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ABSTRACT This paper presents a new meteorological photo classification system based on the Multi-
channel Convolutional Neural Network (CNN) and improved FrameDifferenceMethod (FDM). This system
can work in an embedded system with limited computational resources and categorize cloud observation
photos captured by ground cameras. We propose the improved FDM extractor to detect and extract cloud-
like objects from large photos into small images. Then, these small images are sent to a Multi-channel CNN
image classifier. We construct the classifier and train it on the photo-set that we established. After combining
the extractor and classifier to form the classification system, the images can be classified into three different
types of clouds, namely, cumulus, cirrus and stratus, based on their meteorological features. The testing
phase uses 200 actual photos of real scenes as the experimental data. The results show that the classification
accuracy can reach 94%, which indicates that the system has a competitive classification ability. Moreover,
the time cost and computational resource consumption for image recognition are greatly reduced. By using
this system, meteorologists can lighten their workload of processing meteorological data.

INDEX TERMS Image recognition, FDM, CNN, edge computing, meteorological observation.

I. INTRODUCTION
Weather is relevant to everyone’s daily life. Cloud-type
classification is a very crucial tool in weather prediction,
especially in aviation forecasting and raindrop prediction
[3], [29]. Meteorologists need to get accurate classification
information in a wide range of areas to predict the weather.
The primary method to obtain this information is to classify
observation photos. However, classifying such large numbers
of photos is a burdensome job, even to experienced meteo-
rologists. Therefore, the manual processing speed of cloud
classification is always very slow. However, using computer-
aided processing and AI technology can significantly accel-
erate the processing speed.

According to meteorological classification criteria [2],
clouds can be classified based on cloud height and cloud
shape. For the height classification process, measurement
technology has greatly matured. Laser ranging technology
has been able to control the error within 1% [4]. However,
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FIGURE 1. Typical shapes of three clouds.

the technology for cloud shape recognition is still quite imma-
ture. Based on the shape [2], clouds can be divided into
three large categories: Cumulus, Cirrus and Stratus [1], [2].
Figure 1 shows the typical shapes of these three kinds of
clouds. It is very difficult to distinguish between their shape
using traditional image processing methods. But with the
development of AI technology, it is possible to use this tech-
nology for cloud shape classification. However, the accuracy
of the traditional AI algorithm is not ideal. For example,
the KNN algorithm in paper [5] and the SVM algorithm
in paper [7], have general error rates of more than 15%.
If using the current popular deep learning model, such as
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FIGURE 2. Brief System Diagram. The whole system is composed of the IFDM extractor and the Multi-channel CNN classifier. The details of the
CNN classifier’s network architecture are shown in Table 3.

VGG-16 [24] or Faster R-CNN [25], the consumption of
computational resources could be very high [6].

In this paper, we implement an accurate cloud classifi-
cation system that can work in an embedded system with
limited computational resources. It processes the observation
photos captured by meteorological cameras. These photos
are very large and contain a large number of clouds. Before
the clouds are extracted and classified, we call them cloud-
like objects. Our system can extract cloud-like objects from
photos and categorize them based on meteorological stan-
dards [2]. The whole system can be divided into two main
parts: the Improved FDM(IFDM) extractor and the Multi-
channel CNN classifier. A brief system diagram is shown
in Figure 2.

The IFDM extractor uses improved FDM [8] to extract
cloud-like objects from large photos. The camera takes pic-
tures of the same region of the sky every two minutes, which
will produce a large photo with 3840∗2160 pixels. This
large photo will contain many clusters of clouds and other
background objects. The extractor will try to extract cloud-
like objects from these large photos. The traditional FDM
[8] extractor relies on the difference between two frames
to detect moving clouds from the static sky background.
These differences are marked as the ‘‘target block’’. Nor-
mally, the extractor can extract moving objects based on these
target blocks with very low computational cost. However,
the slow-moving speed of typical clouds causes the differ-
ences between the two frames to be very slight. Therefore,
many interfering objects are also be extracted. We proposed
the object judgment and location control algorithm to select
the target blocks and avoid interference objects. Through the

above method, the extractor can accurately extract cloud-like
objects and send them to the classifier.

The Multi-channel CNN classifier uses a spatial multi-
channel CNN image classification model [10], [14]. Each
channel can process a small image from different parts of
the large photo and extract the image’s features. The channel
is composed of a nine layers CNN model and is fused to
a common fully connected layer. At the top of the whole
model, one output layer will output the classification result.
In the training step, the classification model is trained by the
observation photo-set established by us. The cross entropy
between the idle output and the model output is used as the
loss function of the model. We use the Adam optimizer [9] to
optimize the parameters in the model to reduce the loss of the
output. After training, the classifier can classify small images
into three categories: Cumulus, Cirrus and Stratus. Finally,
we combine the IFDM extractor with theMulti-channel CNN
classifier to form the classification system. The testing results
show the classification accuracy of it can reach 94%, which
indicates that the whole classification system has a good
classification ability. Moreover, this system performs well in
a resource-limited computing environment.

Our contributions can be summarized as follows:
(1) We propose a new size judgment and location control

algorithm to improve the FDM [8]. By using this algorithm,
our extractor can detect and extract cloud-like objects from
large meteorological photos with less resource consumption.

(2) We construct a spatial Multi-channel CNN [10] clas-
sifier and use it to classify the image with the cloud-
like object. The model achieves a competitive classification
accuracy.
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FIGURE 3. Flow Chart of FDM. The algorithm uses the differences between two frames to detect moving objects. In the figure, the red contour is
the extracted objects’ outline. It extracts a lot of interference blocks.

(3) We build a cloud classification system based on the
above twomethods on a Jetson TX2 [20] embedded platform.
This system can accurately extract and classify cloud-like
objects in a hardware environment with limited computa-
tional resources.

(4) We establish an image set that contains observation
photos from various locations and times. The photos were
manually classified by meteorologists from the China Mete-
orological Administration.

In the next few sections, we will give a detailed intro-
duction to the whole system. In Section 2, we will discuss
the related background of our research. Then, in Section 3,
we will introduce the new methods proposed by us.
In Section 4, experiments on training and testing the classifier
are presented. In Section 5, we will analyze the experiment
result and system performance. Finally, Section 6 provides a
brief conclusion.

II. RELATED WORK
Our research ismostly based on the FrameDifferenceMethod
[8] and Convolutional Neural Network [10], [14]. We will
discuss these methods and analyze their limitations.

A. FRAME DIFFERENCE METHOD
1) THEORY BEHIND THE FDM
The objective of the FDM [8] approach is to detect moving
objects from the difference between the existing frame and
the reference frame. This method adopts pixel differences
to extract the contours of moving objects, which is a com-
mon method for motion detection. It contains four major
steps: Transformation, Difference, Binarizing and Opening.

Figure 3 shows the steps of processing ameteorological photo
with the traditional FDM [8].

a: TRANSFORMATION TO GRAYSCALE PICTURE
To obtain the absolute differential image, the color image
needs to be transformed to a grayscale image. Suppose Pi
is the ith pixel of a frame, and CH represents different color
channels of that pixel. Then the transformation from the color
picture to a grayscale picture can be expressed as (1):

Pi = 0.299 · CHred + 0.587CHgreen + 0.114 · CHblue (1)

b: DIFFERENCE OF TWO CONSECUTIVE FRAMES
Let Fk be the k frames in an image sequence. Then, Fk+1 is
the k + 1 frames in this sequence. Fk is called the referenced
frame, and Fk+1 is called the existing frame. Therefore,
the absolute differential image is defined in (2) as follows:

Fd(k,k+1) = |Fk − Fk+1| (2)

c: BINARIZING BY THRESHOLD
Next, we can binarize the grayscale picture by using a thresh-
old. Normally, we set the threshold to 20/255. Then, the bina-
rization can be expressed as (3):

Pi_b = Thr 20
255

(Pi_gray) (3)

After these three steps, the difference between two frames
will be transformed to some nonzero blocks of different sizes.

d: OPENING OPERATION
Opening serves as the basic workhorse for morphologi-
cal noise removal in image processing. It can be divided
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into two fundamental operations: erosion and dilation [11].
Through these two operations, the small nonzero block
will be removed, and the large nonzero block will expand.
The remaining nonzero block is called the ‘‘target block’’.
According to the above steps, the nonzero block is the differ-
ence between the two frames. Therefore, ideally, the contour
of the target blocks should be the contour of the moving
objects. So, the contours of the moving objects are finally
extracted by the FDM.

2) LIMITATION OF THE FDM
Although the FDM provides a fast and effective method for
moving object detection with low computational resources,
it is unable to handle objectsmoving at a slow speed [8]. How-
ever, most cloud-like objects move very slowly. Therefore,
the result is that the FDM will eventually extract the high-
speed moving interfering objects, such as birds, airflow and
mechanical vibrations, as target blocks from the image. These
interfering blocks will eventually result in a sharp decline in
the accuracy of the extractor and the whole system.

The result of Figure 3 shows a very good example of
the effect of using the traditional FDM to extract a cloud-
like object. The red contour is the object extracted by this
algorithm. As the Figure 3 shows, although the FDM success-
fully extracts cloud-like objects, a large number of interfering
blocks, as mentioned above, have also been extracted at the
same time. There, the result shows many extracted objects
in the processed picture. So finding an improvement in this
algorithm to overcome these limitations is indispensable.
We will introduce improved method in a later section.

B. DEEP LEARNING AND MULTI-CHANNEL CNN
1) DEVELOPMENT OF DEEP LEARNING AND CNNS
Deep learning can be traced back to 1989 when LeCun
applied the BP algorithm to a multilayer neural network [12].
LeNet-5 [13], a basic CNN model, was proposed by LeCun
in 1998. It uses convolutional layers to extract image features.
The accuracy of using it to recognize a specific image dataset
is much higher than that of the traditional machine learning
method. However, this model does not have enough layers.
Therefore, its performance in practical problems is not good.
If the number of network layers is increased, the gradient
disappearing problem during the training step will also cause
poor performance. Then, in 2012, Alex proposed the AlexNet
[14] architecture. The architecture adopted the ReLU acti-
vation function instead of the traditional Sigmod function,
which can successfully avoid the problem of gradient dis-
appeared in the large neural network training. The perfor-
mance using AlexNet to recognize images is much better than
traditional methods. However, if the image contains some
interfering objects, the CNN’s recognition rate will still be
poor. In 2013, the R-CNN [15] was proposed by KR Girshick
et.al. It uses a region selection algorithm to extract target
objects from large photos for recognition. Although it will
consumemany computational resources, it can greatly reduce

FIGURE 4. Time-domain Multi-channel CNN.

the impact of interference on recognition and greatly improve
the recognition accuracy. With these research findings from
recent years, using a CNN become the best choice for extract-
ing features and recognizing images.

2) MULTI-CHANNEL CNN
Most traditional CNN architectures are designed to recognize
static pictures. The use of CNNs in video recognition tasks
has received some attention in recent years. Using a multi-
channel CNN architecture to process videos can achieve a
good performance. J Yue-Hei Ng et al. proposed using a
multi-channel CNN for video classification [16]. They built
a multi-channel architecture and used a time-domain con-
volutional layer to extract the time-domain feature of the
video. The whole network can be simplified and is shown
in Figure 4.

The network contains an extra time-domain convolutional
layer before feature pooling across frames. The convolutional
layer consists of 256 kernels of size 3 × 3 across 10 frames
with a frame stride of 5. This model aims to capture the
local relationships between frames. The advantage of this
network is that the time-domain features, such as moving
objects and frame differences, can be extracted from the video
and recognized. Therefore, it achieves a better performance
than the traditional CNN for video recognition. However,
these algorithms require large numbers of layers to achieve
a good performance, which requires plenty of computational
resources. Therefore, it cannot work well in an embedded
system.

3) OBJECT RECOGNITION
Inspired by a spatial multi-channel CNN model [10].
We assign each channel to a specific region in a frame. How-
erver, determining the location of that region is an important
problem. In recent research, many algorithms have focused
on object recognition and region selection. Among them,
Faster R-CNN [15], [25] provides a good method. It uses
Region Proposal Networks to generate accurate proposal
regions of the target objects. And it adopts Regions of Interest
(ROI) pooling to select the proposal regions. It has been
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FIGURE 5. Flow Chart of the IFDM Extractor. Red contour: blocks that await judgment; blue contour: interfering blocks; yellow contour:
dangerous blocks; light-blue squares: candidate or result.

widely used in object recognition tasks, such as those in
medical research [30] and industry application [31].

However, R-CNNs also have thier own weaknesses.
Therefore, for different application scenarios, correspond-
ing improvements and optimization are indispensable. For
example, in remote sensing and satellite images, the objects
are always very small and have a very blurred boundary.
A special augmentation network [33] for object detection or a
judgment algorithm [32] for extraction is critical. More-
over, in medical image object detection, the object often has
common characteristics: they are similar in size and shape.
Li et al. [30] proposed using the ANCF algorithm for domain
adaptation and a BN-IN Net to improve network stability.

Ideally, we can use Faster R-CNN [25] to make the region
selection. However, in our system, the network needs to
work in a hardware environment with limited computational
resources. Therefore, we have to improve the FDM algorithm
so that it only needs few resources to determine the locations
of the cloud objects.

III. PROPOSED METHOD
In this section, we will present our proposed methods. First,
we will introduce the improvement in the IFDM. Then we
will present our network architecture of Multi-channel CNN
model.

A. IMPROVED FDM
The IFDM extractor is mainly improved by two parts: object
judgment and location control. The object judgment step
determines whether a target block is a cloud-like object. The
location control step selects the three best cloud-like objects
and finds boundary boxes to contain them. The system flow
chart is shown in Figure 5.

1) OBJECT JUDGMENT
The FDM provides a method to detect the contours of
cloud-like objects with low computational resource but many

TABLE 1. Size distribution of the blocks. The numbers in parentheses are
the numbers of the blocks that are too small or ambiguous to be judged
by people.

interfering objects might also be extracted (see step 1 in
Figure 5). Therefore, our goal is to find a method to dis-
tinguish between cloud-like objects and interfering blocks.
To achieve this goal, we first analyze the object extracted
by the FDM. We then use the FDM to extract 1189 blocks
from 50 frames(25 pairs of existing and reference frames).
We found more than 80% of the blocks are interfering blocks.
We also found that the size of the cloud-like objects is very
different from the size of the interfering blocks. Therefore,
we calculate statistics on the size distribution of the block.
The results are shown in Table 1.

In most cases, the size of the interfering objects is very
small. Therefore, if we adopt a suitable size threshold of
approximately 4000 pixels, most of the interference will
be filtered. The classification system will save considerable
computing resources to judge these small interfering blocks
(see step 2 in Figure 5). In the remaining blocks, there are still
some large interfering blocks. Inspired by the selective search
[17] and R-CNN [15] algorithms, we decided to use a CNN
classifier to distinguish large interfering blocks. Because
large interfering blocks are usually caused by mechanical
vibrations or airflow, their appearance is very different from
that of clouds. Therefore, only using a simple CNN classifier
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TABLE 2. Simple CNN classifier architecture for interference detection. ’C’
is the number of convolution kernels. ’S’ is the stride.

can distinguish them. We build a simple CNN similar to
LeNet-5 [13] to recognize interfering and cloud-like objects.
The architecture of this CNNnetwork is shown in Table 2. It is
a very simple model and consumes very few computational
resources. Additionally, because we set the size threshold,
most of the interference does not need to be distinguished
through this method. Therefore, compared with the front-end
region judgment in the R-CNN [15], this object judgment
method only needs a small number of resources. Although its
versatility is not so strong, it is enough to distinguish cloud-
like objects (see step 3 in Figure 5).

Through the combination of the size threshold and simple
CNN classifier, the object judgment procedure can accurately
distinguish cloud-like object from interfering objects. The
blocks with type information will be sent to the location
control.

2) LOCATION CONTROL ALGORITHM
The shapes of the cloud-like object vary. However, the input
layer of Multi-channel CNN is fixed(128∗128). Therefore,
we need to find a suitable square boundary box to contain the
cloud-like objects. Moreover, in this boundary box, we do not
want to include interfering blocks that impact the classifica-
tion. Large interfering blocks will greatly affect the recogni-
tion of cloud-like objects. Many small interfering blocks may
also affect the subsequent classification. Therefore, the core
idea of this algorithm is to find a suitable box to avoid large
interfering blocks and retain as few small interfering blocks
as possible. The algorithm is shown in Algorithm 1.
The method of avoiding large-block interference is rela-

tively simple. First, it marks an interfering block with more
than 9000 pixels as a ‘‘dangerous block’’ because this size
could be as large as a cloud-like object (see step 4 in Figure 5).
Since we want to extract three cloud-like objects, it marks the
6 largest cloud-like objects as ‘‘candidate objects’’. The rea-
son that it keeps 6 objects is because these candidate objects
might be discarded in the next step. Of course, it can keep
more candidates, but that will also consume more computa-
tional resources. In the experiment, we found that keeping six
candidates in this step can ensure that it generates three cloud-
like objects in the final results. Therefore, we chose only six
candidate objects. Then, it creates the minimum enclosing
rectangle for each candidate object. If there is a dangerous
block in the rectangle, it will change the boundary until there
is no dangerous area. Then, the inscribed square of the rectan-
gle will become a suitable boundary. If the area of this square

Algorithm 1 Location Control Algorithm
Input: Cloud_Set: The contour set of cloud-like objects;

Interf _Set: The contour set of interfering objects;
Photos: The large meteorological photo

Output: Best_Images: The three best images;
1: //Mark the ‘‘Dangerous_Block’’
2: for (Object.Size > 9000) ∈ Interf _Set do
3: Mark Object as Dangerous_Block
4: end for
5: //Find out the best squares by area size
6: for Largest six Object ∈ Cloud_Set do
7: Obtain the enclosing rectangle Rect of Object;
8: if Rect ∩ Dangerous_Block then
9: Move Rect.Boundary;
10: end if
11: Obtain the inscribed square Square of Rect;
12: if Square.Size < 0.5*Rect.Size then
13: Discard Square
14: else
15: Append Square to Square_Set
16: end if
17: end for
18: //Calculate the PSNR of the square’s region
19: for Square.Size ∈ Square_Set do
20: Calculate the PSNR of Photos in the Square region
21: end for
22: //Sort the squares by the PSNR
23: Sort Square_Set by Square.PSNR
24: if Square_Set.Length < 3 then
25: Copy largest Square in Square_Set
26: end if
27: Split Photos by Square_Set send to Best_Images

is reduced by more than 50% compared to the rectangle,
we will discard the candidate object. Generally, six candidate
objects are sufficient to meet the requirements. Therefore,
we will obtain a square set of candidate objects. This part of
the algorithm is shown in lines 1 to 17 in Algorithm 1. The
results are shown in step 5 of Figure 5.
After finding out squares without a dangerous block,

we will try to select three squares with the least ‘‘amount’’
of interference as the final output of the IFDM. However,
how do we measure the ‘‘amount’’ of interference? Just use
the number of interfering blocks is obviously not a good
method. Some squares may contain many very small interfer-
ing blocks In this research, we adopt the Peak Signal-to-Noise
Ratio (PSNR) as the measurement method [18]. The PSNR is
the ratio between the maximum possible power of a signal
and the power of corrupting noise. The PSNR is defined as
in (4):

PSNR = 10log10

(
MAX2

MSEI

)
(4)

Here, MAX is the maximum valid value for a pixel. In the
original formula, MSE is the mean squared error between
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TABLE 3. Multi-channel CNN architecture ’C’ is the number of number of
convolution kernels. ’S’ is the stride.

the original image and the image after transmission. In our
algorithm, we define MSEI as the mean squared difference
between the pixel P(x,y,c) in the interfering block B and the
square’s average pixel value VAvg. Then,MSEI can be defined
as in (5):

MSEI =
1

i ∗ j ∗ c

∑
x,y,c∈B

(P(x,y,c) − VAvg)2 (5)

Though the PSNR [13], we can measure the ‘‘amount’’
of interference. Then, we pick the three squares with the
least ‘‘amount’’ of interference as the output. In a special
scenario, if the first few steps discard too many candidate
objects, two or three identical squares will be generated.
Then, the IFDM extractor splits large photos into three small
images by these square boundaries. The second part of the
algorithm is shown in lines 18 to 27 in Algorithm 1. The
results are shown in step 6 of Figure 5.

B. MULTI-CHANNEL CNN
We will introduce the network architecture and the channel
weighted fusion.

1) NETWORK ARCHITECTURE
We constructed a Multi-channel CNN model to classify the
images output by the IFDM extractor. The architecture of
the network is shown in Table 3. It is composed of three
channels, and each channel is a basic nine-layer convolutional
neural network. The network architecture of each channel is
very similar to that of AlexNet [14]. The first two convolu-
tional layers adopt a 5 × 5 convolution kernel, and the last
two convolutional layers adopt a 3 × 3 convolution kernel.
The network uses maximum pooling for each pooling layer
to downsample the feature images. The ReLU function is
used as the activation function. A 512-node fully connected
layer outputs the extracted feature vectors from each channel.
Then, these vectors will fuse to a common fully connected
layer with their channel’s weight. Then, another 1024-node
fully connected layer is follows. At the end of the model,
a three-node fully connected layer will output the type of
cloud.

When the model is running, it needs three images as input.
In the training step, the three images are randomly selected
from the same cloud type in the training set. The size of
each input image will be recorded for weight fusion. Then,
it will be resized to 128*128 and sent into one channel. The
three images will be assigned randomly to different channels
as input, and the channel’s weight will adjust based on the
input image’s size. Then, these three images will go through
the channel and the feature vector will be output at the end
of the channel. After the feature vector is generated by the
fully connected layer of each channel, the three feature vec-
tors are weighted and fused. The fused large feature vector
contains the features of these three images. In the end, it will
cooperate with the last two fully connected layers and output
the prediction vector. This prediction vector has three nodes,
which represent different cloud types of large photos by one-
hot encoding.

2) WEIGHT FUSION
We found in our experiment that, considering the input
images of three channels, the different sizes of input can
take different weights in the classificationmodel. Ye, H. et al.
proposed a method [18], and the weight fusion for this net-
work is very simple. First, we built three nodes, and the
input of these nodes is the size value of their correspond-
ing images. We use ReLU as the activation function. The
output of each channel’s node will be the λ vector of this
channel. Therefore, the λ vector is determined by the input
image size of each channel. The λn vector can be expressed
as (6):

λn = ReLU (Sizen) (6)

We concatenate the each λn vector with their corresponding
channel’s feature vector to get the channel feature vector
featn. In the end, concatenate the channel feature vectors
ch_featn together and got the new feature vector. The feature
fusion can be expressed as (7) and (8):

ch_featn = λn ⊕ featn (7)

fused_feat = ch_feat1 ⊕ ch_feat2 ⊕ ch_feat3 (8)

where ⊕ represents the concatenate operation. The channel
feature vector ch_featn is generated by λn concatenated with
featn. The three channel feature vectors are concatenated to
generate fused_feat .
When we finish the fusion procedure, fused_feat is

the common feature with the weight of these three
images. We call it the fusion FC layer. Then, the next
layer, FC1, will fully connect with this new fusion FC
layer.

IV. EXPERIMENT
In this section, we present the experimental details. Prepa-
ration work, training procedure, and testing process will be
introduced.
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FIGURE 6. The Photoset Established by Us. The left side is the training set in Table 5, and the right side is the training set in Table 4.

A. PREPARATION WORK
1) SYSTEM IMPLEMENTATION
System implementation is mainly composed of the process-
ing hardware and observation unit. A picture of thewhole sys-
tem is shown in Figure 7. The processing hardware is based
on the NVIDIA Jetson TX2 platform [20], which has two
CPUs: one is a Dual-Core NVIDIA Denver 2 64-Bit CPU,
and the other is a Quad-Core ARM Cortex-A57 MPCore.
The GPU is a 256-core NVIDIA Pascal GPU architecture
with 256 NVIDIA CUDA cores. The board memory is 8 GB
128-bit LPDDR4 memory. The GPU memory and board
memory are shared.We can see that it lacks the computational
resources for a large-scale CNN architecture. In terms of
software, we adopt Ubuntu 14.04 as the operating system.
To save computational resources, most of our tests closed
the GUI. For the hardware driver and GPU acceleration
[26] driver, we installed JetPack 3.2 (CUDA9.0+CUDNN5).
We use TensorFlow 1.9.0 and the Python programming lan-
guage (version 3.6).

The observation unit mainly uses meteorological cameras
to observe the sky. The spherical camera, which is on the
top of the vertical pole, is mainly responsible for capturing
cloud-shape photos. It can rotate to take photos in different
directions. The camera rotates one full circle every two min-
utes, and 8 photos of different directions will be captured
every 45 degrees. Then, the collected photos are sent back
to the processing hardware through the Gigabit network. The
average power consumption of the whole system is 100 W,
and the peak power consumption is less than 150 W. Due to
the low power consumption, solar cells can be used for the
power supply. Therefore, it can be deployed to remote areas
without electricity power supply.

2) IMAGES DATASET
The above section introduces the two different CNN models
in our classification system. To train this model, we estab-
lished a meteorological photoset. The photos are collected
from the meteorological stations in Beijing, Changsha, and

FIGURE 7. Our Observation and Classification System. This paper mainly
uses the spherical camera and Jetson TX2 embedded platform.

Hohhot at different times. All the cloud-type photos are
classified by professional meteorological observers. Since the
system does not need to work in poor weather conditions,
we manually removed the images with poor image quality.
Some of the images are shown in Figure 6.
The photo set mainly contains two parts. The first part is

a The photoset mainly contains two parts. The first part is a
cloud-like object and interfering block image set. The training
set contains 466 images of cloud-like objects or interfering
blocks larger than 4000 pixels. We manually categorized
each image into the corresponding group. By using the train-
ing set, we can train the first interference detection CNN
model. The testing set has 100 pairs of observation frames.
We can use them to evaluate the extraction performance.
The object type distribution is shown in Table 4. The sec-
ond part of the photoset contains the observation photos of
clouds. In the training set, we manually split the observa-
tion photos into 712 small squares, which were classified
based on their shape by meteorologists. Moreover, we col-
lected 100 large frame pairs (200 photos) to build a testing
set. The distribution of the categories in this part is shown
in Table 5.
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TABLE 4. Interference and cloud object image dataset. The number in
parentheses is the number of frame pairs.

TABLE 5. Distribution of the cloud-shape categories. The numbers in
brackets are the numbers of frame pairs.

B. TRAINING PROCEDURE
1) IFDM EXTRACTOR
To use the IFDM to extract cloud-like objects, we need
to determine the suitable size threshold and train the CNN
model for interference detection. The size threshold is only a
prefilter for small interfering blocks. We have an interference
detection CNN in the next step, which can accurately identify
the interfering objects. Therefore, we want to keep as many
cloud-like objects as possible. By analyzing the 1189 objects
of different sizes from Table 1, we know that the minimum
size of a cloud-like object is 4816 pixels. Therefore, we set
4815 as the size threshold for the IFDM extractor. Through
this size threshold, 856 of 973 interfering blocks or ambigu-
ous objects are filtered out. This filtering procedure greatly
reduces the workload of the CNN interference detection
model in the next step, which can save considerable compu-
tational resources.

After finding the suitable threshold, we can train the
CNN interference detection model. We use the training set
in Table 5 for training. During training, to avoid losing
any training samples, we temporarily set the threshold to 0.
We resize all the images in the training set to 64*64 and
feed them into the CNN model. After running the model,
the final FC layer outputs the predicted value. Then, the loss
function is calculated. In this model, the loss function is the
cross entropy between the predicted type and the labeled type.
The Adam optimizer [9] is adopted to optimize the network
parameters of the model. We set the learning rate to 1-e4.
Moreover, we adopted dropout [21] layer with a probability
of 0.25 to prevent network overfitting in the last convolutional
layer.When the training step is complete, we combine the size
threshold and the CNN interference detection model to build
an IFDM extractor.

2) MULTI-CHANNEL CNN
Before training, we need to build a training batch. First, each
image was resized, and all the images were scaled to a size
of 128*128 pixels, and their original size was recorded. Then,
we randomly selected three images of the same cloud type to
form a training group. In each iteration of training, we fed

a training group into the model. For each training batch,
one batch size with different types of training groups was
obtained.

After building the training batch, we can start to train the
CNN model. For one training step, three images in the same
training group are simultaneously fed into the three channels
of the CNN model for training. Meanwhile, their size data
are fed into the fusion layer. Similar to the CNN model in
the IFDM, the cross-entropy loss function is calculated in
the output FC layer. The Adam optimizer [9] is adopted
to optimize the network parameters of the model. We add
a dropout [21] layer with a probability of 0.5 at the last
convolutional layer of each channel and another dropout [21]
layer with a probability of 0.25 at the FC1 layer. In training,
the batch size was 128, the learning rate was 1-e4, and the
number of iterations was 10,000.

C. TESTING
We will introduce the testing method and process in this
subsection. The analysis and discussion will be presented in
Section 5.

1) CLASSIFICATION PERFORMANCE
We evaluated our proposed method with two testing
approaches: the IFDM extractor for extraction ability and the
whole classification system for classify ability.

For the interference detection part, we tested the ability
of the IFDM extractor to extract cloud-like objects. In addi-
tion, we used traditional image or video extract algorithms,
namely, the Canny edge detector (Canny) [22], the double-
frame FDM (D-FDM) [8], the triple-frame FDM (T-FDM) [8]
and the FDM with edge detection (FDM-ED) [23], to com-
pare with our method. We use these algorithms to extract
objects from the video frame from the test set in Table 4.
In terms of the classification ability, we combined the

IFDM extractor with the Multi-channel CNN classifier and
tested the classification ability of the whole system. We used
200 images in the testing set from Table 5 to test the clas-
sification accuracy. Moreover, we also used traditional CNN
models, namely, LeNet-5 [13], AlexNet [14] VGG-16 [24],
BNInception [35], ResNet-152 [34] and Faster R-CNN [25],
and a traditional classification algorithm, SVM [7], to per-
form the comparison testing.

2) COMPUTATIONAL RESOURCE CONSUMPTION
Because the classification system in this paper needs to work
in the embedded system, its computational resource con-
sumption is very important. We evaluate the whole system
from two aspects: memory usage and time cost. We store the
testing frames in Table 5 on the hard disk before testing. After
starting the classification program, we record the memory
occupied by the program every 10 seconds. We will also
record how long the program takes to classify each image.
In addition, we also test the resource consumption of other
classification algorithms, namely, LeNet-5 [13], AlexNet
[14] VGG-16 [24] and Faster R-CNN [25].
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TABLE 6. Accuracy of the extraction. The size threshold is 4815 pixels.

V. ANALYSIS AND DISCUSSION
In this section, we analyze the experimental results from the
testing step. Then, we will perform an overall evaluation of
our system. We also evaluate and discuss the performance
under different conditions.

A. RESULT ANALYSIS
1) IFDM EXTRACTOR
In this system, the main function of the extractor is to extract
the cloud-like objects in a large photo. To quantitatively
evaluate the proposed model, we use the accuracy rate as
themeasurement standard.We regard the extracted cloud-like
objects as the correct extraction, and other interfering blocks
are regarded as the incorrect extraction. Then, the extraction
accuracy is as follows (9):

Accuracy =
Cloud_Like Objects

Total Number of Extracted_Objects
(9)

We manually identify the output objects of the IFDM
extractor and record the actual types of each object. Then,
we can obtain the accuracy of the extraction. We also tested
the Canny [22], D-FDM [8], T-FDM [8] and FDM-ED [23]
algorithms in the same way. The results are shown in Table 6.
Because we have set the size threshold for IFDM, to make a
fair comparison, we calculate statistics on the objects above
the threshold. Compared with other detection algorithms,
the measuring accuracy of the IFDM is obviously higher.
Since most of the cloud-like objects extracted by the extractor
are larger than 9000 pixels, we also calculate statistics on all
the extracted objects larger than 9000 pixels. We can see that
the accuracy of all the algorithms has been improved, and the
accuracy difference between the IFDM and other algorithms
is being reduced. However, the accuracy of the IFDM is still
the highest.

2) CLASSIFICATION SYSTEM
We combine the IFDMextractor with theMulti-channel CNN
classifier to form our classification system.We use Sensitivity
Precision and Accuracy to evaluate the system. The accuracy
can be calculated in terms of positive and negative classes
as (10):

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

where TP (True Positives) is the number of correctly
classified instances of the class of the specific type,

TN (True Negatives) is the number of correctly classified
instances of the rest of the classes, FP (False Positives) is the
number of misclassified instances of the rest of the classes
and FN (False Negatives) is the number of misclassified
instances of the class of the specific type.

And the Sensitivity and Precision can be expressed as
(11),(12):

Sensitivity =
TP

TP+ FN
(11)

Precision =
TP

TP+ FP
(12)

In addition, we use f-score in the evaluation. In this paper
we use Macro-F1, which can be expressed as (13):

F1_Score = 2×
Sensitivity× Precision
Sensitivity+ Precision

(13)

After we finished testing and obtained the output data,
we created a confusionmatrix. Thematrix is shown in Table 8
Then, we can obtain TP, TN, FP, FN by comparing the
testing output predicted by our classification system with the
actual category. We can calculate the sensitivity, precision,
and accuracy. We also perform the same test on LeNet-5 [13],
AlexNet [14] VGG-16 [24], BNInception [35], ResNet-152
[34] and Faster R-CNN [25] and then obtain the data in the
same way. The results are shown in Table 7.

Based on the above experiments and data, our classifica-
tion system has a very good classification ability. Through
Figure 8, we can intuitively understand the costs of these
models. Compared with most mainstream CNN image clas-
sification models, our system has an obviously advantageous
accuracy rate. Although our system has the same accuracy
as Faster R-CNN, our model system has better sensitivity,
precision and F1-score. Therefore, our classification system
has very competitive performance.

3) RESOURCE CONSUMPTION
By testing the image in Table 5 and recording the memory
and recognition speed, we can obtain the memory cost and
time cost of each classification model. Then, we calculate the
average and standard deviation of each cost. The results are
shown in Table 9.
From the above results, we can see that the resource

consumption of our classification system is also not bad.
Although it consumes slightly more resources than the other
CNN models, the cost difference is not very large. We can
see that the advantage of our classification system in resource
consumption is obvious compared with Faster R-CNN [25].
Compared with Faster R-CNN [25], our system only needs
approximately 1/3 of the memory and 1/4 of the time to com-
plete the task. Therefore, our system has a very competitive
performance in computational resource consumption.

B. PERFORMANCE DISCUSSION
1) OVERALL EVALUATION
Through the analysis in the previous section, we can see that
our classification system is very competitive across different
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TABLE 7. Comparison of the proposed method with the other methods.

FIGURE 8. The ball chart of overall performance. Y-axis: Accuracy X-axis: Time cost ball size: memory usage.

TABLE 8. Confusion matrix of our system’s output. The data outside the
brackets is our system’s output, and the data in the brackets is from
Faster R-CNN.

aspects. Our system can quicklymake accurate classifications
of cloud shape and consume relatively fewer computational
resources. A ball chart is shown in Figure 8, which intuitively
shows the performance of the system across different aspects.

From this plot, we can be seen that our system has the
highest classification accuracy. Its accuracy is the same as that
of Faster R-CNN [25], which is higher than that of the other
CNN classification models. Moreover, when using the same
test platform, the time cost for recognizing one photo by our
system is similar to that of VGG-16 [24] and AlexNet [14].

TABLE 9. Computational resource consumption.

However, it is shorter than that of Faster R-CNN. More-
over, the memory usage is only slightly larger than that of
VGG-16 and much smaller than that of R-CNN. Based on the
above evaluation and discussion, it is obvious that our system
achieves a good overall performance. It has more advantages
than the other classification models under the condition of
low computational resources.

2) DISCUSSION OF THE MISCLASSIFIED RESULTS
Due to the efficient extraction by the IFDM and the accu-
rate classification by the multichannel CNN, our system can
achieve a very good overall performance. However, we want
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FIGURE 9. An example of an incorrect extraction. The blue square is the
extracted image.

TABLE 10. Accuracy of the different poor observation conditions.

to know which part of our classification system can be
improved. Therefore, we analyzed several incorrectly classi-
fied photos.

Through analysis, we found that if there are two kinds
of clouds in the photo, our classification system is prone
to misjudgment. The reason is because the IFDM mainly
relies on the difference between two frames when extract-
ing cloud-like objects. However, faster-moving clouds have
larger differences. If there are two kinds of clouds in the
photo and the minority clouds move faster than the majority
clouds, the IFDM could extract the faster-moving cloud-like
objects. Therefore, the multichannel CNN classifier classifies
the photo based on theminority cloud-like objects. The output
will be incorrect based on these objects.

Figure 9 shows a good example of this type of error. This
picture should be classified as a stratus cloud. However,
a cumulus cloud is passing by at a high speed. The high-
speed cumulus cloud generates larger differences between the
two frames. The FDM produces an incorrect candidate region
based on this large difference, while the PSNR of this candi-
date region is just relatively small. In the end, the extractor
extracts the cumulus cloud with a smaller PSNR instead of
the stratus cloud, which causes an incorrect classification.
Fortunately, this situation is very rare, so it has little effect
on the accuracy. When we accumulate enough data after the
system trial execution, we will study this problem and try to
avoid it in the future.

3) POOR OBSERVATION CONDITION
Although the system does not need to work under poor obser-
vation conditions, we use photos of severe weather conditions
to explore the impact of poor observation conditions on the
system performance [27]. Some images under poor observa-
tion conditions are shown in Figure 10.

FIGURE 10. Different poor observation conditions. Rain, strong winds,
foggy and sunset are the four main poor observation conditions.

In the experiment, we found that the classification per-
formance of our system decreased when testing with these
observation photos. The results are shown in Table 10. How-
ever, despite the foggy condition, most of them only decrease
by approximately 2-4%, and the accuracy performance is
still not poor. The main reason for the sharp decline in the
accuracy on foggy days is that the camera cannot clearly
capture the clouds in the sky. Even for meteorologists, it is
very difficult to recognize cloud shapes under this condition.
Due to the limited dataset, we have not found an effective
method to improve the accuracy. Therefore, this might be a
limitation of the classification system.

Fortunately, the system can know the observation condi-
tions accurately through other sensors (visibility perception
cameras). Thus, the classification system can avoid working
in foggy conditions and producing the wrong cloud-type data.
Therefore, the limitation will not have a great impact on the
actual observations. In the future, with the accumulation of
data, we hope we can solve the bad weather problem by
training a recognition model for foggy conditions.

VI. CONCLUSION
In the present research, we implement a photoclassifica-
tion system for cloud shapes. The classification system can
work in a hardware environment with limited computational
resources, and the classification accuracy of the system can
reach 94%. Although the performance for inclement weather
needs to be improved, the overall classification accuracy
of the system output is satisfactory. Compared with sev-
eral recognition algorithms (LeNet-5, AlexNet, VGG-16 and
Faster R-CNN), our classification system has a very com-
petitive accuracy and consumes much fewer computational
resources: 1/3 of the memory usage and 1/4 of the processing
time than Faster R-CNN. With this classification system,
meteorologists can greatly reduce the time for categorizing
weather photos, which will improve the efficiency of meteo-
rological statistics.With comprehensive statistical data, mete-
orologists can provide better weather predictions. The China
Meteorological Administration has deployed three systems
for trial execution.

44122 VOLUME 8, 2020



M. Zhao et al.: Cloud Shape Classification System Based on Multi-Channel CNN and Improved FDM

However, some limitations of the system still need to be
improved. The extractor and the classification ability can be
improved under poor observation conditions. Due to the lim-
ited data, the testing phase is not very comprehensive. In the
future, we can try some new classification models or make
further improvements to the extractor based on feedback and
new data. In addition, with these new data, we can also test
the whole classification systemmore comprehensively. In the
end, we hope our research will be helpful to the application
of machine learning in meteorological observation and edge
computing.
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