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ABSTRACT An integrated autonomous relative navigationmethod based on vision and IMU data fusion was
proposed in this paper, which can improve the position accuracy effectively and has strong adaptability to
environmental changes. Firstly, IMU pre-integration formula based on Runge Kutta method was derived,
which can improve the pre-integration position accuracy and reduce the accumulated error effectively.
Secondly, an inverse depth estimation method based on the mixed probability model was proposed during
the system initialization process, which can improve the accuracy of camera depth estimation and provide
better initial conditions for back-end optimization. Thirdly, a sliding window filtering method based on
the probability graph was proposed, which can avoid repeated calculations and improve the sliding window
filtering efficiency. Forthly, combined with the advantages of the direct method and the feature point method,
a mixed re-projection optimization method was proposed, which can expand the application scope of the
method and improve the optimization accuracy effectively. Finally, in the closed-loop optimization, a closed-
loop optimization method based on similar transformation is proposed to eliminate the accumulated error.
In order to verify the environmental adaptability of the method and the impact of closed-loop detection on
the relative navigation system, indoor and outdoor experiments were carried out with a hand-held camera
and an IMU. EuRoC dataset was used in the experiments and the proposed method was compared with some
classical methods. The experimental results showed that this method has high accuracy and robustness.

INDEX TERMS Data fusion, relative navigation, pre-integration, probability graph, sliding window
filtering, mixed re-projection, similar transformation.

I. INTRODUCTION

With the continuous development of driverless technology,
in order to adapt to various complex environmental conditions
and resist random interferences, the autonomous navigation
is more and more valued by many researchers. The inertial
navigation technology and the vision-based SLAM (simulta-
neous localization and mapping) technology are two impor-
tant autonomous navigation methods. The inertial navigation
technology has a relatively high position accuracy and can
output stable navigation data in a short period of time, but its
accumulated error is increased gradually and navigation accu-
racy becomes more and more poor with time, thus leading
to divergence. Therefore, the inertial navigation technology
has a poor operation stability in long-term operation. On the
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other hand, the vision-based navigation technology has the
advantages of simple equipment, low cost and relatively high
position accuracy, but it can be greatly affected by external
environmental conditions and there are problems such as
scale drift. Therefore, a single navigation technology can
hardly be applied to all kinds of environments. An effective
way to improve the overall performance of the navigation sys-
tem is to adopt the method of integrated relative navigation,
which can take the advantages and avoid the disadvantages
of both navigation technologies to integrate the data from
all navigation equipment, so as to improve the accuracy of
the navigation system greatly. For example, when the camera
is only rotated, its rotation value cannot be calculated with
the triangulation method and its translation vector cannot be
calculated with the beam adjustment method, but its rota-
tion can be compensated with the observation value on the
gyroscope, so as to calculate its average parallax, which may
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not affect the real rotation result. In this paper, the integrated
autonomous relative navigation method based on vision and
IMU data fusion was studied. The pre-integration precision
was improved with Runge Kutta method, the sliding window
filtering precision was improved with the sliding window
principle based on the probability graph, and the global opti-
mization precision was improved with the combination of the
direct method and the feature point method.

The direct method is used to estimate the motion of the
camera directly with the gray-scale information of the image
and can also operate normally when the number of feature
points is small and the texture is fuzzy. In reference [1],
the working principle and application of optical flow method
are introduced in detail, and an inversely integrated algorithm
is proposed based on the traditional optical flow method,
which effectively reduces the loss of image information.
Reference [2] focuses on the sparse direct method, which
neglects the smoothness of the direct method and does not
depend on the descriptors of the feature points, and proposes a
photometric calibration method based on exposure time, lens
halo and nonlinear response function. In references [3], [4],
a semi direct method is proposed, in which the feature points
are tracked with the direct method, the feature points are
processed with the triangulation method and the corner points
and edge pixels under the conditions with fuzzy textures
and fast motions are tracked with the inverse depth estima-
tion method. In reference [5], a semi direct visual localiza-
tion (SDVL) method is proposed to improve the efficiency
of feature matching. The three-dimensional point parametric
tracking thread of inverse depth includesmotionmodel, direct
image alignment and feature matching optimization. In order
to keep the luminosity unchanged during the measurement
process, the direct method based on histogram equalization
was adopted in this paper.

The vision locating method based on image features
is used stably and is insensitive to the light, so it has
strong robustness. In reference [6], a vision locating method
for large scenes (LSD-SLAM) is proposed, to reconstruct
3D environment into the location map of key frames in real
time with the high-precision pose estimation based on the
direct alignment of images and the relevant semi dense depth
map. In references [7], [8], a monocular vision SLAM based
on ORB features (ORB-SLAM), is proposed. The system
has strong robustness and can be initialized and relocate
automatically, to generate a compact and traceable map.
When the scene is changed, the map could be expended
automatically, and the multi-threaded processing method can
be used also effectively to improve the operation speed. In ref-
erence [9], an incremental pose optimization ORB-SLAM
based on similarity transformation is proposed, to effectively
solve the scale drift problem of ORB-SLAM and eliminate
the accumulated error through global optimization. With the
mixed inverse depth estimation method based on the prob-
ability graph, the uncertainty of depth estimation can be
effectively solved and the robustness of the depth estimation
can be improved. In order to adapt to a variety of complex

environmental conditions, a mixed optimization method of
direct method and feature point method was used in the
back-end optimization in this paper.

The sliding window filtering technology is used widely in
vision SLAMs, which can avoid repeated calculations and
improve the operation speed effectively. In reference [10],
a sliding window filter for SLAM based on feature-based
6-DOF (degree of freedom) batch processing with con-
stant on-line time approximation least square SLAM is pro-
posed, to achieve constant time complexity and linear space
complexity. In reference [11], an observability constrained
sliding window filter (OC-SWF) method is proposed to
calculate the linearization points of Hessian to ensure the
correct dimensions of Hessian zero space, minimize the linear
error and avoid the influx of these non-existent information.
In references [12], [13], a sliding window filtering method
based on delay status marginalization is proposed, to extend
the off-line batch least squares solution to the fast on-line
incremental solution. In reference [14], a new mixed sliding
window optimizer is proposed to realize the information
fusion of the close coupled vision aided inertial navigation
system. Based on the multi-status constraint method, a new
distributed edge method is designed. In this paper, a sliding
window filtering method based on probability graph was
proposed, to improve the sliding window filtering efficiency
greatly.

The above parts have described the methods commonly
used in visual SLAM, and the following parts will describe
the relative navigation method based on the fusion of vision
and IMU, which includes loose coupling and tight cou-
pling mainly. The loose coupling refers to the fusion after
the pose is calculated with the vision and IMU data and
the tight coupling refers to the pose calculation after the
features of the image are added to the status vectors and
optimized.

The loose coupling navigation method has been
researched earlier, and some achievements have been made.
In references [15], [16], a new algorithm of monocular
vision inertial measurement range is proposed, to integrate
the advantages of EKF (extended kalman filter) method and
direct photometric error minimization method and incor-
porate the photometric error minimization into EKF mea-
surement model directly. In reference [17], a new semi
direct monocular vision synchronous locating and map-
ping (SLAM) system is proposed, to maintain the fast
performance of the direct method and the high precision
and closed-loop capability of the feature method. In refer-
ence [18], a probability cost function combined with the
re-projection error of landmarks with the inertia terms is
proposed, to limit the optimization to a bounded key frame
window with marginalization processing, so as to ensure the
real-time processability of the problem. In reference [19], a
similar image synchronous position and mapping method is
proposed to integrate the observation results from IMU and
vision sensors so as to ensure a constant time output. The
research results of the loose coupling fusion method, which
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lays a foundation for the research on tight coupling fusion
method.

With the development of computer vision technology and
the improvement of computing power, the advantages of
tight coupling fusion method is attracting more and more
attentions and many solutions have been proposed by schol-
ars. In references [20]–[22], a real-time vision aided inertial
navigation algorithm based on extended Kalman filter (EKF)
is proposed and a measurement model is derived, to express
the geometric constraints generated when observing static
features frommultiple camera poses. In references [23]–[25],
a robust and universal monocular vision inertial status estima-
tor (VINS-Mono) is proposed, to obtain high-precision vision
inertial measurement range with the tight coupling non-
linear optimization and pre-integrated IMU measurements
and feature observations and enhance the global consistency
with 4-DOF pose optimization. In reference [26], a pre-
integration theory was proposed, to process the structure of
rotation group, and prove that the pre-integration inertial
measurement unit model can be seamlessly integrated into the
vision inertial measurements under the unified frame of factor
graph. In reference [27], a new analytic pre-integration theory
of sensor fusion based on graph is proposed, and the closed
form solution of pre-integration equation is derived, so as
to improve the accuracy of status estimation. In this paper,
the tight coupling fusion method of IMU pre-integration
based on Runge Kutta method was used to achieve accurate
autonomous navigation.

Fig.1 is the schematic diagram of vision and IMU data
fusion system. In the front-end processing, the IMU pre-
integration formula was derived and RungeKutta methodwas
used for calculation to improve the accuracy. Then the system
was initialized, the initial pose of the camera was estimated
with the sparse direct method, the inverse depth of the cam-
era was estimated with mixed probability distribution model
based on the probability graph, the rotation matrix between
the camera and IMU was calibrated, and the gyroscope offset
was corrected. Finally, the velocity, gravity and scale factors
were initialized. In the back-end optimization, the sliding
window filtering principle based on the probability graph was
proposed to improve the filtering efficiency greatly, and the
back-end optimization was carried out with the re-projection
error function calculated with the fusion of the direct method
and the feature point method to reduce the overall error of
the system. In the global optimization of the closed-loop
detection, the word bag model was used for detection and
optimization. When a closed-loop was detected, the global
optimization would be relocated to reduce the scale drift and
cumulative error of the system.

This paper is organized as below: IMU pre-integration
based on Runge Kutta method and system initialization will
be introduced in Section II - Front-end Processing; the sliding
window filtering principle based on the probability graph and
the re-projection error optimization method mixed with the
direct method and the feature point method will be intro-
duced in Section III - Back-endOptimization; the closed-loop

FIGURE 1. Schematic diagram of vision and IMU data fusion system.

FIGURE 2. Relationship between IMU data and image data.

detection based on the word bag model and relocation global
optimization method will be introduced in Section IV; the
experiments with EuRoC dataset and the indoor and outdoor
experiments with hand-held camera and IMU will be intro-
duced in Section V, and the methods proposed in this paper
will be summarized in Section VI.

II. FRONT-END PROCESSING
A. IMU PRE-INTEGRATION
In this paper, (·)w, (·)b and (·)c are defined as the world
coordinates system, the ontology coordinates system and the
camera coordinates system separately, qwb orR

w
b is the rotation

matrix from the ontology coordinates system to the world
coordinates system, pwb is the translation vector of the carrier’s
position in the key frame relative to the world coordinates
system, bk is the body coordinates system corresponding
to the k th image, and ck is the camera coordinates system
corresponding to the k th image. ⊗ is the multiplication oper-
ator between quaternions, and

(
·̂
)
is the actual measurement.

The relationship between IMU data and image data is shown
in Fig.2.
ât , ŵt are the measurements with the accelerometer and the

gyroscope in IMU. The relationship between them and the
actual values, offsets, noises and accelerations of gravity can
be expressed as below [28], [29]:{

ât = at + abt + R
bt
w gw + na

ŵt = wt + wbt + nw
(1)

where, at and wt are the actual acceleration and the angu-
lar velocity respectively, Rbtw is the rotation matrix of the
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ontology coordinates system transformed from the world
coordinates system at the time of t , gw =

[
0 0 g

]T is the
direction of gravity acceleration, na and nw are the mea-
surement noises following a zero-mean Gauss distribution
of na ∼ N

(
0, σ 2

na

)
, nw ∼ N

(
0, σ 2

nw

)
, abt and wbt are the

accelerometer deviation and the angular velocimeter devi-
ation, respectively, which are random walk deviation, and
whose derivatives follow a zero-mean Gauss distribution as
follows:

ȧbt = nba ∼ N
(
0, σ 2

ba

)
, ẇbt = nbw ∼ N

(
0, σ 2

bw

)
(2)

Assume that1tk is the time interval from tk to tk+1. In this
time period, the recurrence relationship of position, speed and
direction from bk image to bk+1 image is as follows:

pwbk+1 = pwbk + v
w
bk1tk

+

∫∫
t∈[tk ,tk+1]

(
Rwbt

(
ât − abt − na

)
− gw

)
dt2

vwbk+1 = vwbk +
∫
t∈[tk ,tk+1]

(
Rwbt

(
ât − abt − na

)
− gw

)
dt

qwbk+1 = qwbk ⊗
∫
t∈[tk ,tk+1]

1
2
qbkt ⊗

(
ŵt − wbt − nw

)
dt

(3)

The reference coordinates system of the above formula
is transformed from the world coordinates system w to the
ontology coordinates system bk at the k th key frame time, and
the following formulas are obtained:

Rbkw pwbk+1 = Rbkw
(
pwbk + v

w
bk1tk −

1
2g

w1t2k
)

+

∫∫
t∈[tk ,tk+1]

(
Rbkt

(
ât − abt − na

))
dt2

Rbkw vwbk+1 = Rbkw
(
vwbk − g

w1tk
)

+

∫
t∈[tk ,tk+1]

(
Rbkt

(
ât − abt − na

))
dt

qbkw ⊗ qwbk+1 =
∫
t∈[tk ,tk+1]

1
2
qbkt ⊗

(
ŵt − wbt − nw

)
dt

(4)

Let:

α
bk
bk+1
=

∫∫
t∈[tk ,tk+1]

(
Rbkt

(
ât − abt − na

))
dt2

β
bk
bk+1
=

∫
t∈[tk ,tk+1]

(
Rbkt

(
ât − abt − na

))
dt

qbkbk+1 =
∫
t∈[tk ,tk+1]

1
2
qbkt ⊗

(
ŵt − wbt − nw

)
dt

(5)

It can be seen from the above formulas that the
pre-integration sub-items αbkbk+1 , β

bk
bk+1

, qbkbk+1 takes the key
frame bk as the reference coordinate system, and the result
is the relative motion of the key frame bk+1 with respect to
the key frame bk , which is only related to the measurement
values with IMU, and is not affected by the position, speed
and rotation of the key frame. Rbkt , q

bk
t is the rotation matrix

of key frame bk at time t .

In the case of small disturbances, the rotation quaternion
qbkt is over parameterized, which can be simplified as a
three-dimensional angle vector θbki expressed as δqbkt =[
1 1

2δθ
bk
t

]T
. With the above formulas, the linear dynamic

error equation within a continuous time period can be derived
as follows [23]:
δα̇

bk
t

δβ̇
bk
t

δθ̇
bk
t

δȧbt
δẇbt



=


0 I 0 0 0
0 0 −Rbkt

(
ât − abt

)
× −Rbkt 0

0 0 −
(
ŵt − wbt

)
× 0 −I

0 0 0 0 0
0 0 0 0 0



δα

bk
t

δβ
bk
t

δθ
bk
t

δabt
δwbt



+


0 0 0 0
−Rbkt 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I



na
nw
nba
nbw


= Ftδz

bk
t + Gtnt (6)

where, [·]× is the antisymmetric matrix derived with
the vector; assume qv =

[
qx qy qz

]T , then [qv]× = 0 −qz qy
qz 0 −qx
−qy qx 0

.
Based on the definition of the derivative, the following

recurrence formula can be obtained:

δzbkt+δt=δz
bk
t + δż

bk
t δt=(I+Ftδt) δz

bk
t +(Gtδt) nt (7)

Assume that the measurement time interval between two
adjacent frames bk and bk+1 of IMU is δt , the measurement is
carried out with IMU between two key frames, i corresponds
to the measured discrete time point, and the value measured
with IMU is âbki , ŵ

bk
i , q̂

bk
i respectively. In order to improve

the accuracy, the pre-integration formula is discretized with
the fourth-order Runge Kutta method as follows (8), as shown
at the bottom of the next page, where



f22 = I −
[
7
8
ŵi +

7
24
ŵi+1 −

7
6
wbi

]
×

δt

f12 = −
7
8
R
(
q̂bki
) [
âi − abi

]
×
δt

−
7
24
R
(
q̂bki+1

) [
âi+1 − abi+1

]
×
f22δt

f14 =
49
144

R
(
q̂bki+1

) [
âi+1 − abi+1

]
×
δt2

v11 = −
49
192

R
(
q̂bki+1

) [
âi+1 − abi+1

]
×
δt2

v13 = −
49
576

R
(
q̂bki+1

) [
âi+1 − abi+1

]
×
δt2

(9)
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Assume that Jacobian matrix of the system status at the
initial time (i.e. the time corresponding to the key frame bk )
is Jbk = I , and the covariance matrix is Pbk = 0, then the
recurrence formula of Jacobian matrix and covariance matrix
is as follows: Ji+1 = FJi

Pi+1 = FPiFT + VQV T (10)

where, Q is the covariance matrix of noise signal n, and all
noises are independent of each other. Q is a 18× 18 diagonal
matrix expressed as follows:

Q18×18 = diag
(
σ 2
na , σ

2
nw , σ

2
na , σ

2
nw , σ

2
ba, σ

2
bw

)
(11)

Assuming that the variation of the pre-integration is lin-
ear with the deviation, the first order approximation can be
expressed as follows:

α
bk
bk+1
≈ α̂

bk
bk+1
+ J

α
bk
bk+1

ab δabk + J
α
bk
bk+1

aw δwbk

β
bk
bk+1
≈ β̂

bk
bk+1
+ J

β
bk
bk+1

ab δabk + J
β
bk
bk+1

aw δwbk

qbkbk+1 ≈ qbkbk+1 ⊗

 1
1
2
J
θ
bk
bk+1
aw δwbk

 (12)

where, J
α
bk
bk+1

ab , J
α
bk
bk+1

aw , J
β
bk
bk+1

ab , J
β
bk
bk+1

aw , J
θ
bk
bk+1
aw are the sub-blocks

corresponding to Jacobian matrix Ji+1. For example,

the meaning of J
α
bk
bk+1

ab is
δα

bk
bk+1
δab

.

With the covariance matrix, the measurement model of
IMU can be expressed as follows:


α̂
bk
bk+1
β̂
bk
bk+1
q̂bkbk+1
0
0

=


Rbkw
(
pwbk+1 − p

w
bk − v

w
bk1tk +

1
2g

w1t2k
)

Rbkw
(
vwbk+1 − v

w
bk + g

w1tk
)

(
qwbk

)−1
⊗ qwbk+1

abk+1 − abk
wbk+1 − wbk


(13)

In this paper, the pre-integration of IMU is taken as the
initial measurement values for processing the key frames
bk and bk+1, the measurement error function is obtained as
follows:
δα

bk
bk+1

δβ
bk
bk+1

δqbkbk+1
δab
δwb



=



Rbkw

(
pwbk+1−p

w
bk−v

w
bk1tk+

1
2
gw1t2k

)
−α

bk
bk+1

Rbkw
(
vwbk+1−v

w
bk+g

w1tk
)
−β

bk
bk+1

2
(
qwbk

)−1
⊗ qwbk+1 ⊗

(
qbkbk+1

)−1
abk+1−abk
wbk+1−wbk


(14)

Because the pre-integration is based on the key frame and
integrates the IMU measurement value between two adjacent
key frames, it provides the initial value for fusion with image
data, so the pre-integration will not cause cumulative error.
In the process of back-end optimization, because the rela-
tive position of the pre-integration relative to the reference
frame is unchanged, it can avoid repeated integration in the


δα

bk
i+1

δβ
bk
i+1

δθ
bk
i+1

δabi+1
δawi+1

 =



I δtI
1
2
f12δt −

(
7
16
R
(
q̂bki
)
+

7
48
R
(
q̂bki+1

))
δt2

1
2
f14δt

0 I f12 −

(
7
8
R
(
q̂bki
)
+

7
24
R
(
q̂bki+1

))
δt f14

0 0 f22 0 −
7
6
δtI

0 0 0 I 0
0 0 0 0 I




δα

bk
i

δβ
bk
i

δθ
bk
i

δabi
δawi



+



7
16
R
(
q̂bki
)
δt2

1
2
v11δt

7
48
R
(
q̂bki+1

)
δt2

1
2
v13δt 0 0

7
8
R
(
q̂bki
)
δt v11

7
24
R
(
q̂bki+1

)
δt v13 0 0

0
7
8
δtI 0

7
24
δtI 0 0

0 0 0 0 δtI 0

0 0 0 0 0 δtI




nai
nwi
nai+1
nwi+1
nba
nbw


= Fδzi + Vn (8)
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optimization process, reduce the calculation amount and
improve the calculation speed.

B. SYSTEM INITIALIZATION
Before further optimization, the system needs to be initialized
with the loose coupling method. In this paper, the pose and
inverse depth of the camera were estimated with the monoc-
ular camera, the rotation matrix between the camera and
IMU was calibrated, the gyroscope offset was corrected, and
finally, the velocity, gravity and scale factors were initialized,
to align the camera estimation results with IMU results.

1) ESTIMATION OF POSE AND INVERSE DEPTH OF
MONOCULAR CAMERA
The camera pose and inverse depth are the basis of system
initialization. In this paper, the sparse direct method was used
for pose estimation, and the inverse depth estimation method
based on probability map was used.

Before using the sparse directmethod, the histogram equal-
ization method was used to the pre-processing in order to
ensure the unchanged gray scale. The histogram equalization
method had a faster calculation speed, could highlight the
details of the image, and reduce the impact of the changes
of light intensity on the gray scale, to ensure the consistency
of the gray scale measurement.

The basic principle of the sparse direct method is to esti-
mate the position of corresponding matching point with the
position and pose of the current camera and optimize the cam-
era pose by minimizing the photometric error. The optimized
error function is follows:

min
ξ
1(ξ) =

N∑
i=1

‖ei‖2 =
N∑
i=1

‖I1 (Pi)− I2 (h (Pi))‖2 (15)

where, I1 (Pi) is the gray value of the ith feature point in
the first image, I2 (h (Pi)) is the gray value of the ith feature
point in the second image, N is the number of feature points,
h (Pi) is obtained with the re-projection method, R is the
rotation matrix, t is the translation vector, ξ is the Lie algebra
of R and t , ρi is the corresponding inverse depth information,
and K is the internal parameter matrix of the camera. The
conversion formula is as follows:

h (Pi) = ρiK (RPi + t) = ρiK
(
exp

(
ξ∧
)
Pi
)

(16)

The Jacobian matrix of optimization function can be
obtained with Lie algebra, and the pose can be obtained by
using the damped least square method, which is Levenberg
Marquardt (LM) method.

In this paper, the inverse depth was estimated with Gaus-
sian uniform mixture probability distribution based on the
probability graph. The mixed probability distribution model
has strong robustness and external interference signals have
little influence on it, so the accuracy of depth estimation can
be improved effectively.

With the actual inverse depth ρ, the Gaussian distribution
precision λ and the scale coefficient of the correct data π ,

the probability distribution of the inverse depth measurement
value x of the mixed model is as follows [30]:

p(x|ρ, λ, π ) = πN (x|ρ, λ−1)+ (1− π )U (x) (17)

where, N (x|ρ, λ−1) is a Gaussian distribution with a mean
value of ρ and a variance of λ−1, and U (x) is an interference
signal following an uniform distribution.

According to Bayesian theorem: posterior ∝ likelihood ×
prior , the joint probability distribution of all random
variables can be obtained as follows:

P(X ,Z , π, ρ, λ) = p(X |Z , ρ, λ)p(Z |π )

· p(U |Z , π)p(ρ|λ)p(λ)p(π ) (18)

Finally, the parameters of the inverse depth were estimated
with the variational inference method.

2) CALIBRATION OF THE ROTATION MATRIX BETWEEN
CAMERA AND IMU
The calibration accuracy of the relative rotation between the
camera and IMU is very important to the system fusion
result. In this paper, the rotation matrix was solved with the
nonlinear optimization method.

Assuming that the relative rotation of the camera between
two adjacent key frames Rckck+1 or qckck+1 , the relative rotation
matrix between two adjacent key frames derived with the
pre-integration of IMU is Rbkbk+1 or qbkbk+1 , and the relative
rotation matrix between camera and IMU is Rbc or q

b
c , the rela-

tionship can be obtained as follows:

Rbkbk+1R
b
c = RbcR

ck
ck+1 (19)

Assuming that q = qw + qx i + qyj + qzk = qw + qv, the
above formula can be transformed into the quaternion form
as follows:

qbkbk+1 ⊗ q
b
c = qbc ⊗ q

ck
ck+1

⇒

(
Ql
(
qbkbk+1

)
− Qr

(
qckck+1

))
qbc = Qbkbk+1q

b
c = 0 (20)

where, Ql (q) =

[
qwI + [qv]× qv

qv qw

]
, Qr (q) =[

qwI − [qv]× qv
qv qw

]
.

After n consecutive key frames are processed, the relation-
ship is as follows:

wb0b1Q
b0
b1

wb1b2Q
b1
b2

...

wbn−1bn Qbn−1bn

 qbc = Qnqbc = 0 (21)

where, wbi−1bi is the weighting coefficient, which is obtained
from the relative rotation matrix previously measured
with IMU.
The relative rotation matrix qbc between the camera and

IMU can be derived by solving the above formula.
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3) CORRECTION OF GYROSCOPE BIAS
Some deviation of the gyroscope may be generated during
the integration process, so it needs to be corrected in the
initialization stage. Assume that the reference frame is c0,
the rotations of two consecutive key frames bk and bk+1 with
respect to the reference frame is qc0bk , q

c0
bk+1

, respectively, and

the relative rotation matrix qbkbk+1 between the two key frames
can be derivedwith the pre-integration of IMU, then the target
function of the gyro bias correction is:

min
wbk

∑
k∈C

∥∥∥qbk+1c0−1 ⊗ qc0bk ⊗ qbkbk+1∥∥∥
qbkbk+1 ≈ q̂bkbk+1 ⊗

 1

1
2
J
θ
bk
bk+1
aw δwbk

 (22)

where, C is the set of all key frames relative to the reference
frame c0.
The ideal result of the above objective function is an unit

quaternion
[
1 0 0 0

]T with the real part of 1 and the virtual
parts of 0. Let (q)vec be the virtual parts of the quaternion,
then the objective function can be simplified as the form with
virtual parts only:

J
θ
bk
bk+1
aw δwbk = 2

(
qbkbk+1

−1
⊗ qc0bk

−1
⊗ qc0bk+1

)
vec

(23)

The above formula is transformed into the form of pos-
itive definite matrix, then the nonlinear optimization LM
algorithm is used to solve the above formula, and the opti-
mal solution of δwbk is obtained, and thus the gyro bias is
corrected.

C. INITIALIZATION OF SPEED, GRAVITY AND SCALE
FACTORS
Assuming that (·)c0 is the camera coordinates system relative
to the reference frame c0, the translation vector and rotation
matrix of the key frame measured only with the camera infor-
mation relative to the reference frame is

(
p̃c0ck , q

c0
ck
)
, and the

translation vector and rotation matrix of the camera relative
to IMU body is

(
pbc, q

b
c
)
, the following relationship can be

derived: {
qc0bk = qc0ck ⊗ q

b
c

sp̃c0bk = sp̃c0ck − R
c0
bkp

b
c

(24)

where, s was the scale factor, which can be derived with
the inverse depth estimation method based on the probability
graph, namely s = 1/

ρ.
Assuming that the variables of the speed, gravity and

scale factors to be optimized were expressed as � =[
vb0b0 , v

b1
b1
, · · · , vbnbn , g

c0 , s
]T

, where vbkbk is IMU measurement

speed corresponding to the k th key frame, and gc0 is the
coordinates representation of the gravity acceleration in
the reference frame c0, with the pre-integration formula,

the following relations can be obtained:α
bk
bk+1
= Rbkc0

(
s
(
pc0bk+1 − p

c0
bk

)
− Rc0bk v

bk
bk1tk +

1
2
gc01t2k

)
β
bk
bk+1
= Rbkc0

(
Rc0bk+1v

bk+1
bk+1
− Rc0bk v

bk
bk + g

c01tk
)

(25)

The formula (24) can be substituted into (25), to obtain the
following formula:−I1tk 0

1
2
Rbkc01t

2
k Rbkc0

(
p̃c0bk+1 − p̃

c0
bk

)
−I Rbkc0R

c0
bk+1

Rbkc01tk 0



×


vbkbk
vbk+1bk+1
gc0
s


=

[
α
bk
bk+1
+ Rbkc0R

c0
bk+1

pbc − p
b
c

β
bk
bk+1

]
(26)

With the linear least square method, the optimal values of
velocity, gravity and scale factors can be obtained.

III. BACK-END OPTIMIZATION
After the front-end processing, the status error is usually
large. In order to obtain a higher navigation and position
accuracy, the key frames were selected from the sequence
images for optimization with the front-end processing results
as the initial values in this paper.

A. SLIDING WINDOW FILTERING PRINCIPLE BASED ON
THE PROBABILITY GRAPH
The sliding window filtering is very important in the back-
end optimization. It can be used to ensure the processing
precision, avoid the repeated calculations of camera status,
reduce the amount of calculations and improve the speed of
operation. In this paper, a sliding window filtering method
based on the probability graph was proposed, to apply the rel-
evant knowledge of probability graph into the sliding window
filtering, and its basic principle is shown in the figure below.

In Fig.3, the pentagram indicates the landmarks, the square
indicates the probability factor function with the normal dis-
tribution, the circle indicates the data observed with the cam-
era, and the triangle indicates the data measured with IMU.
Assume that the status discarded by sliding window filtering
is the old one, i.e. xo : xo1, xo2, · · · , xom, the remaining
status by sliding window filtering is the reserved one, i.e.
xr : xr1, xr2, · · · , xrm., and the newly added key frames in
window is the new one, i.e. xn : xn1, xn2, · · · , xnm. The yellow
dotted line box indicates the filtered old status, the blue dotted
line box indicates the latest observation status, and the green
dotted line box indicates the key frame to be filtered out in the
latest observation, that is, it is classified into the old status.
During the edge processing with the sliding window filter-
ing, in order to ensure the continuity of the pre-integration
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FIGURE 3. Schematic diagram of sliding window filtering based on the
probability graph.

of IMU, only the key frames are updated, and no IMU mea-
surement value is discarded.

As can be seen from Fig.3, the key frames are divided into
discarded ones, reserved key ones and newly added key ones.
Based on the probability graph model, the following formula
can be obtained:

p (x|z) ∝ p (xo) p (xr , xn|z)

=
1√
2π P̂0

exp
(
−
1
2

∥∥xo − x̂o∥∥2P̂0
)

·
1

√
2πQ

exp
(
−
1
2
‖z− h (xr , xn)‖2Q

)
(27)

where, z is all available observations, i.e. observation land-

mark information, p (xo) =
m∏
i=1

foi is the joint probability

density of the discarded key frames. p (xr , xn|z) =
m∏
i=1
(frifoi)

is the joint probability density of the reserved key frames and
the newly added key frames, the index term

∥∥xo − x̂o∥∥2P̂0 =(
xo − x̂o

)T P̂−10

(
xo − x̂o

)
is Mahalanobis distance, where

x̂o, P̂0 are the mean and covariance of the prior distribution
of the discarded key frames, respectively, h (xr , xn) is the
re-projection function, andQ is the covariancematrix of error.
By transforming the above formula into the form of nega-

tive logarithm function, the error function 1 can be derived
as follows:

1 =
∥∥xo − x̂o∥∥2P̂0 + ‖z− h (xr , xn)‖2Q (28)

Assuming that xo′ is the key frame filtered out from the
latest measurement, and xr ′ is the remaining key frame from
the latest measurement, by using the least square method,
the error function ‖z− h (xr , xn)‖2Q can be transformed
into the following form:[

Qo′o′ Qo′r ′
QTo′r ′ Qr ′r ′

] [
δxo′
δxr ′

]
=

[
go′
gr ′

]
(29)

where, Qo′o′ ,Qo′r ′ ,Qr ′r ′ are the covariances between the
filtered key frames and the remaining key frames, and
go′ , gr ′ are the constant terms obtained after the least square
processing.
With Shure transformation, the error function can be

derived as follows:
δxo′ = (Qo′r ′)−1 (go′ − Qo′r ′δxr ′)

δxr ′ =
(
Qr ′r ′ − QTo′r ′ (Qo′o′)

−1 Qo′r ′
)−1(

gr ′ − QTo′r ′ (Qo′o′)
−1 go′

) (30)

Because the discarded key frames are independent of each
other, the error function of the key frames filtered after the
latest observation can be added to the error function of the old
status as the prior distribution of the error of the old status of
the next measurement for further optimization.

B. IMAGE RE-PROJECTION ERROR BASED ON THE
MIXTURE OF DIRECT METHOD AND FEATURE
POINT METHOD
During the optimization process with the direct method,
the feature matching is not required, and there is less depen-
dence on matching feature points, therefore, it has stronger
adaptability and robustness. The feature point method is not
sensitive to light intensity and has high positioning accuracy.
In this paper, a hybrid method of direct method and feature
point method is used to optimize the image re projection.

Assuming that Pwi is the global coordinates point and
pci =

[
uci v

c
i

]T is the projection coordinates in the cam-
era coordinates system corresponding to the global point,
T bw =

[
Rbw pbw

]
is the transformation matrix from the world

coordinates system to the ontology coordinates system, T cb =[
Rcb p

c
b

]
is the transformation matrix from the ontology coor-

dinates system to the camera coordinates system, h (·) is the
projection function, and ρi is the inverse depth in the camera
coordinates system, the re-projection function of the direct
method can be derived as follows:

I
(
h
(
Pwi
))

= I
(
T cbT

bj
w Pwi

)
= I

(
T cbT

bj
w TwbiT

b
c

(
1
ρi
h−1

(
pwi
)))

= I
(
Rcb

(
R
bj
w

(
Rwbi

(
Rbc

(
1
ρi
h−1

(
pwi
)
+pbc

)
+pwbi

)
−p

bj
w

)
−pcb

))
(31)

where I (·) is the gray function corresponding to the space
point.

The optimal function of the direct method is r
(
ẑck
)
=

I
(
Pwj
)
− I

(
h
(
Pwi
))
.

The position and pose of ORB feature points were opti-
mized mainly with BA algorithm (the minimum re-projection
error method). The optimized function is as follows:

min
ξ
1(ξ) =

N∑
i=1

‖ei‖2 =
N∑
i=1

∥∥h (Pwi )− µi∥∥2 (32)

whereµi = [ui, vi]T is the pixel coordinates of the projection.
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The expression of image re-projection error based on the
mixture of the direct method and the feature point method is
as follows: ∑

k∈C

∥∥rC (ẑck ,ℵ)∥∥2
= ξ

∑
i,j

H
(
I
(
Pwj
)
− I

(
h
(
Pwi
)))

+ (1− ξ)
∑
i

H
(
h
(
Pwi
)
− µi

)
(33)

where, H (·) is Huber kernel function, with which the prob-
lem of error growth caused by mismatching can be solved
effectively, and ξ is the proportion coefficient of the direct
method in the re-projection error, within a range of 0 ∼ 1,
in which 0 indicates the re-projection error method based
on the feature points, and 1 indicates the re-projection error
method based on the direct method.

With the error minimization method, the optimal solution
of the above formula can be derived.

The value of the scale coefficient ξ depends on different
application scenarios and environmental conditions. When
the number of feature points is relatively small and the gray
level changes between the two adjacent frames is not obvious,
the proportion coefficient of the direct method based on the
histogram equalization should be increased; when the number
of feature points is relatively large and the tracking effect
is good, the method based on ORB feature points should
account for a larger proportion. Therefore, the value of ξ
can be determined based on either the number of feature
points, or the change of light intensity. The flexibility in
determination of ξ enables a wider application scope and a
stronger robustness of the method.

C. OVERALL OPTIMIZATION OF SYSTEM ERROR
The status variables for the back-end optimization of the
whole system mainly include the position pwbi , the speed v

w
bi ,

the pose qwbi , the accelerometer offset abt , the gyroscope
offset wbt of IMU at the corresponding time of the ith key
frame, the external parameter from the camera to IMU xbc and
the measured inverse depth ρi of the ith feature point. The
expression of the status variables is as follows:

ℵ =
[
x0, x1, · · · , xn, xbc , ρ0, ρ1, · · · , ρm

]
xi =

[
pwbi , v

w
bi , q

w
bi , abt ,wbt

]
, i ∈ [0, n]

xbc =
[
pbc, q

b
c
] (34)

The overall optimization function of the system error is as
follows:

min
ℵ

{∥∥rp (xo,ℵ)∥∥2 +∑
k∈B

∥∥∥rB (ẑbkbk+1 ,ℵ)∥∥∥2Pbkbk+1
+

∑
k∈C

∥∥rC (ẑck ,ℵ)∥∥2Pck
}

(35)

where,
∥∥rp (xo,ℵ)∥∥2 is Mahalanobis distance error of prior

information composed of key frames filtered out by sliding

FIGURE 4. Flow chart of closed-loop detection and global optimization.

window filtering,
∑
k∈B

∥∥∥rB (ẑbkbk+1 ,ℵ)∥∥∥2Pbkbk+1 is Mahalanobis

distance error sum of IMU pre-integration derived with For-
mula (14), B is the set of all pre-integration items, Pbkbk+1
is the covariance matrix of IMU pre-integration noises,∑
k∈C

∥∥rC (ẑck ,ℵ)∥∥2Pck is the sum of image re-projection errors,

C is the set of all key frames, Pck is the covariance matrix of
re-projection noises.

Each of the above optimization functions is expanded with
the first-order Taylor formula, to derive the incremental equa-
tion as follows:(

Jp +
∑(

Jbkbk+1

)T (
Pbkbk+1

)−1
Jbkbk+1

+

∑(
J ck
)T (Pck )−1 J ck) δℵ

= 1p +1B +1C (36)

where, Jp is Jacobian matrix of the prior information, Jbkbk+1 is
the Jacobian matrix of IMU pre-integration, J ck is the Jaco-
bian matrix of re-projection error, and 1p,1B,1C are the
constant terms of the prior information, IMU pre-integration
and re-projection in incremental equation respectively.

The optimal solution of the incremental equation can be
derived with LM algorithm.

IV. CLOSED LOOP DETECTION AND GLOBAL
OPTIMIZATION
Fig.4 is the flow chart of the closed-loop detection and global
optimization. Firstly, DBoW2 is used for closed-loop detec-
tion. Secondly, when a closed-loop is detected, it will be
optimized. The relative position and pose of the closed-loop
optimization consists of two parts, i.e., the relative position
and pose of the sequence image and the relative position and
pose of the matching image. Finally, the global optimization
of relocation is carried out.

A. CLOSED LOOP DETECTION
In this paper, the classic binary word bag model (DBoW2)
was used in closed-loop detection. In order to ensure that each
image has a sufficient number of feature points, the binary
vector brief descriptor was used to describe an image [31].
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A dictionary for all feature descriptors was prepared to trans-
form the matching of the images into the matching of the
feature descriptors corresponding to each image. With this
method, the storage of key frame information can be reduced
and the feature matching speed can be increased.

B. CLOSED LOOP OPTIMIZATION
It was assumed that the jth key frame in the window is
matched with the ith key frame in the database and the cor-
responding ontology coordinates are bj and bi, respectively,
when a closed-loop is detected.

The relative position and pose of closed-loop optimization
are mainly composed of the relative positions and poses of
the sequence image and the matching image. The relative
position and pose of the sequence image are those of the
ith key frame corresponding to the jth key frame calculated
with IMU and monocular vision integrated navigation, and
the measurement expression is as follows:p̂

bi
ij = R̂biw

(
p̂wbj − p̂

w
bi

)
q̂biij =

(
q̂wbi

)−1
⊗

(
q̂wbj

) (37)

where, p̂wbi , p̂
w
bj are the translation vectors of the i

th key frame
and jth key frame measured with IMU and monocular vision
integrated navigation, q̂wbi , q̂

w
bj are the rotation quaternions

of the ith key frame and jth key frame measured, p̂biij is the
translation vector of the ith key frame in the database relative
to the jth key frame in the ontology coordinates system bi
as the reference coordinates system, and q̂biij is the rotation
quaternion of the ith key frame in the database relative to the
jth key frame in the ontology coordinates system bi as the
reference coordinates system.

With the estimation values of the ith and jth frames, the error
optimization function can be derived as follows:δp

bi
ij = Rbiw

(
pwbj − p

w
bi

)
− p̂biij

δqbiij =
(
qwbi

)−1
⊗

(
qwbj

)
⊗

(
q̂biij
)−1 (38)

The relative position and pose of the matching image can
be solved by similarity transformation of the inverse depth
information. Because the accumulated error may be gener-
ated when the position and pose are calculated with integrated
navigation of IMU and vision, the world coordinates system
will change from wi to wj. The main purpose of relocation
is to eliminate the error and change the world coordinates
system fromwj towi. The error function δS

wi
wj of the similarity

transformation is as follows:

δSwiwj = H
(
Swibi ·

(
S
wj
bj · S

bj
bi

)−1)
(39)

where, S
bj
bi is the similarity transformation of 3D point of the

jth frame and 2D point of the ith frame, S
wj
bj is the similarity

transformation of the jth frame in the world coordinates sys-
tem wj, S

wi
bi is the similarity transformation of the ith frame

in the world coordinates system wi. H (·) is a Hube kernel
function to limit the growth rate of the error and reduce the
impact of error matching on the closed-loop optimization
results.

The error function of closed-loop optimization consists of
two parts: the sequence error expressed as Formula (38) and
the matching error expressed as Formula (39). The optimiza-
tion objective function can be expressed as follows:

rL
(
δpbiij , δq

bi
ij , δS

wi
wj ,ℵ

)
=rL

(
δpbiij , δq

bi
ij ,ℵ

)
+rL

(
δSwiwj ,ℵ

)
(40)

C. GLOBAL OPTIMIZATION OF RELOCATION
When a closed-loop is detected, due to the accumulated error
in the sequence locating process, in addition to the error
between the matched ith key frame and the jth key frame,
the rest of the key frames are also affected by the accumu-
lated error. Therefore, the relocation and global optimiza-
tion should be carried out for all key frames to reduce the
position error of all the key frames. During the relocating
process, the closed-loop optimization error should be taken
into account, so as to calculate the relative position and pose
relationships of all key frames in the closed-loop detection.
The objective function of relocation global optimization is as
follows:

min
ℵ



∥∥rp (xo,ℵ)∥∥2 +∑
k∈B

∥∥∥rB (ẑbkbk+1 ,ℵ)∥∥∥2Pbkbk+1
+

∑
k∈C

∥∥rC (ẑck ,ℵ)∥∥2Pck
+

∑
i,j∈L

∥∥∥rL (δpbiij , δqbiij , δSwiwj ,ℵ)∥∥∥2Pcl


(41)

where, L is the set of all key frames in closed-loop detection,
and Pcl is the covariance matrix of closed-loop optimization.
The optimized relative positions and poses of all key

frames in the closed-loop can be obtained by solving the
above formula. If there is a tracking loss during the relocating
process, a high relocating precision can also be obtained by
the relocation and global optimization of the non key frames.

V. EXPERIMENT
In this paper, EuRoC MAV dataset was used for the exper-
iments, and compared with the common methods to verify
the effectiveness of the proposed method. The indoor and
outdoor environmental data were collected with hand-held
camera and IMU, and processed with the method proposed,
to verify the environmental adaptability of this method.

A. EXPERIMENTS BASED ON EUROC DATASET
EuRoC dataset contains the image information collected with
the binocular camera (with a camera frequency of 20Hz) and
corresponding inertial navigation information (with an IMU
frequency of 100Hz) and is suitable for the verification of
the fusion navigation method based on the vision and IMU
data. Four methods were compared in this paper, including
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TABLE 1. Experimental comparison results.

Stereo-SLAM method based on binocular camera fusion,
VINS-SLAM method based on monocular camera and IMU
fusion, VIORB-SLAMmethod based on feature point camera
and IMU fusion [32], and SLAM method based on mixed
feature camera and IMU fusion proposed in this paper. The
experimental results obtained with the EuRoC data set are
shown in TABLE 1.

It can be seen from TABLE 1 that the method proposed in
this paper has relatively small root mean square error for most
of the EuRoC data sets, and the method has good adaptability
and robustness.

In this paper, the representative MH_04_difficult dataset
was selected for the experiment. This dataset contains clear
textures, fuzzy images generated by rapid movement, back-
grounds with obvious light and dark changes, etc. These
features may increase the difficulty during the dynamic nav-
igation position process, and may also effectively verify the
robustness and stability of the algorithm. The experimental
results and error diagrams with the four methods are shown
in the figures below.

In Fig.5, the fitting diagrams of the experimental data and
the real track are shown in the left, and the corresponding
error diagrams are shown in the right. In the error diagrams,
APE refers to absolute percentage error, rmse refers to root
mean square error, median refers to median error, mean refers
to average error, and std refers to standard deviation. It can
be seen that the errors of results obtained with these meth-
ods are in the sequence: Stereo-SLAM > VINS-SLAM >

VIORB-SLAM > Present-Method.
With the pure vision SLAMmethod used to fuse the binoc-

ular camera image, the scale drift problemwith themonocular
SLAM can be solved, but when the distance is relatively
long, the position accuracy will be seriously reduced due
to the limitation of the binocular camera baseline, and the
adaptability to environmental conditions is relatively poor
because it only uses the feature information of the image
for position. Therefore, the position accuracy of the pure
vision SLAMmethod is the worse and the error is larger than
those of the other three methods with the monocular camera
and IMU.

In the fusion locating methods with monocular vision and
IMU data, the pre-integration of IMU can reduce the cal-
culations and improve the calculation speed effectively. The
measurement value of IMU can compensate the depth uncer-
tainty of the monocular camera effectively. The front-end of

FIGURE 5. Experimental results and error diagrams based on EuRoC
dataset.

VINS-SLAM was processed with the optical flow method,
to obtain a good adaptability to environmental conditions
with obvious light changes and achieve good position accu-
racy in the case of rapid movement. However, due to the lack
of processing of image feature points, any possible mismatch-
ing, which may affect the position accuracy. The front-end of
VIORB-SLAM was processed with ORB features, to obtain
a relatively high position accuracy and the locating method
is suitable for cases with relatively slow moving speed.
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TABLE 2. Camera calibration and IMU initialization results.

The matching method based on ORB features can improve
the matching accuracy, thus improving the position accuracy.

In this paper, Runge Kutta method was used for IMU pre-
integration, which can improve the pre-integration accuracy
effectively, so as to provide more accurate position and pose
information for the fusion algorithm. In the front-end pro-
cessing, the sparse direct method was used, to ensure the
position accuracy and meet the speed requirements, so as
to improve the robustness and adaptability of front-end pro-
cessing. The inverse depth was estimated with Gaussian uni-
form mixture probability distribution method, to improve the
position accuracy effectively. In the back-end optimization
with VINS-SLAM and VIORB-SLAM, the sliding window
principle was applied and the image relocating error was
optimized in the global optimization. The sliding window
processing method based on the probability graph was used
in the back-end optimization and the mixed relocation opti-
mization method based on the direct method and the feature
point method was used in the global optimization, to improve
the accuracy of the back-end optimization effectively.

B. EXPERIMENTS WITH HANDHELD CAMERA AND IMU
The experimental equipment used in this paper were shown
in Fig.6. The processor of the laptop is Intel i7-6500U with
a frequency of 2.6GHz, and a memory of 16G, which can
provide powerful computing power for real-time data pro-
cessing. The binocular camera has a image acquisition fre-
quency of 50Hz. The image size is 1280 × 800 pixels. The
baseline length of the binocular camera is 12 cm. The data
acquisition frequency of IMU is 1000Hz. In the experiment,
the left camera of binocular camera and IMU data are used
for fusion. Before further experiments, the camera and IMU
need to be calibrated and initialized. The experimental results
are shown in TABLE 2.

After initialization, the accuracy of data fusion between
camera and IMU can be improved. In order to verify the
applicability and robustness of the proposed method, this
experiment consisted of two parts: indoor part and outdoor
part.

C. INDOOR ENVIRONMENT EXPERIMENT
The indoor environment experiment was carried out in the
laboratory. The hand-held camera and IMU were moved

FIGURE 6. Handheld camera and IMU experimental devices.

FIGURE 7. Comparison of results of the indoor environment experiments.

around the laboratory to collect and process the real-time
information and obtain the experimental trajectory. In this
paper, the operation trajectories with different methods were
compared, and the importance of the closed-loop detection to
the global optimizationwas verified. The experimental results
are as follows:

The total length of indoor moving trajectory was 20 m.
As can be seen from Fig.7: when no closed-loop was
detected, based on the operation results with VIORB-SLAM

VOLUME 8, 2020 51125



W. Liu et al.: Integrated Autonomous Relative Navigation Method Based on Vision and IMU Data Fusion

method, the final drift errors in x-axis, y-axis and z-axis
were

[
0.392 0.03 0.264

]
, accounting for 2.37% of that in

the total length; based on the operation results with the
method proposed in this paper, the final drift errors in x-axis,
y-axis and z-axis were

[
−0.237 0.008 −0.012

]
, accounting

for 1.18% of that in the total length.
If the starting point of the indoor experiment is taken as the

origin, the hand-held camera and IMU circle the laboratory
and return to the starting point again, and maintain the same
position and posture as the beginning. It can be seen from
the operation results of VIORB-SLAM that the drift errors of
pitch, yaw and roll were

[
0.231◦ 0.201◦ 1.53◦

]
. According

to the operation results of the proposed method, the drift
errors of pitch, yaw and roll were

[
0.083◦ 0.05◦ 0.733◦

]
.

In this paper, Runge Kutta method was used to improve
the pre-integration precision of IMU, the mixed inverse depth
estimation method based on the probability graph was used
to improve the precision of camera depth estimation, and
the mixed optimization method of the direct method and the
feature point method was used to improve the precision of
the global optimization. Therefore, when no closed loop is
detected, the proposed method can reduce the drift error and
improve the robustness of the whole system effectively.

When the closed-loop detection was added, the two meth-
ods could eliminate the drift error effectively. In this paper,
the closed-loop optimization method based on similar trans-
formation is used to eliminate the accumulated error. There-
fore, the closed-loop detection is very important in the whole
relative navigation process and could eliminate the scale drift
error of the camera and the inertial accumulation error of
IMU, so as to reduce the global error and improve the position
accuracy.

D. OUTDOOR ENVIRONMENT EXPERIMENT
The outdoor environment experiment was carried out in
the campus. The hand-held camera and IMU were moved
in 8-shape track on a playground to collect the real-time
data and obtain the moving trajectory for the closed-loop
detection experiment and the two methods were compared.
The experimental results were as follows:

The total length of operation trajectory in outdoor envi-
ronment was 120m. As can be seen from Fig.8: when no
closed-loop was detected, based on the operation results with
VIORB-SLAMmethod, the final drift errors in x-axis, y-axis
and z-axis were

[
3.152 1.364 0.620

]
, accounting for 2.92%

of that in the total length; based on the operation results of the
method proposed in this paper, the final drift errors in x-axis,
y-axis and z-axis were

[
−0.698 −0.311 1.741

]
, accounting

for 1.58% of that in the total length.
If the starting point of the outdoor experiment is

taken as the origin, the hand-held camera and IMU cir-
cle around the campus and return to the starting point
again, and maintain the same position and posture as the
beginning. It can be seen from the operation results of
VIORB-SLAM that the drift errors of pitch, yaw and roll were[
1.616◦ 6.61◦ 7.033◦

]
. According to the operation results of

FIGURE 8. Comparison results of outdoor environment experiments.

the proposed method, the drift errors of pitch, yaw and roll
were

[
0.967◦ 1.033◦ 3.133◦

]
.

The experimental results showed that the proposed method
can reduce the outdoor locating error and improve the sta-
bility of system operation effectively when no closed-loop is
detected. When the closed-loop detection was added, the two
methods could also reduce the drift error of the system and
improve the accuracy of global position effectively in outdoor
environment.

The above experiments showed that the method proposed
in this paper can be used in large-scale environments, and is
relatively stable in the scenes with relatively fuzzy textures
and with relatively obvious light changes. In cases of fast
movement, it can be used for tracking and locating. Even in
cases of tracking loss, it can be also used for quick relocating.

It can also be seen from the experiments that the locating
error in the outdoor environment is larger than that in the
indoor environment. In the indoor environment, there is rel-
atively less interferences and stable light intensity, which is
easy to extract the feature points and use the direct method for
locating. In the outdoor environment, there is uncertain and
unstable light intensity, the scale of the external environment
is usually large, and the depth estimation error of the camera
is relatively large, which increases the locating error in the
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outdoor environment. The method proposed in this paper can
effectively reduce locating error and provide strong stability
in large-scale environments with strong interferences.

VI. CONCLUSION
During the fusion locating process with vision and
IMU data, the pre-integration of IMU is very important in
the whole optimization process, which can avoid the prob-
lem of repeated calculations effectively in the optimization
process. In this paper, the pre-integration method based on
Runge Kutta method was used to improve the pre-integration
efficiency.

In the initialization of the system, the sparse direct method
based on the histogram equalization was used in this paper
to calculate the position and pose of the camera and the
positions and poses of large number of key frames could
be calculated quickly, to provide the initial values for the
back-end optimization. A mixed probability model was used
to estimate the inverse depth of the camera, which was robust
and less affected by external interferences.

In the back-end optimization, the sliding window filtering
method based on the probability graph model was proposed
in this paper, which was relatively intuitive and convenient,
and was easy to update the old and new status, so as to avoid
the repeated calculations of the camera status, reduce the
calculations, and improve the calculation speed.

In the calculation of the re-projection error, a mixed
re-projection method integrated with the high speed of the
direct method and the high precision and closed-loop ability
of the feature point method was proposed in this paper, which
could not only increase the robustness of the re-projection
method, but also improve the calculation speed. In the global
optimization of relocation, the mixed re-projection error was
also added to improve the accuracy and speed of the global
optimization.

In the closed-loop optimization, a closed-loop optimiza-
tion method based on similar transformation is proposed to
eliminate the accumulated error.

In conclusion, the integrated autonomous relative navi-
gation method based on the vision and IMU data fusion
proposed in this paper has stronger robustness and higher
calculation accuracy.
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