
SPECIAL SECTION ON MOBILE MULTIMEDIA: METHODOLOGY AND APPLICATIONS

Received December 31, 2019, accepted February 10, 2020, date of publication March 2, 2020, date of current version March 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977404

Rapid Re-Identification Risk Assessment for Anonymous
Data Set in Mobile Multimedia Scene
ZHIGANG YANG 1,2,3,4, (Member, IEEE), RUYAN WANG1,3,4, (Member, IEEE), DAIZHONG LUO2,
AND YU XIONG2
1School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2School of Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing 402160, China
3Key Laboratory of Optical Communication and Networks, Chongqing 400065, China
4Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China

Corresponding author: Zhigang Yang (ayzg163@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61771082, Grant 61871062, and Grant
61901078, in part by the Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant
KJZD-K201901301, in part by the Natural Science Foundation of Chongqing of China under Grant cstc2013jcyjA40066, in part by the
Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN201801316, and in part by
the Industrial Technology Development Project of Chongqing Development and Reform Commission under Grant 2018148208.

ABSTRACT Ubiquitous mobile multimedia applications bring great convenience to users. However, when
enjoying mobile multimedia services, users provide personal data to service platforms. Although the service
platforms always claim that the collected personal data are de-identified, the risk of re-identifying users
through linkage attacks still exists and is incalculable. This paper proposes a rapid prediction model for the
overall re-identification risk based on the statistics of data sets (i.e., the number of individuals, number of
attributes, distribution of attribute values, and attribute dependency). Our proposed model reveals the impact
of statistics on the overall re-identification risk and adopts random sampling and semi-random sampling
methods to predict the overall re-identification risk of data sets with and without strong dependency ordered
attribute pairs. Experimental results show that for the data sets without strong dependency ordered attribute
pairs, the random sampling method has a high prediction accuracy (the prediction error is less than 0.05).
For the data sets with strong dependency ordered attribute pairs, the semi-random sampling method has a
high prediction accuracy (the prediction error is less than 0.09). Exploiting our model, governments and
individuals can quickly assess the privacy leakage risk of their data sets, given only the statistic of the data
sets. Besides, this model can also evaluate the privacy risk of data collection schemes in advance according
to historical statistics, and identify suspected services.

INDEX TERMS Multimedia, privacy, overall re-identification risk, attribute dependency.

I. INTRODUCTION
With the wide popularity of smart terminals and develop-
ment of wireless communication technology, mobile multi-
media applications become the indispensable tool for daily
life and work [1]–[3]. Ubiquitous access, rich functions
and good experience make mobile multimedia applications
more and more popular. However, mobile multimedia service
providers, in order to increase user viscosity, improve user
experience, or reserve data resources, collect user personal
information while providing services. While enjoying the
convenience of mobile multimedia services, users must take
on the risk of privacy disclosure. For example, the web
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browsing history will expose users’ consumption habits, sex-
ual orientation, political leanings and other private data. And
trajectories of users will expose sensitive information such as
home address and workplace. Although information collec-
tors always claim that the purpose of collecting personal data
is to provide better services to users, and personal information
will be de-identified and properly preserved. But potential
security problems remain, even if the information collec-
tors are not malicious. Many incidents of service provider
data breach, such as the Facebook data privacy scandal and
the Equifax data breach, suggest that improper data sharing
and ubiquitous hacking make data stored on servers highly
vulnerable. Although the leaked data may not contain the
user’s identity, user’s quasi-identifiers such as age, gender,
and zip code in the anonymous data can be collected by many

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 41557

https://orcid.org/0000-0002-7268-5390
https://orcid.org/0000-0002-9362-3906


Z. Yang et al.: R3A for Anonymous Data Set in Mobile Multimedia Scene

multimedia application providers (e.g. Facebook and Twitter)
through various smart terminals and IOT devices [4]–[6].
The combination of these quasi-identifiers is often used by
attackers to re-identify the anonymous user. Famous attacks
include re-identification of a Massachusetts hospital anony-
mous records by linking it to the public voter database [7]
and de-anonymization of anonymous subscribers in large
sparse data set (i.e., Netflix Prize data set) whose background
knowledge (as few as 5-10 attributes) can be get from Internet
Movie Database [8].

In order to protect citizens’ privacy, many governments
have promulgated privacy protection regulations or personal
information protection laws, such as the General Data Protec-
tion Regulation (GDPR) in EuropeanUnion and theData Pro-
tection Act (DPA) in United Kingdom, considering that each
person in data set should be anonymous. And GDPR define
the higher standard for anonymization, personal data should
not contain obvious identifiers and not be re-identifiable.
However, the contradiction between data sharing and privacy
protection still exists, and the scale of privacy protection is
still difficult to define. Due to the lack of effective privacy risk
assessment methods, how to strike a balance between privacy
protection and data sharing is still a hard problem.

The re-identification risk of anonymous user, which is
defined as the inverse of the number of records matching the
user attribute group in data set, is the key indicator of privacy
risk assessment. If only a unique record matches the user
attribute in the data set, the probability of his re-identification
risk is 1. If another 3 records match the same attribute group,
the probability drops to 1/4. The famous privacy protection
model k-anonymity requires each anonymous record in data
set sharing the same attribute group with at least another
k − 1 records [9]. But in the real world, the records of
users in data set are highly unique. Rocher et al. find that
99.98% of Americans would be correctly re-identified by
15 demographic attributes [10]. The study shows that, even
in a huge data set, almost all of users can be re-identified
by enough attributes. Besides, from a qualitative perspective,
number of individuals, distribution of attribute values, and
attribute dependency may also affect the re-identification
risk. But there is no simple method to briskly assess the re-
identification risk based on the statistic of data set.

We denote the average re-identification risk of all users in
data set as overall re-identification risk (ORR). ORR is an
important indicator for assessing the privacy disclosure risk
of data set. For governments, it is an important tool to define
the scale of privacy protection. For users, it is related to the
security of sensitive personal information. For data collec-
tors, it means the privacy risk of publishing anonymous data
set. For attackers, it reveals the probability of successfully
attacking. Although, the data collectors can easily calculate
the ORR of the data set, they are unwilling to disclosure
it, for commercial purposes or security considerations. For-
tunately, for the purpose of data sharing, some data collec-
tors publish incomplete information about the collected data,
such as statistics or sampling data of the original complete

data set. And the incomplete information may contain some
knowledge about ORR. Therefore, how to predict the ORR
of complete data sets when only partial information obtained
is still an important and challenging problem in the field of
privacy protection.

In summary, this paper proposes a rapid re-identification
risk assessment (R3A) model for anonymous data set in
mobile multimedia scene. The main contributions of this
paper are as follows:
• Reveal the relationship between re-identification risk

and statistics of data set, and first propose the rapid re-
identification risk predicting method based on statistics.

• Propose information gain ratio and frequent tuple to
describe the attribute dependency. Random sampling
and semi-random sampling method are proposed for
different degree of attribute dependency, achieving high
prediction accuracy.

The rest of the paper is organized as follows. Related work
is reviewed and summarized in Section II and Section III
presents R3Amodel. Experiment result and analysis are given
in section IV and 4 rules about entropy andORR are discussed
in Section V. Finally, we conclude the paper and propose
some future work in Section VI.

II. RELATED WORK
Current research on privacy protection technology focuses
on privacy protection means. Sweeney [9], proposed
k-anonymity model, through generalization and conceal-
ment, each record at least share the same quasi-identifier
attribute group with the other k − 1 records in the data
set, thus the probability of successful linkage attack drops
to 1/k . Due to the values of sensitive attributes associated
with quasi-identifier group may be similar, k-anonymity
model does not preserve the privacy. Then, l-diversity and
t-closeness and other more privacy protection model have
been proposed [11], [12]. But these models always need to
be refined for new types of attacks, and they are not suitable
for modern high-dimensional data set. In 2006, Dwork [13],
proposed the differential privacy, providing stringent mathe-
matical underpinning and reliable privacy performance eval-
uation, can resist various attack considering the maximum
background knowledge of attackers. Recently, the privacy
protection models or technologies combined with artificial
intelligence or blockchain technology become a new research
hot spots [14]–[17]. However, the above privacymodels focus
on maximum protection against various attacks, and do not
concern the re-identification risk of anonymous data set.

Studies on re-identification risk of data set are common
in the fields of statistics and medicine. The re-identification
risk of user is often defined as the product of membership
probability and success linkage probability [18]. Member
probability is the probability that the target user appears in
the data set, which is decided by the attacker’s background
knowledge. The success linkage probability is determined
by the number of records matching the target user’s quasi-
identifier attribute group in the data set. If there are k records
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in the data set matching the userİŕs quasi-identifier attribute
group, the link success probability is 1/k . Since the mem-
ber probability is determined by the attacker’s background
knowledge, which is difficult to estimate, most researchers set
the member probability as 1, then the re-identification risk of
user equals the success linkage probability of user. Because
the user with unique records, whose success linkage probabil-
ity is 100%, is certain to be re-identified, some studies also
equate unique probability with the re-identification risk [19].

El Emam et al. [20], emphasized that the uniqueness
decreases with population size growth. They managed re-
identification risk by controlling population size of data set.
Sweeney andGolle et al. found that, in 1990 87% of U.S. pop-
ulation can be uniquely identified by birthdate, gender, and
ZIP code [21], while in 2000 the ratio dropped to 63% [22].
Due to the uncertainty of the data collectingmethods of above
two studies, we do not know the real reason of the decline
of the American population uniqueness. But we found the
fact that, compared with 1990, America’s population grew by
13% in 2000. And the growth of population size generally
leads to the decrease of uniqueness. In study [10], Rocher
et al. proposed a generative copula-based model to accurately
predict the uniqueness of data records by random sampling
from the complete data set. The study shows that, the unique-
ness of data set can be predicted by partial information of
complete data set (e.g., extremely incomplete sampling data
sets). But the study did not concern the effect of statistics on
uniqueness.

Against modern high-dimensional and sparse macro-data,
Narayanan and Shmatikov [8] presents a new class of sta-
tistical de-anonymization (namely re-identification) attacks,
which can easily identify anonymous subscribers by only
5-10 known attributes and uncover their potentially sensitive
information. Merener [23] extended the study, established
mathematical theory describing results on de-anonymization
that can be achieved by an adversary under general and
realistic assumptions. He also found the fact that when the
auxiliary information including a rare attribute of D, the size
of auxiliary information could be reduced in about 50%. The
theory and algorithm applied on Joint Canada/United States
Survey of Health 2004, which is less sparsity than Netflix
database, getting a satisfactory success of empirical linkage
attack.

The trajectory data set is a special data set, and trajectory
uniqueness is a commonly highlighted research problem.
Y. A. D. Montjoye et al. asserted in [24], that trajectories
of 95% users can be uniquely determined by four spatio-
temporal points, and in [25], that four spatio-temporal points
can also uniquely fix the trajectories of 90% credit card hold-
ers. Both studies emphasized that, the trajectory uniqueness
grows dramatically with the increasing time slots. Although
two enormous data sets covering millions of users were ana-
lyzed by the above two studies, the trajectory uniqueness and
its probability evaluation is scenario dependent and may be
inapplicable to other trajectory data sets, encouraging vigor-
ous discussions [19]. Tu et al. [26] proposed an attack system

to recover user trajectories with an accuracy of 73%∼91%,
from aggregated mobile data sets (i.e., the number of users
covered by a cellular tower at a specific time stamp. Although
the study did not reveal any statistical correlation between
uniqueness and aggregated data, it hinted an association
between them.

The above studies implied that, the statistic of data set,
such as number of individuals, number of attributes, dis-
tribution of attribute values, may affect the uniqueness or
re-identification risk of data set. However, no study had
researched the deeper relationship between statistics and re-
identification risk. To the best of our knowledge, we are very
first to propose rapid re-identification risk assessmentmethod
based on statistics.

III. R3A MODEL
From a statistical perspective, we assume that data sets with
the same statistics (i.e., number of individuals, distribution
of attribute values, attribute dependency) have similar ORRs
(this assumption will be verified by simulation in Chap-
ter IV). Based on this assumption, we propose R3A model,
in which the ORR of target data set can be predicted by the
average ORR of random data sets with the same statistic.
Considering that data owners may not disclose the attribute
dependency, R3A model recommends two predicting meth-
ods, namely, full random sampling without the knowledge of
attribute dependency and semi-random sampling considering
attribute dependency.

A. DEFINITION
This section defines the terms used in the paper. We use
the attribute value frequency matrix (AVFM) to describe
the number of individuals, the number of attributes, and the
distribution of attribute values. The attribute dependency are
quantified by the information gain ratio.
Definition 1: AVFM
We consider a data setD containing n records. Each row is a

user record with d quasi-attributes. The set of the j-th attribute
values of all users is denoted as q(j), which containing lj
elements. The element dij represents the j-th attribute value
of the user x(i). For example, d25 = male, representing the
fifth attribute value of x(2) is male.
We denote the frequency of i-th element of q(j) as kij (1 6

j 6 d, 1 6 i 6 lj, i, j ∈ Z ). Let l = max(lj)(1 6 j 6 d),
the AVFM m of data set D can be defined as follows.

m =


f11 f12 f13 · · · f1d
f21 f23 f24 · · · f2d
f31 f32 f33 · · · f3d
...

...
...

. . .
...

fl1 fl2 fl3 · · · fld

 (1)

And

fij =

{
kij, 1 6 i 6 lj
0, lj < i 6 l

1 6 j 6 d (2)

l∑
i=1

fij = n(1 ≤ j ≤ d) (3)
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TABLE 1. An example of data set D.

The generation of AVFM is described in detail below.
As shown in Table 1, there are 5 records in data set D, each
of which has three attributes. The attribute value ratios of the
three attributes are 1:2:1, 3:2 and 2:3. The AVFM m of data
set D is as follows.

m =

 1 3 2
2 2 3
1 0 0

 (4)

Obviously, if the AVFM of the data set D is known,
we can easily calculate the number of individuals, the number
of attributes and the distribution of attribute values in data
set D.
Definition 2: ORR
If David’s record x(m) is unique in data set D, then he is

always correctly re-identified. If there are another two users
sharing same record with David, then the re-identification
probability of David is 1/3. We consider the number of poten-

tial false positives in the data set is T ≡
n∑
i=1

[x i = x] − 1.

According to [10], the user with record x can be correctly
re-identified with the probability of hx , which is defined as
follows.

hx ≡ Pr(x correctly re− identified |∃i, x(i) = x)

=

n−1∑
k=0

1
k + 1

Pr(T = k) (5)

The ORR of data set D is equal to the average re-
identification probability of every users in data set D, which
is defined as follows.

orr ≡
∑
x∈D

hx/n (6)

Definition 3: Information gain ratio
We denote the set of all possible values of attribute A as lA.

Considering a is an element of lA, fa denotes the frequency
of a in data set D. The entropy of attribute A is defined as
follows.

H (A) = −
∑
a∈lA

fa
n
log2

fa
n

(7)

We consider tuple (a, b) is an element of lA × lB, and fa∧b
denotes the frequency of (a, b) in data setD. Themutual infor-
mation of attribute A and attribute B is defined as follows.

I (A,B) =
∑

(a,b)∈lA×lB

fa∧b
n

log2
fa∧b/n

(fa/n)(fb/n)
(8)

The information gain ratio of B on A is defined as follows.

g(A,B) =
I (A,B)
H (A)

(9)

Definition 4: Support and confidence
T and S are attribute groups of data set D, and T ∩ S = 8.

Tuple t is a value of T , and tuple s is a value of S. The support
of t with respect to D is defined as the proportion of users in
the data set which contains the item t .

supp(t) =
|{ x|t ⊆ x}|

n
(10)

The confidence value of a rule, t ⇒ s, with respect to a
set of data set D, is the proportion of the users that contains t
which also contains s.
Confidence t ⇒ s is defined as:

conf(t ⇒ s) = supp(t ∪ s)/supp(t) (11)

and supp(t ∪ s) means the support of the union of the items t
and s.

For example, the rule {smoking} ⇒ {male} has a confi-
dence of 1.0 in a data set, which means that for 100% of the
smoker the rule is correct (100% of the smoker is male).
Definition 5: Attribute dependency
We consider tuple t is a value of attribute group T , and its

frequency in data set D is ft . The entropy of attribute group T
is defined as follows.

H (T ) = −
∑
t∈T

ft
n
log2

ft
n

(12)

The attribute group S is dependent on the attribute group T,
if the knowledge of T can reduce the uncertainty of S (i.e.,
entropy). Obviously, the attribute dependency is asymmetric,
we use the information gain ratio g(S,T ) to quantify the
dependency of S on T . When g(S,T ) = 1, S is completely
dependent on T ; when g(S,T ) = 0, S is completely indepen-
dent on T ; when 0 < g(S,T ) < 1, S is partially dependent on
T . We call S is weakly dependent on T when 0 < g(S,T ) <

0.5, and strongly dependent on T when 0.5 ≤ g(S,T ) < 1.
The relationship among dependency, information Gain Ratio
and support is shown as Table 2.
Definition 6: Experience entropy
We consider data set D with n records consists of d

attributes, which are denoted as A1 to An. We define
M = A1 × . . .× Ad , tuple m = (a1, . . . , ad ) is an element of
M, and the frequencies of a1 to ad in data set D are f1 to fd .
The entropy of data set D is defined as follows.

H (D) = −
∑
m∈D

fm
n
log2

fm
n

(13)

And apparently, if every tuple in D is unique, the entropy
is at its maximum.

max entropy = log2n (14)
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TABLE 2. Dependency, information gain ratio and support.

We consider the probability of tuple m is pm =
f1×...×fd

nd ,
and the experience entropy of data setD is defined as follows.

experience entropy = −
∑
m∈M

pmlog2pm (15)

B. RANDOM SAMPLING METHOD
The AVFM of the data set implies all the statistical charac-
teristics required by the random sampling method. We con-
sidered that the set of all data sets with the same AVFM m
is Dm. The set of overall re-identification risks of every data
set in Dm is the population Rm. Due to the extremely large
capacity of Rm, we adopted the random sampling method
to analyze the statistical property of Rm. We considered the
capacity of each sample is 1, the method of sample selection
is as follows: first, the standard data set is generated based on
m. Second, each column element in the standard data set is
randomly sorted to generate a new data set, and the over re-
identification risk of the new data set is equivalent to a new
sample which is randomly selected from Rm. Then, repeat
step 2 to get more random samples. Due to the capacity of
Rm is extremely large, the sampling method is equivalent to
sampling without replacement.

We considered the AVFM m of data set D is shown in
formula 16, the standard data set based on m is Dm. The
process of random sampling is described in detail below.

m =

 2 3 2
3 3 2
1 0 2

 (16)

The first column ofDm [1 1 2 2 2 3]T is generated based on
the first column of m. The elements in the standard data set
do not represent the actual attribute value, but only the ordinal
number of the attribute value in the corresponding attribute.
Similarly, all columns of Dm are generated as follows.

Dm =

 1 1 2 2 2 3
1 1 1 2 2 2
1 1 2 2 3 3

T

(17)

ThenD′m is generated through randomly shuffling the order
of elements in each column of Dm. For example,

D′m =

 2 1 1 2 3 2
2 1 1 2 1 2
3 2 3 1 2 1

T

is a randomly generated data set, with two identical
records and four unique records. The ORR of D′m is
oor =

∑
x∈D′m

hx/n = 5/6. Obviously,D′m is different fromDm,

but having the same AVFM with Dm. So the ORR of D′m is a
new sample of Rm.
We considered the AVFM m of target data set D is a l × d

matrix, where the sum of each column is n. The algorithm of
random sampling method is shown as Algorithm 1.

Algorithm 1 Random Sampling Method
Input:
AVFM of target data set D: m;
Number of samples: nsamples;
Sample capacity: ncapacity;
output:
Sample means;
Average sample mean;

1: Initialize: generate n× d standard data set Dm
2: for each i ∈ [1, nsamples] do
3: for each j ∈ [1, ncapacity] do
4: Dm′ = Dm
5: Shuffling all elements in each column of Dm′

6: Calculate ORR of Dm′

7: end for
8: Calculate the sample mean
9: end for
10: Calculate the average sample mean

C. SEMI-RANDOM SAMPLING METHOD
The dependency among the attributes in real-world data set
would affect the predicting accuracy, so we need to use
the attribute dependency background knowledge to correct
the predicted results of real-world data set. Considering
that it is difficult to obtain dependencies among three or
more attributes, the experiment only considered dependencies
between two attributes.

The semi-random sampling method is described in detail
below. If attribute A is strongly dependent on B, the tuples
with confidence or frequency exceeding a certain threshold in
strong dependency ordered attribute pair (A,B) is considered
as frequent tuples. For example, if (A,B) is a strong depen-
dency ordered attribute pair and the confidence threshold is
0.8, then the tuple (a, b) with conf (b⇒ a) = 0.9 is a frequent
tuple. All frequent tuples and their confidences in (A,B)
are called dependency background knowledge about (A,B).
The semi-random sampling method is similar to the random
sampling method, except that the semi-random sampling
method can maintain attribute dependencies of target data set
to some extent. For example, D′m is a data set generated by
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semi-random sampling, (a, b) is a frequent tuple with
conf (b ⇒ a) = 0.9 in Dm, then the conf(b ⇒ a) in D′m
is 0.9.

We considered the confidence of frequent tuple (a, b) in
target data set is b_a, the algorithm of semi-random sampling
method is shown as Algorithm 2.

Algorithm 2 Semi-Random Sampling Method
Input:
AVFM of target data set D: m;
Number of samples: nsamples;
Sample capacity: ncapacity;
Confidence of each frequent tuple in D;
output:
Sample means;
Average sample mean;

1: Initialize: generate n× d standard data set Dm
2: for each i ∈ [1, nsamples] do
3: for each j ∈ [1, ncapacity] do
4: Dm′ = Dm
5: Shuffling all elements in each column of Dm′

6: for each strong dependency ordered attribute
pairs (A,B) do

7: for each frequent tuple (a, b) do
8: Switch elements of column A to meet

conf(b⇒ a) = b_a
9: end for

10: end for
11: Calculate ORR of Dm′

12: end for
13: Calculate the sample mean
14: end for
15: Calculate the average sample mean

IV. SIMULATION RESULTS AND ANALYSIS
A. RANDOM SAMPLING METHOD
1) PREDICTING ORR OF RANDOM DATA SETS
We selected 20 representative AVFM with which the risks
of the random data sets are approximately equally spaced
distribution between 0 and 1. Then we randomly selected
100 samples from the ORR population Rm corresponding to
each AVFM. The capacity of each sample was 50. We used
the sample mean to predict the ORR of the target random
data set. For simplicity, we made the target ORR equal to
average sample mean. The absolute errors of predicting are
shown in Figure 1. The x axis shows the average sample
mean of each AVFM. The y axis shows the absolute error of
predicting (i.e., the difference between the target ORR and
the sample mean). As shown in Figure 1, the absolute error
of each AVFM is close to zero. It means that the sample mean
is centrally distributed around the average sample mean and
occasionally some abnormal sample mean occurs, but the
deviation between the outlier and the average sample mean

FIGURE 1. Absolute error of predicting ORR of random data set.

TABLE 3. Description of the 10 attributes considered in our study.

TABLE 4. Selected attributes of each target data set.

is no more than 0.001. The results show that random data
sets with the same AVFM have highly consistent ORR. That
is, random data sets with the same statistics (i.e., number
of individuals, distribution of attribute values) have similar
ORRs. Our assumption was verified on the random data
sets.

Through further research, we found that all the
100,000 random data sets do not contain strong dependency
ordered attribute pairs. Compared with the total number
of all random data sets with same AVFM, the number of
random data sets used in simulation and the number of data
sets containing strong dependency ordered attribute pairs
are negligible. Due to the random distribution of the two in
the population of the random data sets, the possibility of an
intersection between the two is extremely tiny. Considering
that there are usually strong dependency ordered attribute
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TABLE 5. Attribute dependencies between any two non-sensitive attributes of SPD data set.

FIGURE 2. Absolute error of predicting ORR of real-world data set.

pairs in the real-world data sets, so we tested the predicting
effect of the random sampling method on real data sets.

2) PREDICTING ORR OF REAL-WORLD DATA SETS
Since it was difficult to get a large number of real-world
data sets, we generated 20 target data sets by selecting the
intersecting positions of random rows and certain columns
from a big real-world data set. The original real-world data
set used in this study was the SPD data set with a capac-
ity of 3985166 and 10 attributes [19]. Table 3 describes in
detail the considered attributes, Table 4 shows the selected
attributes of each target data set and Table 5 provides
the attribute dependencies between any two non-sensitive
attributes of SPD data set. As shown in Table 5, most ordered
attribute pairs are weak dependencies, only three of them are
strong dependencies. The three ordered attribute pairs are
(patnty, oshpd_id), (patnty, patzip) and (oshpd_id, patzip).
It is understandable that in the real world, patient’s hos-
pital, county and ZIP code are highly correlated, and the
dependencies among them are easily available from public
information.

We used random sampling method to predict the ORRs of
the real-world data sets, and the absolute errors of predicting
are shown in the Figure 2. The x axis shows the average
sample mean corresponding to the AVFM of each target data
set. The y axis shows the absolute error of predicting (i.e.,
the difference between sample mean and target ORR). The
predicting errors of groups 6, 13-16 and 20 were above 0.2,
while the errors of other data sets were all below 0.05.

Through further research, we found that the attribute
dependencies of the target data sets were close to the ones
of the SPD data set. All target data sets with high predicting
errors contained strong dependency ordered attribute pairs,
while all data sets with low predicting errors did not con-
tain strong dependency ordered attribute pairs. It shows that,
the strong dependency ordered attribute pairs will heavily
interfere the predicting accuracy of random samplingmethod.

B. SEMI-RANDOM SAMPLING METHOD
Compared with random sampling method, the background
knowledge of attribute dependencies in target data set should
be considered in semi-random samplingmethod. Considering
that in reality the statistical characteristics of large population
are easier to obtain than those of specific small population,
we used knowledge of attribute dependencies in SPD data set
to constrain the random data set. Due to the records of target
data set is random sampling from SPD data set, the following
two situations need to be considered: (1) The target data set
do not contain some frequent tuples of SPD data set; (2) The
confidence of frequent tuple of target data set is theoretically
lower than the corresponding one of SPD data set. For situ-
ation one, we do not need to do anything. For situation two,
we need to ensure that the confidence of frequent tuple of the
random data set is equal the smallest one of the theoretical
values of the target set and the background value of SPD data
set. For example, if tuple (a, b) is a frequent tuple in SPD
data set with conf (b ⇒ a) = 0.9, then in the random data
set containing same frequent tuple, the confidence of (a, b)
is equal to min(0.9, supp(a)/supp(b)), where the supp(a) and
supp(b) are the supports of elements a and b in the target data
set.

We considered the tuple of strong dependency ordered
attribute pairs, with confidence greater than 0.9, or with
confidence between 0.5 and 0.9, and frequency exceeding
398 were frequent tuples. The absolute error of semi-random
sampling method is shown as Figure 3. With the background
knowledge of attribute dependency, the ORR prediction accu-
racy was greatly improved, and the absolute predicting error
was limited to 0.09. Obviously, the background knowledge
we considered was incomplete, if more background knowl-
edge was obtained, the absolute prediction error would be
further reduced. The results show that data sets with same
statistic (i.e., number of individuals, number of attributes,
distribution of attribute values, attribute dependency) have
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FIGURE 3. Absolute error of predicting ORR of real-world data sets.

FIGURE 4. Entropies of test data sets.

highly consistent overall re-identification risk. It means
that, for real-world data sets, our assumptions are also
correct.

V. DISCUSSION
Here, we discuss the relationship between entropy and ORR.
We obtained 40 testing data sets by randomly selecting
30000 and 300,000 records from the SPD data set accord-
ing to the attribute combination shown in table 4. The Max
entropy (ME), the experience entropy (EE), the entropy of
random data set with the same AVFM (RDE), the entropy
of target data set (TDE), of the forty data sets are shown
as Figure 4. The solid line represents the data set capacity
of 30000, and the dashed line represents the data set capacity
of 30000. Based on information theory, statistics knowledge
and experimental results, we have summarized the following
four rules.

Rule 1: The ME is absolutely determined by the capacity
of the data set, and the larger the capacity, the greater the
maximum entropy. If the TDE is equal to the ME, which
means that each tuple of the target data set is unique, then
the ORR of the target data set is 1. EE must be greater than
or equal to TDE and RDE.

Rule 2:When selecting the same combination of attributes,
the EEs of the sampling data sets with 30000 records and

300,000 records are very close, because they are all from
SPD data set, having the close proportion of attribute values
of each attribute. If the capacity of data set changes, but the
combination of attributes and the proportion of each attribute
value remain, EE will be greater than ME when the capacity
of the data set is small enough. This is because too small data
set capacity will make the number of tuples in the data set
far lower than the capacity of tuple space T, resulting in the
ME of data set will be lower than the EE calculated based
on probability distribution. For example, we consider a data
set with 1000 records and 4 attributes, and each attribute has
10 attribute values, the frequency of each attribute value is
100. Then ME of data set is 9.9658, which is lower than the
EE 13.2877 of data set.

Rule 3: RDE is less than or equal to EE. When the capacity
of tuple space T remain, RDE is close to EE if the data set
capacity is large enough. The larger the RDE, the larger the
ORR. For data sets with same AVFM, the larger the volume,
the larger the RDE, but the lower the ORR.

Rule 4: TDE is less than or equal to RDE, because the
attribute dependencies in the real-world data set will weaken
the uncertainty of the data, and random data sets destroy the
attribute dependencies and maximize the entropy of the data
set. When there are no strong dependency ordered attribute
pairs in the target data set, the TDE is very close to the RDE,
and the ORR of the target data set is very close to the one
of the random data set. When there are strong dependency
ordered attribute pairs in the target data set, TDE will deviate
from RDE greatly, and the ORR of the target data set will be
much lower than that of the random data set. In general, for
data sets with same capacity, the ORR of the data set with
significantly larger TDE is greater than the one of the data set
with smaller TDE.

In short, when the data set capacity is large enough, there
is ME > EE > RDE > TDE. The ORR of the data
set is highly correlated with the TDE, and the dependencies
among the attributes of the data set will make the TDE
deviate from the RDE, and the ORR of the target data set
will be much lower than that of the random data set. It means
that two data sets with same AVFM, the ORR of the one
with stronger attribute dependencies is lower than the other.
And the attribute dependencies (e.g, the dependency of beer
on diaper) are exactly the value of the data set. This sug-
gests that data privacy and value are not always contradic-
tory. Differential privacy technology preserves user privacy
by adding random noise, but random noise will destroy
attribute dependency and reduce data availability. If we can
maintain attribute dependency while adding noise, the avail-
ability of the data will be preserved without privacy risk
increasing.

For modern sparse data sets with thousands of attributes,
i.e., each user includes for fewer non-null attributes, R3A is
not suitable. However, because of recording too many user
attributes, modern high-dimensional sparse data sets have
high privacy risk. From the perspective of privacy protec-
tion, high-dimensional data sets should be divided into low-
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dimensional data sets for which R3A model has a good
prediction effect. From the perspective of privacy attack pre-
vention, attackers can only acquire the knowledge of a few
attributes, and R3A model is capable of predicting the ORR
of data set composed of these attributes.

VI. CONCLUSION
In this paper, we propose R3A model to rapidly predict the
ORR of data set. Our model has high prediction accuracy,
when considering the background knowledge of attribute
dependency (i.e., the confidence of all frequent tuples). For-
tunately, in the real-world, the background knowledge can
be easily obtained through public data. That provides a wide
space for the application of our model. For example, R3A
model can be used to rapidly assess the privacy disclosure
risk, providing references for government policy making and
personal privacy estimation.
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