Con-
sider that along one dimension of the grid there are (

√
k − 1)

unit-length paths, (
√
k − 2) two-unit length paths, etc. Then

in two dimensions, the combined path length is
√
k−1∑
i=1

2i(
√
k − i). (16)

Now, there are k possible source to destination cell pairs,
of which k −

√
k have a path that is greater than one

(source and destination are not in the same cell), so the mean
cell path length is

1

k −
√
k

√
k−1∑
i=1

2i(
√
k − i) =

√
k + 1
3

. (17)

Accounting for the no step probability, the mean number of
cell steps required to reach the destination cell is then

s =
(
1− pno steps

) √k + 1
3

. (18)

To calculate a transfer time we use this result and tintermediate
to get

ttransfer = tintermediate(1+ 2s). (19)

4) LATENCY
Finally, the latency is given by

tlatency = twait + ttransfer. (20)

Note that in the special case of k = 1, tlatency ≈ tcell where on
average packets wait half the TSP length to be picked up and
then spend another half of the TSP length being delivered.

This model produces a reasonable estimate for data latency
(not shown) but is limited to the high-density case where
resources nodes form a well-structured grid. To make the
model applicable to low-density cases too, several improve-
ments must be made.

B. MODEL IMPROVEMENTS
The modeling of swarms as physical particles is a useful
approach as it provides a statistical approximation of the col-
lective and is scalable with the swarm population size. There
are also many theories from the physical sciences from which
models can been drawn; for example: from active matter [49],
fluid dynamics [50], matter states [51], and general chemical
kinetics [52].

As our problem centers on agent interaction, models of
particle collisions are of interest. Rather than trying to esti-
mate resource node hand-offs through the calculation of
hand-off edges and opportunities, we can interpret these
particle collisions as hand-offs. We first demonstrate how
particle collisions can be modeled using statistical mechanics
methods and then apply this idea to the system model.

1) COLLISION RATE
A well-known approach to deriving the collision rate in a gas
is by using the following conceptual equation [53]

(collisional volume)(density)
(time delta)

. (21)

In three dimensions, a cylindrical volume with a cross-
sectional radius of 2r where r is the radius of the gas particle
is prescribed. The length of the cylinder is simply the particle
speed multiplied by the time delta over which the rate is
being measured. Any other particle whose origin lies within
the cylinder will cause a collision. The density part of the
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FIGURE 4. The collisional area for a single particle of radius r traveling at
velocity v for time 1t . Solid circles represent the starting and finishing
origins of the particles over the time 1t .

equation is simply the number of particles divided by the
containing volume. The time delta over which the rate is
measured cancels with that used in the cylinder length if they
are chosen to be the same. Applying this approach to our two-
dimensional model we obtain the collision rate (or frequency)
fc as

fc = (2r + πr2)
(
k
L2

)
(22)

where r is the communication radius of the k resource nodes
and L is the side length of the square operating area. Since gas
particles are typically moving at high speeds, the length of the
cylinder is quite long leading to a large cylindrical volume and
so the semi-sphere caps at the end of the cylinder are usually
omitted. In our case where each node moves a distance of 1
in each time step, the collisional area is 2r × 1 × 1 = 2r .
However, the combined end-cap area of πr2 is significant and
so is included in the collisional area as in Fig. 4. This collision
expression is directly dependent on both the communication
radius and the number of resource nodes in the system.

Figure 5 plots the simulated collision rate and the ana-
lytic expression for k = 9 and L = 100. The analytic
expression matches reasonably well up until near the satu-
ration point where some nodes continually stay within each
other’s communication range; analogous to the non-physical
case of particles occupying the same physical space. That
is, there is not enough space for them to ‘bounce’ off each
other. Just before saturation, the resource nodes form a rough
3 × 3 grid (see the bottom diagram of Fig. 2). Along one
dimension in this arrangement, the combined range could be
4 × 25 = 100 = L. However, how far apart they are spaced
depends partly on where the user nodes are. For example, in a
particular instance, user nodes may not have spawned right at
the very edge of both sides of the field in that slice, meaning
that the combined range is not required to be 100 to reach all
users. This leads to an inflated collision rate since resource
nodes continually stay within range of each other.

To use collision rate in our model, we find the number
of collisions per length L as in Fig. 6. The collisional area
is then 2rL and the probability that a collision occurs is
p = 2rL

L2
=

2r
L . Given this probability, we can consider all

FIGURE 5. Comparison of simulated and analytic collision rate for a
system of 9 resource nodes and 50 user nodes with increasing range r .

FIGURE 6. The collisional area for the length L.

possible cases of where individual resources may be located;
either inside or outside the collisional area. This is approxi-
mated using the Binomial distribution as

fc =
k−1∑
i=1

min
(
i,
L
r

)(
k
i

)
pi(1− p)(k−i+1) (23)

where min
(
i, Lr

)
caps the maximum number of collisions to

be the minimum number required to transfer data across the
length L given a radius r , and

(a
b

)
represents the a choose b

operation a!
b!(a−b)! .

2) EQUIVALENT CELL SIZE
The current model estimates the number of user nodes in
each cell by dividing the total number of user nodes by
the number of resources. However, in lower density cases,
resource nodes travel further around the operating area since
the time between collisions is higher. The resource node cells
are less well-defined and can overlap. For example, Fig. 7
conceptually shows the operating cells of two nodes, blue
and green, shaded in their respective colors. User nodes in the
overlapping portion are serviced more often. Note that these
cells are not static and the physical area in which they cover
changeswith time. It is rather the expected coverage at a given
time.We denote this expected operating area as the equivalent
cell size and estimate it below. Firstly, we can estimate the
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FIGURE 7. A low density case where two resource node cells overlap.

number of resource nodes involved in packet delivery as

kdel = 1+ fc (24)

where 1 ≤ kdel ≤
√
k since the number of collisions can be

considered as the number of hand-offs. The number of user
nodes per each cell is then

ncell =
N

k2del
, (25)

and the number of resource nodes per cell is

kcell =
ncellk
N

. (26)

We can now estimate the equivalent cell size a resource node
occupies as

Lequiv =
L
kdel

(27)

with 0 ≤ Lequiv ≤ L. To account for the fact that resource
nodes do need to go to the edges of a cell due to their range,
we add a correction of 2r to give

Lequiv =
L
kdel
− 2r . (28)

These new values for ncell and Lequiv are used in the calcula-
tion of tcell and the mean wait delay is adjusted to be

twait =
tcell
2

(
1−

πr2

L2equiv

)
1
kcell

(29)

to account for the fact that a user node may be serviced by
multiple resource nodes. The mean length calculated from
Manhattan routing is also changed from

√
k+1
3 to

√
kdel+1
3 and

tintermediate =
tcell
2 .

VI. MODEL PERFORMANCE
To evaluate the model’s performance we examine two met-
rics: the number of resource node hand-offs and overall
packet latency. All simulation results were gathered from
5 trials of 2500 iterations using a 50 user node, 100 unit
square RGG.

A. RESOURCE NODE HAND-OFFS
Figure 8 plots the number of hand-offs between resource
nodes and the number of Manhattan steps calculated in
the model. As the communication range increases and the
resource nodes become more structured, it becomes easier
to estimate hand-offs because cell boundaries are more well
defined and the estimation becomes more accurate. As men-
tioned previously in the particle collision calculation when
r = 25, the hand-offs plateau after 9 resource nodes since
the 3×3 configuration fits into the 100×100 operating area.
Extra resources do not help in this situation and the simulation
hand-offs begin to vary much more since the extra nodes are
still used in the delivery. A similar situation occurs in the
r = 20 case after 16 resource nodes.
Ignoring unnecessary hand-offs could be a candidate for

algorithm optimization, however a better optimization is to
have an understanding of how many resources nodes are
required to begin with. The latency model was initially devel-
oped to understand the marginal benefit of adding additional
resource nodes to the system so that optimal team numbers
could be devised. This work is ongoing.

We note the larger discrepancy between the model and
simulation in the r = 1 case and hypothesis that it is due
to the correlated nature of the agent movement. That is,
more interactions are likely in the simulation since all agents
are moving on straight line trajectories between user nodes
as opposed to the random trajectories the particle collision
model describes. This of course is true for all results but the
effect is hidden as the larger ranges begin to dominate the
movement.

B. DATA LATENCY
Figure 9 plots the data latency as measured by user nodes and
the analytic model. Similarly to the hand-off plots, the model
becomes more accurate as the radius increases due to the
improved structure in the node movement.

Figure 10 plots the Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) along the resource node
number dimension. Interestingly, the curves are very similar
indicating that the magnitude of individual errors are roughly
consistent since the RMSE is more sensitive to larger devi-
ations [54]. This can be interpreted to mean that the model
deviates from the simulation by a (near) constant factor.
We note that the model is using an optimal TSP tour to
estimate behavior within a cell and the constant deviationmay
be due to this assumption. We can directly compare the next-
hop behavior and the TSP bound in the r = 1, n = 1 case
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FIGURE 8. Analytic and simulated results for the number of hand-offs between resource nodes. Error bars display a 95% confidence.

where the latency is only approximately 20% longer; an
interesting result given the unplanned, next-hop approach.

C. APPLICABILITY TO HIGHER CONNECTIVITY CASES
Initially to build the model, edges between user nodes were
ignored to create RGGs with an expected degree of zero.
Figure 11 compares the model to simulations where user
node routing was allowed, as per the original algorithm.
Topologies were tested with r = {5, 10, 15, 20}, correspond-
ing to E[D] = {0.39, 1.57, 3.53, 6.28} with the connectivity
threshold occurring at E[D] = 3.91(rt ≈ 16), almost surely.
Note that r = 1 was not tested since the results are nearly
identical to the first simulation.

As expected, the simulation results reveal a lower latency
as compared to the fully disconnected case since data can
be routed through components of connected user nodes. The
magnitude of this effect increases with increasing radius.

The near constant offset between the model and simulation
results observed in the fully disconnected case appears to be
non-constant here. The curve shapes however are maintained

except in the r = 20 case which is well beyond the connectiv-
ity threshold. Model latency is based on the number of nodes
within a cell, however in higher connectivity cases, compo-
nents containing more than one node effectively appear as a
single node due to the routing; something the model cannot
account for.

VII. DISCUSSION
In this section we discuss how the model results align with
how emergent systems are thought to arise; namely, through
the interaction of their constituent members. We also discuss
how phase transitions can occur in these systems and look for
evidence of those transitions in the latency model.

Emergent behavior is generated through the interaction
of individual entities where those interactions can cause the
participants to change their state [55]. Thus, in order for the
emergent property to form, interactions are necessary. Indeed,
studies have characterized how the emergent property breaks
down when those interactions are interfered with [56]. The
results above demonstrate a similar phenomenon whereby
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FIGURE 9. Analytic and simulated results for the data latency. Error bars display a 95% confidence.

FIGURE 10. Root Mean Square and Mean Absolute Error in the data
latency between the model and simulation with increasing range r .

reducing the opportunity for interaction (by reducing the
density via range or node numbers) reduces the development
of localized resource node behaviour presenting as a less
efficient algorithm.

Some systems that exhibit emergent behaviour also contain
phase changes whereby the system radically changes as a
result of an incremental change in some variable [57]; con-
nectivity in random graphs is one such example [58]. In these
graphs, an incremental increase in expected node degree
causes the graph to shift from a disconnected to connected
state with high probability. Analogously, in our system we
examine the incremental increase of resource node range and
its effect on latency.

Figure 12 plots the probability of data latency being less
than an arbitrarily chosen threshold of 50 time-steps using
9 resource nodes. The ‘comms’ data set represents the adap-
tive swarm resource algorithm while the ‘no comms’ data
set represents the same algorithm but with communication
between resource nodes having been disabled. In the case
where communication ranges are small, there is little oppor-
tunity for nodes to interact and the minor improvement in
latency with increasing range is simply a consequence of
additional coverage. In this regime, the two algorithms are
equivalent. As resource nodes begin to interact and self-
organize, a phase transition occurs wherein the probability of
satisfying the latency threshold dramatically increases.
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FIGURE 11. Analytic and simulated results for the data latency with user node routing enabled. Error bars display a 95% confidence. Note
that we show smaller range values for the connected case since the graph quickly becomes connected at higher ranges.

FIGURE 12. A phase transition in the probability of data latency being
less than 50 time-steps. Error bars display a 95% confidence.

Phase transitions often exhibit a sigmoid shape (or step
function in the extreme case). The adaptive algorithm dis-
plays a shape somewhat akin to the sigmoid function. How-
ever, given that there are 9 resource nodes and the density

is reasonably high (50 user nodes in a 100unit square), it is
highly likely that at least one packet would have a latency
less than 50, leading to a non-zero probability even for small
ranges; altering the shape from a traditional sigmoid. It was
found that the lower the chosen threshold, the sharper the
phase transition, and a phase transition was not observed
in the case without resource node communications. Rather,
the curve is simply proportional to r2 and even with a
range of 30 that produces a combined coverage ratio of
9× π × 302/1002 ≈ 2.5 times the operating area, the proba-
bility is not guaranteed; the nodes are not organized, produc-
ing a high coverage overlap between them.

While we have seemingly found a phase transition in the
data latency, it is actually a different representation of the
phase transition found in the connectivity of the resource
node graph. Choosing the latency threshold to be 0 is equiv-
alent to requiring that a path is available to every user node
from every user node.1 This occurs when the resource nodes

1Packets are routed instantaneously if a path is available during a time-step
in the simulation.

VOLUME 8, 2020 48939



B. Fraser et al.: Analytic Latency Model for a Next-Hop Data-Ferrying Swarm on RGGs

are connected and their combined coverage encompasses all
users in the network.

From a practical point of view, we can use these phase
transition graphs in system design if they too could be mod-
eled. For example, the range can be chosen such that it meets
an acceptably high probability for a given latency; saving
transmission power in this case. We hypothesis that a similar
curve would be observed when holding range constant and
the resource node count is the free variable.

VIII. CONCLUSION
This article describes the mathematical modeling of an adap-
tive resource swarm algorithm facilitating communications
between user nodes on Random Geometric Graphs. Swarm
intelligent-based algorithms are difficult to model mathemat-
ically due to the number of individuals and the dynamics
involved. However, under the assumptions of: uniform traffic
distribution and zero graph connectivity; we used observa-
tions of emergent structure within resource nodes and statis-
tical mechanics techniques to generate a data latency model
that performs well as compared to simulation. This approach
to building the model is useful in understanding how to ana-
lyze the structure of mass deployments of (Unmanned Aerial
System) swarms for coordinated tasks, where that coordina-
tion is achieved implicitly through swarm intelligence and
emergent behavior.

Phase transitions akin to those seen in connectivity proper-
ties of random graphs were observed in the probability of the
system meeting a specific latency threshold. The probability
rapidly moved from low to high at a critical point as the
communications range of resource nodes increased. A non-
cooperative, non-emergent version of the algorithm did not
display this behavior.

The latency model and analysis of phase transitions gives
an indication of the marginal benefit of adding more resource
nodes into the system and/or increasing resource node range.
Knowing exactly how many nodes to use in swarm systems,
and the impact on performance this variable has, is often
difficult to quantify. As part of future work, we intend to
examine this problem and use the model to optimize the
swarm size given specific performance requirements when
resource nodes incur a non-zero cost to operate.
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