
Received February 12, 2020, accepted February 27, 2020, date of publication March 3, 2020, date of current version March 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977853

Simulation of an NSGA-III Based Fireball
Inner-Temperature-Field Reconstructive Method
XUE BING 1,2, HAO XIAOJIAN1,2, LIU XUANDA1,2, HAN ZIQI3, AND ZHOU HANCHANG1,4
1Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
2School of Instrument and Electronics, North University of China, Taiyuan 030051, China
3Beijing Jinghang Computation & Communication Research Institute, Beijing 100000, China
4School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Corresponding author: Hao Xiaojian (haoxiaojian@nuc.edu.cn)

This work was supported in part by the Open Fund of State Key Laboratory of Deep Buried Target Damage under Grant DXMBJJ2018-09,
and in part by the Pre-Research Field Foundation of Equipment Development Department of China under Grant 61400030202.

ABSTRACT For the inner-temperature-field reconstruction of a fireball, a detecting method was proposed,
using multi-channel visible spectral remote sensing theory. In our proposed method, the reconstructive
algorithm based on multi-channel-detection was considered as a multi-objective optimization problem
(MOOP), and a fast non-dominated sorting genetic algorithm based on reference-point strategy (NSGA-III)
was employed as the solution of this problem. Besides, a so-called ambient pressure operator, based
on the unique detecting model, was proposed and employed during the iteration process, for dynamic
genetic parameter adjustment. To verify some performance of our proposed method, several numerical
reconstructive simulations were carried out, from simple GA to NSGA-III, using several artificial 2-D
virtual data, with different kinds of crossover and mutation functions. The simulation results show that,
limited to our problems, the NSGA-III can effectively reconstruct different 2-D data, by a fixed crossover
rate and a dynamic mutation rate under the proposed ambient pressure operator and an adaptive mutation
rate function. The algorithm, limited to the field-reconstruction, also performs well on stability, but still has
some deficiencies to be optimized.

INDEX TERMS Field reconstruction, MOOP, NSGA-III, ambient pressure operator.

I. INTRODUCTION
In order to obtain the inner-temperature distribution of a
fireball, several non-contact and contact detection method
have been developed. Our work in fund project is using
several ultra-high-speed visible spectral cameras to gain
multi-channel images of the target projection, and then
using the images to reconstruct the inside temperature field,
where the 3-D reconstructive algorithm is urgently required
after the image acquisition. Our currentlyworkswere, besides
the development of the optical detection system, proposing
a NSGA-III based reconstructive method, simplifying the
projection model and using several artificial 2-D virtual data
to prove the effectiveness of our algorithm. In this section,
the optical detection system, multi-channel-images based
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reconstructive system [1], and the motivation of choosing
NSGA-III [2], [3] will be introduced.

A. THE VISIBLE LIGHT DETECTION SYSTEM FOR FIREBALL
The detection system proposed in our project for fireball inner
temperature field, was considered having several high-speed
visible spectral cameras. As is shown in figure 1, these
cameras shall be implemented around the blast fireball, out-
side the dangerous distance, to obtain the projections from
different directions of the fireball, geometric optical theory
followed, and the storage module will record each frame of
the projection data, collected in a certain direction. After
sampling for a period of time, reprocess the collected images,
and a reconstructive field will finally be available. There are
two important hypotheses in the detection system, and both
play important roles in the entire reconstruction theory.

Firstly, as is shown in figure 2, each camera in our detection
system, must have different trigger and storage time, which
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FIGURE 1. Visible light detection and reconstruction system with several
cameras.

FIGURE 2. 1t of trigger pulse between different detecting channels.

could be efficiently reduced by modern and expensive tech-
niques. However, when developing the reconstructive algo-
rithm, assuming that the camera array having a sufficiently
high sampling frequency and synchronization hypothesis is
quite helpful, by which images from different cameras in
similar frames can consider to be captured at a same time.

The second hypothesis is the simplification of the opti-
cal transfer function (OTF), which we call it Temperature-
Intensity relation, converting the inner temperature to the
gathered projection. The actual overall relation, which con-
sidered quite complicated, is currently simplified as three
sub relations, as is briefly described in figure 3, which are
thermal excitation of elements, reduction of the radiation and
receiving property of our multi-channel sensors.

FIGURE 3. Three main process in the OTF.

In the second hypothesis above, shown in figure 3, based
on thermal radiation theory, we consider that each position
inside a transient fireball must have a determined temperature
message, exciting the elements contained in this position and
generating radiationwith special spectrum [4], [5]. So, we can

define formulation (1) to represent this process.

Ie,(x,y,z) = fexcitation
(
2(x,y,z), ελ

)
. (1)

where 2(x,y,z) represents the temperature of one node inside
the fireball area, whose coordinate value are (x, y, z) and
emissivity is ελ. By a certain function fexcitation based on
black-body radiation law, the emissive thermal radiation
Ie,(x,y,z) can finally be acquired.
In the next place, considering one of the radiation lines

generated, four environmental conditions were considered,
that are propagation inside the fireball, propagation through
the vapor or smoke, propagation in the atmosphere, and prop-
agation through the optical devices, causing the attenuation
of the radiation energy. This attenuation process [6] can be
defined as formulation (2).

Ia,(x,y,z) = fattenutation
(
Ie,(x,y,z),H

)
. (2)

where H represents the set of different attenuation coeffi-
cients. The intensity of radiation after attenuation Ia,(x,y,z) can
be calculated through the attenuation process fattenutation.
Finally, the rest radiation Ia will be converted accord-

ing to the photoelectric conversion properties [7], [8], and
fphotoreception as formulation (3) can define the relation
between the gray level Dgray and the rest light intensity Ia.

Dgray = fphotoreception(Ia,1t). (3)

where 1t is the integration time of pixels.
From a different point, the gray level of one pixel might

correspond, not to the temperature of a single node, but to the
temperature of multiple nodes based on geometrical optics
as figure 4. This relation plays an significant role in the
reconstructive systemwhich means the error generated in one
pixel, must mainly come from the value of points related to
this certain pixel.

FIGURE 4. Related points of pixels inside the fireball.

As a result, we can achieve expressions (4), describing the
gray-level D(m.n) of each pixel in one entire image located
at (m, n). So the gray level of the whole image can be
described as Di, the set of all D(m.n) in the photographic film
of channel i.D(m.n) =

∑
V
fphotoreception

(
Ia,(x,y,z),1t

)
Di=

{
D(i,m,n) |1 ≤ m ≤ M , 1 ≤ n ≤ N

} (4)
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where any (x, y, z) ∈ V and V is the corresponding space area
of No.(m, n) pixel in one detecting channel, i.e. (m, n)→ V .
Summarize from formulation (1) to (4), the temperature

of an inner point and the change of pixel gray level can be
generally described as a general formulation (5).

Di =

{
D(i,m,n)

∣∣∣∣∣∑
V

ftrans
(
2(x,y,z), ελ,H ,1t

)}
(5)

B. MOOP BASED RECONSTRUCTIVE METHOD
Based on the images collected in section 1.1, the field recon-
structive system can be described as the schematic shown
in figure 5.

FIGURE 5. The reconstrutive theory based on multi-channel detection and
MOOP.

At first, coordinate range of the fireball area should be
calculated by surface 3D reconstructive algorithm according
to the multi-channel images. The area calculated can further
be divided into a fixed grid, with the initial temperature
information given to the grid node. Then, by using the relation
defined in expressions (5) and (6), multi-channel projections
of the artificial temperature field above, can be calculated.
Numerical difference between the projections calculated and
the projections sampling by the camera array, must exist and
could be calculated as formulation (7). Iterative method is
chosen to adjust the temperature value of a node inside the
inner fireball mesh, aiming at reducing the error calculated
by the sum of squared errors (SSE) of all pixels in one
image, between the calculated projection and the collected
projection. By using this kind of SSE, one SSE can represents
the fitness of the current iteration result in a certain detection
channel, and the purpose of iteration is to find the best numer-
ical temperature field solution, fitting all channels’ SSE well,
which is similar to a multi-objective optimization problem
(MOOP) [9], [10] and is suitable for many multi-objective
evolution algorithms (MOEA) [11], [12]. Finally, the best
solution found in the process of iteration, will be the recon-
structed result of the fireball inner temperature field.

II. IMPLEMENT OF NSGA-III TO THE RECONSTRUCTIVE
ALGORITHM
Since the multi-channel-projection based field reconstructive
method has been classified as MOOP, NSGA-III is chosen to

solve this problem [13]. There are two significant points in
implement of the algorithm. The first is the simplification of
the detection model to build a simple mathematical model.
The second is the combination of NSGA-III and the simpli-
fied model.

A. SIMPLIFIED MATHEMATICAL MODEL
In the primary stage of the reconstructive project, it is difficult
to verify the reconstructive method is actually work, without
having real detection data. So, a simplified mathematical
model was designed to simulate the detection process, with
three main concepts.

The first concept is trying 2-D simulations before 3-D
simulations. Same to the 3-D situation, 2-D simulation can
keep the corresponding relationship between the projection
and internal value, only having difference in the dimension
of variables in calculation. Guided by this theory, virtual 2-D
fireball data and virtual visible spectral camera array was
randomly created.

The second concept is the generation of 2-D fireball data
sets. The fireball may have several high temperature regions
inside the explosion area. So, we randomly choose three
centers and three radii, generating several virtual fireball data
sets, as is shown in Fig 6.

FIGURE 6. Several aritificial 2-D fireball iamges randomly generated by
program.

The third concept is using the principle of pinhole imaging,
one of the simple but frequently-used OTF, in calculating
projections. In 2-D situation, for one virtual pixel in figure 7,
two vectors can be calculated by one virtual focus and the two
boundary points of the pixel.

In the 2-D vector space, the two vectors
−−−→
P1,iOi and

−−−→
P2,iOi

can be the base vectors as they are linearly independent, and
all points can be represented by the two vectors as formu-
lation (6), where the virtual focus point can be described as
Oi =

[
ox oy

]
, one random object point can be described as

P =
[
px py

]
, and the neighbouring two boundary points of

one pixel are P1,i =
[
x1,i y1,i

]
and P2,i =

[
x2,i y2,i

]
.

−−−→
P1,iOi =

[
x1,i − ox y1,i − oy

]T
−−−→
P2,iOi =

[
x2,i − ox y2,i − oy

]T (6)

According to the principle of pinhole imaging, the point is
judged to project towards the pixel, when two coefficients k1,i
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FIGURE 7. The vectorial representation of pinhole iamging.

and k2,i, derived from formulation (7-9), are both positive.

−→
POi =

[
k1,i k2,i

] [
−−−→
P1iOi

−−−→
P2iOi

]T
=

[
k1,i k2,i

] [ x1,i − ox y1i − oy
x2,i − ox y2i − oy

]
−→
POi =

[
px py

]
−

[
ox oy

]
=

[
px − ox py − oy

]
(7)

[
px − ox
py − oy

]
=

[
x1,i − ox x2,i − ox
y1,i − oy y2,i − oy

] [
k1,i
k2,i

]
(8)[

k1,i
k2,i

]
=

[
x1,i − ox x2,i − ox
y1,i − oy y2,i − oy

]−1 [ px − ox
py − oy

]
(9)

Based on the concepts above, figure 8 shows a 2-D
10-channel virtual detection system, with 40 pixels, imple-
mented around a random 2-D artificial fireball.

FIGURE 8. Virtual multi-channel imaging system.

B. APPLICATION OF NSGA-III IN THE RECONSTRUCTIVE
ALGORITHM
In the optical model of the detection system, the Temperature-
Intensity relation might quite complex, and maybe quite
difficult to solve the backward relation. So genetic algo-
rithm (GA) was chosen, only using the forward relation
to participate iteration. Different from the simple genetic

algorithm, NSGA use non-dominated sorting [14], [15] as
the elitist strategy to choose better individuals in iteration,
and drive the iteration based on GA theory [16], [18]. From
NSGA to NSGA-III, population diversity of individuals has
been taken into consideration in NSGA-II, and furthermore,
NSGA-III uses a reference point association to effectively
overcome this problem. The application of NSGA-III can be
described as what is shown in figure 9.
Step1. Load an artificial 2-D fireball and set the virtual

camera array by the given parameters, like what is shown
in figure 8, which automatically generated in MATLAB
by our own designed program. Then use the OTF virtual
pinhole-imaging OTF as figure(7) and equations(7-9), to gen-
erate the standard projections set Ds.
Step2. Use projections generated to produce a mean

back-projection data Ps, and implement a fixed mutation rate
pmutation on random location (x, y) of Ps to produce one initial
individual P by equations (10).

P(x, y) = Ps(x, y)× (1+ pmutation) (10)

where i represents the number of one channel, ranging from
1 to n, and mean back-projection Ps can be calculated as
below.

Ps=
1
n

n∑
i=1

Ds (i) (11)

Step3. Calculate each channel’s projection Dprj of each
individual P with equations (12).

Dprj (i, j) =
∑
j→V
x,y∈V

ftrans,node
(
P(x,y), ελ,H ,1t

)
(12)

CompareDprj with standard projectionsDs in the first step,
to get AE (i, j) and SE (i, j)matrix with equations (13), where
i represents the number of one channel and j represents the
number of one pixel in channel i.{

AE(i, j) =
∣∣Dprj(i, j)− Ds(i, j)∣∣

SE(i, j) =
(
Dprj(i, j)− Ds(i, j)

)2 (13)

Step4. Also, as is shown in figure 9, generate child-group
by crossover operator and mutation operator, two basic GA
operators. During the mutation, a linear mutation rate func-
tion [19] was used to control the number of mutation nodes,
in order to make the algorithm being adaptive [20], [21]. The
mutation rate pm could be calculated as equations (14).

pm =
pn
N

(14)

where N is the number of objects (i.e. number of detective
channels in this paper), pn can be calculated as follows.

pn = p+ (t − 1)×
1− p
tm − 1

(15)

where t and tm are the current and maximum generation,
respectively; p is a fixed real number, and in this paper p can
be given as follows.

p =
1
5
N (16)
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FIGURE 9. Application of NSGA-III in the field reconstructive system.

In order to control the intensity of the mutation, we pro-
posed an ambient pressure operator based on the D-value
between Dprj(i, j) and Ds(i, j) of the individuals in paternal
generation. The aim of development of this operator, based
on two theory. On the one hand, the final individuals must
be similar to the mean of back-projections of each detecting
channels, and all individuals in the iteration can gradually
approach to the best individual along the curve, constructed
by origin point and fitness point of back-projections’ mean
value, in this high dimension MOOP. On the other hand,
though, the mutation position and mutation value should be
and can be controlled by the current error between calculated
and observed values, though they are generated by the current
mutation rate.

The generation of this proposed ambient pressure operator
is described as below.

Firstly, the number of nodes under mutation Nm is con-
trolled by the basic nodes’ number Np and the mutation
rate in this generation. The mutation number Nm (i, j), in the
corresponding region of pixel j of channel i, can be calculated
by Np(i, j), the total number of nodes in the corresponding
region of the pixel, and pm, the mutation rate in the current
generation, as formulation (17).

Nm (i, j) = Np(i, j)× pm (17)

Next, when considering the construction of the mutation
value, the more error, the more mutation value. As equa-
tion (18), both the D-value betweenDprj(i, j) andDs(i, j), and
a real number K are used to control the size of the mutation
corresponding to pixel j of channel i. Besides, the direction of
the mutation is defined as the reverse of the D-value. At last,
average distribute the mutation value to Nm (i, j) nodes.

Vm (i, j) = −
Dprj(i, j)− Ds(i, j)
K × Nm (i, j)

(18)

The real numberK is recommended in this paper as follow.
This recommended value can restrict the total mutation value

to less than 1, which corresponding to a certain pixel, making
individuals can converge steadily along, floating in a small
range near the mean back-projection Ps.

K=
∑
j

AE(i, j) (19)

Meanwhile, a fixed rate from experience was chosen as fol-
low to control the number of nodes under crossover process.

pc = 0.7 (20)

The results of different Pc values were tested as is shown
in figure 10. From figure 10(a), the algorithm can converge to
the same value with different Pc and other same parameters.
From figure 10(b), when set Pc = 0.7, the algorithm can
converge a little bit faster than other values. So,Pc = 0.7
was chosen as a primary recommended crossover rate from
experience.

FIGURE 10. Comparison between results of different Pc values.

It is worth noting that the nodes under both crossover
and mutation process are randomly generated in the range
of the virtual fireball region, which is quite different from
the method given in Jakub’s paper [16], where all points in
related region are chosen to participate in the iteration, as is
shown in figure 11(a), which may lead to both the increase
of operation and the rise of error. In the proposed fireball
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FIGURE 11. Difference between Jakub’s and proposed method.

FIGURE 12. Generation of each detecting channel’ SSE.

reconstructive system, 3-D surface reconstructive technique,
obtained easily on open source library, is introduced to gen-
erate the coordinates of the reconstructive area, which can
guide the division of finite elements and constrain the region
of iteration as figure 11(b).
Step5. After the basic genetic process, by merging both

child-group and parent-group into one group, and achieving
the SE matrix by step 3, as figure 12, the SSE matrix of any
individual, inside the united group, can easily be acquired.

The SSE value of individual m towards channel i,
i.e. sse (m, i), can be achieved by formulation (21).

sse (m, i) =
∑
j

SE(m, i, j) (21)

where j is the serial number of pixels corresponding to chan-
nel i, and the structure of SSEmatrix (i.e. SSEsort ) is as follow.

SSEsort =


sse11 sse12 · · · sse1N
sse21 sse22 · · · sse2N
...

...
. . .

...

sseM1 sseM2 · · · sseMN

 (22)

SSEsort is an M × N matrix, where M is the number of
individuals and N represents the number of channels. Any
row of (i.e. SSEsort (m, :) as below) represents this individual’s

fitness to each projection channel.

SSEsort (m, :) =
[
ssem1 ssem2 · · · ssemN

]
(23)

As a result, non-dominated sorting strategy could be used
to elect elite individuals from the united groups, based on the
multi-fitness vectors (i.e. matrix SSEsort ).
In the process of electing elite individuals, firstly,

the reference-points association is implemented to keep the
diversity of the current population [22]–[24]. In order to
construct the reference points in the N-dimensional multi-
fitness-vector domain, linear hyperplane method was intro-
duced, whose expression can be described as equation (24).

x1 + x2 + · · · xN−1 + xN = a (24)

where N is the dimension of the whole multi-fitness-vector
space. The constant a can briefly be defined as 1,
because that all the vectors above need to be standardized
by multi-dimensional coordinate translation (i.e. equations
(24)), andmulti-dimensional normalization as equations (25).

T =
[
m1 m2 · · · mN

]
1×N

mi = min


sse1i
sse2i
...

sseMi



U = SSEsort −


1
1
...

1


M×1

× T

(25)

wheremi is the minimum value of column i in operator matrix
T and T is an 1 × N matrix of the each channel’s minimum
value and UT is anM ×N matrix, translated from SSEsort by
the row matrix T constructed by mi in all dimension of the
fitness.

The elements in UT can be recognized as utij where
i represents the channels and j represents the individuals.
By selecting the maximum value of each column in UT to
form the normalized parameter matrix, the normalization of
matrix UT is realized, and the standardization of SSEsort is
finally completed. The process is described as equations(25).

N =
[

1
mut1

1
mut2

· · ·
1

mutN

]
1×N

muti = max


ut1i
ut2i
...

utMi



SSESTD = UT ·



1
1
...

1


M×1

× N



(26)
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where operator matrix N saves reciprocal values of all chan-
nels’ maximum SSE value. After dividing the columns of
N by the maximum of each channel, the SSE matrix under
normalization (i.e. SSE matrix standardized, SSESTD) can
easily achieved.

After achieving the SSESTD matrix, in order to keep the
diversity of individuals’ distribution, try the best to relate
at least one individual to each reference point, as is shown
in figure 13, by comparing the distance between each ref-
erence vector with each fitness vector. The reference vec-
tor above is generated by the original point and reference
points on the N-dimensional reference hyper-plane which
constructed by equation (23).

FIGURE 13. Three relative conditions of individuals and reference points.

The distance vector dM ,i, representing all fitness vectors
towards one reference vectors can be calculated as equa-
tions (27), according to the point to vector distance theory.

dM ,i =
1
|refi|

SSESTD × ref Ti (27)

In the equations above, SSESTD is an M × N matrix, refi
is one of the vector on the reference plane, defined as the
equation (28) below.

refi =
[
xi,1 xi,2 · · · xi,N

]
1×N (28)

There are three conditions while counting the number of
related individuals as figure 13, and we try to realize that
one reference vector only have one related vector. One of the
useful solutions is using priority level, where non-dominated
individuals is firstly taken into consideration, randomly select
one individual from individuals related to a certain reference
vector. If the number of individuals remain is not enough,
we go back to the non-dominated sets removing in the former
step, and randomly pick out several individuals. After that,

if the individuals’ number is still not enough, we have no
choice but picking out individuals in under-dominated sets.

Figure 14 shows the Pareto Front of the individuals during
the iteration under a 10-channels reconstruction simulation,
where the fitness of all individuals were separated with
several 2-D or 3-D fitness by projection for visualization.
The individuals were forming several niche, which could be
observed easily during the iteration, which may be caused by
the normalized reference points.

FIGURE 14. Visualization of 10-D Fitness (where blue points represent
Pareto Front).

Step6. The individuals picked out from the merging pater-
nal group make up the filial elite set. The elite set, when their
SSE matrix cannot satisfy our expectation, will be sent back
to step 2 as the paternal individuals, to carry out a new round
of iteration. The iteration process shall stop automatically
only when the error of the individuals can satisfy the require-
ments or when the number of iterations is out of maximum
bound.

III. SIMULATION RESULTS
Based on the simplified mathematical model and the recon-
structive strategy above, several numerical experiments have
been implemented, using the same projection mathematical
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model (i.e. pinhole imaging model with the same relative
parameters) and same size of virtual fireball data, but under
other different parameter conditions. The simulative tests of
the proposed reconstructive method contain four different
situations.

All of our simulations were carried out on a personal
computer with a Intel(R) Core(TM) i7-8700KCPU, Kingston
DDR4 3600Hz 32G RAM. The software platform are
Windows 10 professional and MATLAB R2019a.

A. COMPARISON BETWEEN GA, NSGA AND NSGA-III
The same virtual fireball and the same position parameters
of all detecting channels, but different reconstructive theory
and different number of the detecting channel were employed,
in order to show that NSGA-III works completely better
than simple GA and basic NSGA in this special MOOP.
The reconstructive results of same artificial data by different
method are compared in figure 15with rising number of chan-
nels. From the visual qualitative analysis shown in figure 15,
NSGA-III do have the obviously better reconstructive results
than basic NSGA and Simple Genetic Algorithm. This may
mainly because of the reference points method in NSGA-III,
by which the diversity of individuals can stably be maintained
and the local optimal solutions during the iteration can effec-
tively be avoided.

B. COMPARISON BETWEEN FIXED RATE METHOD
AND PROPOSED METHOD
Iterations with fixed parameters and proposed dynamic
control method were tested under the same condition. The
mutation rate has effect on both value and number of the
individuals as equation (17).When using the same parametric
condition and the same target, the mutation rate have a great
effect on the convergent speed as is shown in figure 16. The
explanation of this phenomenon is inferred as the influence
of both the dynamic rate and the proposed operator. The
proposed operator has the ability in applyingmore adjustment
to the place with larger error.

C. COMPARISON BETWEEN DIFFERENT NUMBER OF
CHANNELS
Based on the fact that NSGA-III has been proved to be
the most suitable method in this multi-channel reconstruc-
tive problem, the same virtual data and different number of
channels were used, to test what may be caused by different
number of detective channel. The results of simulations with
different number of channels are shown in figure 17, where
the same color represents the same value. Also from the visual
qualitative analysis, reconstructive results become better with
the increasing number of detecting channels, but when over
10 channels, the degree of optimization becomes gradually
not obvious.

From all elite individuals reconstructedwith different num-
ber of channels, the mean of standard error (S.E.) curves
shown in figure 18 and standard deviation (S.D.) curves these
elite group can easily be saved by the iteration program.

FIGURE 15. Comparison of reconstructive results between GA, NSGA and
NSGA-III with same virtual data, and different number of channels.

FIGURE 16. Comparison between tests with different mutation rate.

All S.E. and S.D. were generated by a solitary programwhich
compare the current results with the original artificial data as
figure 17(a) during the iteration, and have no influence on
accuracy in the iteration process.

In figure 19, the S.D. value of elite individuals’ S.E.
means that, based on the proposed ambient pressure operator,
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FIGURE 17. Comparison between reconstructive results with
4-14 channels under same conditions.

FIGURE 18. Mean value of elite individuals’ S.E. calculated by different
number of channels in the iteration.

FIGURE 19. S.D. value of elite individuals’ S.E. calculated by different
number of channels in the iteration.

the iteration process can keep a stable group diversity, and
avoid local optimization in some degrees.

In the meanwhile, the mean S.E. curves in figure 15 indi-
cates that the more number of channels, the better

FIGURE 20. Comparison of percentage of S.E. with different number of
channels.

FIGURE 21. Different reconstructive results of different targets with
10 detecting channels.

reconstructive results. However, themore number of channels
means the higher cost of calculating time. So, considering the
artificial data only have three set value(i.e. 84, 169, and 255),
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the percentage of S.E. to the truth value (i.e. artificial data as
figure 17(a)), was introduced to evaluate the reconstructive
results with different number of channels as figure 20.

Considering the visible results in figure 14, the S.E. curves
in figure 15, and the time cost, 10 or 12 channels are rec-
ommended in this proposed reconstructive theory. The first
reason is, as figure 14(b) and (c), the reconstructive results
figure 17, the reconstructive accuracy rise slowly but pay a
high time cost in computation.

D. COMPARISON BETWEEN DIFFERENT TARGETS
The same number of detective channels and different vir-
tual 2-D fireball data were used to prove the fitness of the
reconstructive method when dealing with different targets.
Over 30 artificial data were used in this simulation, and the
results were all basically meet our expectations, five of our
reconstructive results is shown as figure 21.

The relative mean value curves of elite individuals’ S.E.,
generated by different artificial fireball data with 10 same
detecting channels, are shown in figure 22, from which all
targets can be observed converging to a similar S.E. value.

FIGURE 22. In region S.E. mean curves of different targets.

E. ALGORITHM STABILITY
Finally, all parameters were set in the same to conclude
the repeatability of the proposed reconstructive method. The
result is described in figure 23, in which the same number
of channels can finally converge to the same S.E. value.
However, the results also indicate that different number of
channels may lead to a different converging results, the same
as the results in subsection 3.2.

IV. CONCLUSION
The introduction of MOOP can solve the fireball-field recon-
structive problem, and the reconstructive results of NSGA-III
is much better than those without using NSGA theory. From
the guide of the 2-D reconstructive results, 10 channels
will primarily be used in the construction of detecting sys-
tem. In addition, there are four advantages when implement
NSGA-III in fireball-field reconstruction.

Firstly, this reconstruction theory we considered is suitable
for different size of artificial data and 3-D reconstruction

FIGURE 23. Rapid reconstructive experiments of 6 and 10 detecting
channels.

problem. The different size of artificial data may reduce
the accuracy of reconstruction, but which can be solved by
adding the number of pixels in detecting channel. In the
meanwhile, there are two differences between 2-D and 3-D
reconstruction, the rising of dimension and the change of
OTF. All differences are suitable for the reconstructive theory
and can easily be realized when programming. What needs
to be stated in advance is the reason why the smallest size
of 2-D artificial data (i.e. a 50× 50 real matrix) was used in
simulation experiments above, is reducing the computational
period while calculating the high-dimensional MOOP by
NSGA-III.

To the second, different from general computed tomogra-
phy (CT), only forward relative equations are needed in the
reconstructive system. Difficulty of operation can be reduced
because that backward equations or solutions of the forward
relative equations are not needed in the algorithm.

To the third, the limitation of iterated area by an accessible
method (e.g. surface reconstructive method in 3-D condition)
does have a better reconstructive result than Jakub’s in the
iteration. This may because the limitation can reduce the risk
of correction value being distributed to the nodes outside the
correct region while performing GA manipulation.

To the fourth, the use of ambient pressure operator based
on the D-value between detecting value and calculated value
of each unit in one detecting channel, can limit the mutation
rate in a reasonable range as figure 16, keeping both the
individuals’ similarity to the mean of back-projections, and
the diversity of the elite group.

This is our first trial in using NSGA-III to solve field
reconstruction problem based on many objective optimiza-
tion which means there are still many works to do in the
future. The iteration results and the performance of our algo-
rithm can merely satisfy our primary needs, and whether
this method is suitable to other complicated problem should
be answered very precisely. Two main weaknesses in our
research are as below.

Firstly, from both the reconstruction results and the iter-
ation curves, we believe that the algorithm can be fur-
ther optimized for better results and smaller error. The
niche-preservation approach should be considered and the
balance of convergence and diversity should be kept better.
We plan to seek the solution to the limitation and weakness in
this field-reconstruction problem by the above two significant
points.
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Secondly,We do agree with the idea that, whether the mod-
ified algorithm could achieve better performance than other
state-of-the-art algorithms, should be tested on benchmark
problems and using some statistical analysis as is mentioned
in paper [25], which gives us a great idea to make our work
more credible.

Finally, What to do in the future are the regularization
of algorithm, the implement of real OTF and the rising of
dimension(i.e. from 2-D simulation to 3-D simulation).
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