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ABSTRACT Simultaneous Localization and Mapping (SLAM) have become a new research hotspot in the
field of artificial intelligence applications such as unmanned driving and mobile robots. Most of the current
SLAM research is based on the assumption of static scenes, and dynamic objects in the indoor environment
are inevitable. The assumption based on static scenes greatly limits the development of SLAM and the
application of SLAM system in real life. At the same time, the semantic segmentation is added to the SLAM
system to generate a semantic map with semantic information, which can enrich the understanding of the
mobile carrier to the environment and obtain high-level perception. In this paper, we combine the visual
SLAM system ORB-SLAM?2 and PSPNet semantic segmentation network, and propose a PSPNet-SLAM
system, which uses optical flow and semantic segmentation to detect and eliminate dynamic points to achieve
dynamic scenes semantic SLAM. We performed experiments on the TUM RGB-D dataset. The results show
that compared with other SLAM systems, PSPNet-SLAM can reduce the camera pose estimation error in

indoor dynamic scenes to different degrees and improve the camera position estimation accurately.

INDEX TERMS SLAM, semantic SLAM, indoor dynamic scene, semantic segmentation.

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM) prob-
lem can be described as a robot moving from an unknown
location in an environment without a priori knowledge. In the
process of moving, it can locate itself according to the posi-
tion estimation and map. At the same time, it can build an
incremental map based on its own location to realize the
autonomous positioning and navigation. The SLAM tech-
nology based on visual sensor is called Visual Simultaneous
Localization and Mapping (VSLAM) technology. After the
acquisition of RGB-D cameras with fast acquisition speed,
rich acquisition information, high measurement accuracy, and
relatively low price, VSLAM has been widely applied to
many fields.

Over the past 30 years, many scholars have carried
out research on SLAM and achieved outstanding results,
making the SLAM system more mature and able to
make a good performance, such as ORB-SLAM2 [1],
RGBD-SLAM-V2 [2]. However, the traditional SLAM
research is mostly based on the assumption of static scenes,
while the existence of dynamic objects in real-life scenes
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is inevitable. The assumption based on static scenes greatly
limits the SLAM development research and the application of
the SLAM system in real life. When there are moving objects
in the scene, the feature points of the dynamic objects are
unstable. In the SLAM system based on feature points, when
the unstable feature points are tracked, the pose estimation
will be seriously affected, resulting in large trajectory errors
and even system collapse. In addition, a typical SLAM sys-
tem usually builds a map based on geometric information.
This method only provides the structural information of the
environment and its location information. It lacks an abstract
understanding of the map information and cannot provide the
semantic information of the surrounding environment for the
perception and navigation of the mobile carrier, which limits
the perception and navigation effects.

In this paper, we take advantage of the semantic seg-
mentation network in scene understanding and propose a
PSPNet-SLAM system by combining the visual SLAM sys-
tem ORB-SLAM2 and PSPNet [3] semantic segmentation
network. The combination of the two parts can perceive
scenes from both geometric and semantic levels [4], enrich
the abstract understanding of the environment, alleviate the
dependence on environmental characteristics, and obtain
high-level perception. At the same time, dynamic points are
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detected and eliminated using optical flow and semantic seg-
mentation to implement a semantic SLAM system in dynamic
scenes. Not only can it greatly reduces the interference of
dynamic objects on pose estimation and improve the accuracy
of pose estimation, but it can also generate semantic maps
with semantic information, which can enrich mobile carri-
ers’ understanding of the environment and obtain high-level
perception. The rest of the structure of this paper is as fol-
lows: the second part reviews the related work, the third part
introduces the PSPNet-SLAM system in detail, the fourth part
details the experimental results, and the fifth part introduces
the conclusions and future work.

Il. RELATED WORK

Semantic SLAM means that the SLAM system can obtain the
geometric information of the surrounding environment and
identify the independent objects in the environment during
the construction process, which can get the semantic infor-
mation of the position, posture, category and texture of the
mobile carrier [5]. In this case, semantic SLAM can provide
perception and understanding for applications in the field of
artificial intelligence such as mobile robots and driverless.

For the research of semantic SLAM, the recent typical
research mainly includes the following works. Li ef al. com-
bined SLAM with Convolutional Neural Network (CNN),
selected key frames for semantic segmentation, and used
2D semantic information and adjacent keys for three-
dimensional mapping. The correspondence between the
frames is three-dimensionally constructed [6]. McCormac
et al. combined ElasticFusion and CNN to calculate the
pose and build a dense map using the dense SLAM system
ElasticFusion. The convolutional neural network predicts the
object class of each pixel, and the Bayesian update is used
to generate the result of the recognition and SLAM. The
associated information is integrated into a dense semantic
map [7]. CubeSLAM is a cube-based 3D object detection
and SLAM system that implements object-level mapping,
positioning and dynamic object tracking [8]. Compared with
feature-based SLAM, Yang and Scherer combine cubeSLAM
and Pop-up SLAM to make the map denser, more compact
and semantically more meaningful [9].

In dynamic scenes, Kim et al. propose obtaining static
objects in the scene by calculating the difference in projec-
tions of successive depth images on the same plane [10].
Sun et al. distinguish dynamic static objects by calculat-
ing the intensity difference of successive RGB images, and
dividing the quantized depth image to complete pixel clas-
sification [11]. Badrinarayanan et al. proposed a DS-SLAM
scheme. DS-SLAM combines SLAM with SegNet [12] net-
work to filter the dynamic parts using semantic informa-
tion and motion feature points in dynamic scenes, thereby
improving the accuracy of pose estimation [13]. Li et al
proposed a static weighting method for key frame edge points
to indicate the probability that a point is a part of a static
environment, and reduce the influence of dynamic objects
on pose estimation [14]. Bescos et al. combine multi-view
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FIGURE 1. System'’s overall framework.

geometry and deep learning to detect and segment objects
without priori dynamic mark and generate a more complete
scene map by repairing the background frame occluded by
the dynamic object [15]. Alcantarilla et al. detect moving
objects through the scene stream representation of the stereo
camera [16].

This paper focuses on the SLAM pose estimation and
semantic map construction in indoor dynamic scenes.
By combining ORB-SLAM?2 with semantic segmentation
network PSPNet, a semantic SLAM system in indoor
dynamic scenes is proposed. Firstly, the optical flow is used
to judge and cull the dynamic point, and then it is judged
whether the remaining feature points fall within the priori
segmented dynamic object. And the second screening is per-
formed, which is the feature points falling within the prior
dynamic object are taken as dynamic points and eliminated.
Camera poses estimation is performed only by static feature
points, which reduce the influence of dynamic objects on
pose estimation, and generates point cloud maps and semantic
octree maps with semantic information.

IIl. SYSTEM INTRODUCTION

A. PSPNet-SLAM SYSTEM

In this section, we will detail the PSPNet-SLAM system.
Figure 1 shows the overall framework of the system. The
PSPNet-SLAM system is based on the ORB-SLAM?2 system.
As one of the mature SLAM schemes, ORB-SLAM?2 system
scheme is inspired by the parallel design of tracking process
and mapping process proposed by PTAM [17], which innova-
tively proposes three thread modes: real-time tracking feature
point thread, local map optimization thread, loop detection
and optimization thread. The three thread result of ORB-
SLAM?2 achieves a very good tracking and mapping effect,
and can ensure global consistency of the trajectories and
maps.

This paper adds semantic segmentation thread and dense
map construction thread based on ORB-SLAM?2 system. The
whole system are divided into five threads: semantic seg-
mentation thread, tracking thread, dense map construction
thread, local map optimization thread and loop detection,
and Optimize threads. First of all, each frame captured by
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the camera is segmented by a semantic segmentation thread,
and the categories on the image are divided pixel by pixel.
Then the tracking thread extracts the ORB feature points,
and determines whether the ORB feature points are dynamic
points, eliminate s the selected dynamic points, and uses static
points to track. Then use keyframes to build local maps and
update global maps, and loop detection is carried out.

B. SEMANTIC SEGMENTATION NETWORK

Compared with DS-SLAM using SegNet semantic segmen-
tation network, the semantic segmentation network in this
SLAM system adopts PSPNet based on caffe [18].

The SegNet network is based on the Fully Convolutional
Network (FCN) [19], which is modified by the VGG-16 net-
work, but the FCN has several problems: first of all, the FNC
lacks the ability to infer from context; secondly, it cannot
make up the association between labels through the relation-
ship between categories; thirdly: the model may ignore small
objects, while large objects may exceed the FCN acceptance
range, resulting in discontinuous predictions. In summary,
FCN does not handle the relationships and global information
between scenes very well. The PSPNet [8] network proposes
a pyramid scene analysis network, which can embed the
difficult to analyze scene information features into the FCN
prediction framework, integrate the local information with
the global features, and proposed an optimization strategy for
moderately monitoring losses, which can obtain global scene
information and effectively handle relationships between
scenes.

The PSPNet network structure is shown in Figure 2, which
training 20 categories on the PASCAL VOC dataset [20]. The
input image is extracted by the convolutional neural network,
and the extracted feature map is passed through the pyramid
pooling module to obtain features with overall information
at different scales. After upsampling, the feature maps of
different levels generated by the pyramid are connected.
Finally, the classification of each pixel is obtained through
the convolutional layer.

C. DYNAMIC POINT SCREENING

The entire process of ORB-SLAM?2 is based on feature
points. The feature point method extracts feature points
from each frame of the picture, and performs matching
of adjacent frames through the invariant descriptors of the
feature points. Then, the camera poses and map point are
more robustly recovered through the polar geometry, and
finally the camera pose and map structure optimized by
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minimizing projection error. The feature points extracted
from each frame are detected by clustering and other opera-
tions to loop detect or relocate. Feature points run through the
entire process of SLAM and are the cornerstone of the SLAM
system based on the feature point method. The selection of
feature points determines the quality of the later process of
construction and optimization.

The screening process of dynamic points is shown
in Figure 3.

Compared with ORB-SLAM?2, this system has a more
strict feature point selection strategy to ensure more correct
matching points to meet the requirements of reducing the
trajectory error and achieve stable operation of the system
under dynamic scenes. We combine two methods to achieve
dynamic point screening. One method is to use optical flow
to judge dynamic points for screening, and the other is to use
feature points falling within the priori segmented dynamic
objects as dynamic points. Our dynamic point screening
strategy is to first use the optical flow to judge the dynamic
points for filtering and culling. The feature points with large
optical flow values are removed as dynamic point, and the
feature points with small optical flow values are used as static
background object feature points. Then, it is judged whether
the remaining feature points fall within the segmented a priori
dynamic object. For the feature points falling within the
prior dynamic object, they are taken as dynamic points and
eliminated as a secondary screening to ensure more correct
matches. The transformation matrix 7 is calculated by match-
ing the remaining correct stable feature points. On the one
hand, the method of secondary screening can ensure more
correct static matching feature points, and the second is to
avoid the occurrence of false positives caused by the priori
dynamic objects remaining stationary. All of these improve-
ments make the system more robust and work well even in
poor scenes.

D. PROSAC SOLVES THE HOMOGRAPHY MATRIX
The solution of the homography matrix H is solved by
the Progressive Sample Consensus (PROSAC) [21], which
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eliminates the problem of unstable iterations. The process
of the PROSAC algorithm is to pre-order the sample points,
select the matching sample points, and then estimate the
matching model. It uses the result of the initial set matching of
the points as the basis for sorting, so that the sampling results
are sorted according to the high-to-low score of the matching
result. In this way, the sampling that is most likely to get the
best parameters will appear earlier, which reduces the number
of iterations of the model, improves the speed, and the model
correct rate is high.

The PROSAC algorithm can effectively eliminate the mis-
matched points in the image matching. In the image matching
process, the ratio of the Euclidean distance f is established
for each pair of feature points. The calculation formula is as
follows:

dmin

B

Amin2 (1)
where dpin 1S the minimum Euclidean distance and dpin2
is the second Euclidean distance. The smaller the ratio,
the smaller the distance and the better the quality of the
feature point matching. A quality factor can be introduced to
measure the quality of the match, ie:

_ 1
B ,Bdmin

4 (2)

The quality factor is introduced into the feature point grad-
ing, so that the feature point matching quality is improved,
the number of iterations is reduced, and the time complexity
of the algorithm is reduced. The algorithm steps are as fol-
lows.

(1) Calculate the minimum Euclidean distance dp, of the
feature point, and solve the Euclidean distance ratio 8;

(2) Calculate the quality factor and measure the quality of
the matching points;

(3) Select the hypothesis generation set and semi-random
sampling: according to the descending order of the matching
quality, select m points, and calculate the quality sum by each
of the four groups and sort them;

(4) Computational model: select the four highest-quality
matching points in the sorted matching pairs, and calculate
the homography matrix H;

(5) Model verification

1) Calculate the set of support points: After removing
the above four sets of points, calculate the corresponding
projection points based on the homography matrix H, and
calculate the error e between the remaining points and the
projection points, and compare with the error threshold §,
e < 4 is an inner point, and vice versa is an outer point;

2) Update the model and iteration parameters: if the num-
ber of inner points t > T which is seted the threshold number
of inner points, the number of inner points is updated to
t, calculate the homography matrix H again, and calculate
the new inner point; otherwise, the number of iterations is
increased by 1, repeating the above steps ;
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3) If the number of iterations < maximum iteration number
Im, return the homography matrix H, otherwise return no
result.

E. SEMANTIC MAP

The system simultaneously establishes a semantic point cloud
map and a semantic octree map, which can better present
the indoor scene. The objects identified by the semantic
segmentation are labeled with different color information,
and the dynamic objects (in the data set is the person) in
the scene got a good rejection. In an octree, a node stores
information about whether it is occupied. When all child
nodes are occupied or not occupied, it is not necessary to
expand this node. When adding information to a map, since
the actual objects are often connected together, the blanks are
often connected together, so most octree nodes do not need to
be expanded to the leaf level. Therefore, compared with the
semantic point cloud map, the semantic octree map takes up
about one percent of the semantic point cloud map, saves a
lot of hard disk space, provides navigation maps for robots,
and provides high levels of perceived information.

In an octree, it is described by a probability log (Log-odds).
Lety € R be the probability logarithm and x be the probability
between 0 and 1, then the transformation between them is
described by the logarithmic transformation:

X

y = logit(x) = 10g(l ) 3
—x
The inverse transformation is:
. exp(y)
x = logit~'(y) = log(————— 4
git™ (y) g(exp(y)+ 1) 4)

In mathematical terms, let a node be n and the observed
data be z. Then the probability logarithm of a node from the
beginning to the time t is L(n|z1:t), then the time t + 1 is:

L(n|z1:141) = L(n]z1;—1) 4 L(nfz,) &)

Use y to express whether the node is occupied. When
it is continuously observed that the node is “occupied”, y
increases, otherwise y decreases. When querying the proba-
bility of a node, the logit is inversed and y is transformed into
probability.

IV. EXPERIMENT AND ANALYSIS

A. DATA SET

The TUM RGB-D data set required for the experiment is a
large open-source dataset from TUM (Technische Universitit
Miinchen ) containing RGB-D data and ground truth data
to establish a new benchmark for visual ranging and visual
SLAM system evaluation.

The test data set of this paper mainly uses five sequences
in the data set, namely freiburg3_sitting_static (f_s_static),
freiburg3_walking_static(f_w_static), freiburg3_walking_
xyz(f_w_xyz), reiburg3_walking_halfsphere(f_w_halfhere)
and freiburg3_walking_rpy(f_w_rpy). In the freiburg3_
sitting_static sequence, two people sit at the desk, the cam-
era is kept in place, which is regarded as a low dynamic
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TABLE 1. Absolute trajectory error results.

RMSE 0.801255 0341436  0.830807 0.4512938  0.008661
Mean 0.670056 0313265 0.741004 0.3756166 0.007618
‘ORB-SLAM2
meter(m)
Median 0589857 0268446 0.711878 0.2097844  0.006817
5.D. 0.437586 0.1354 0.356189 0.2496192  0.004117
RMSE 0026494 0008074 0597722 0.0313056 0.00681
Mean 0021179 0007201 0.453992 0.0226248 0.005888
DS-SLAM
meter{m) %
Median 0.017452 0.006629 0.3324 0.0226248  0.005132
SB. 0.015863 0003649 0.288128 0.0163846 0.003422
RMSE 0.015672 0.006899 0.041785 0.0301564  0.006397
DynaSLAM IMean 0.013486 0.005959 0031252 0.0258218 0.00555
meter{m) 5
Median 0011842 0.005264 0.024051 002185842 (0.004999
5B, 0.007982 0.003474 0.027564 0.01557 0.003179
RMSE 0.015622 0.007283  0.033358 0.0255974  0.005839
PSPMet- Mean 0.013531 0006456  0.026175 0.0222732  0.005025
SLAM
meter(m) Median 0.011749 0005874  0.020435 0.0196024  0.004408
5D. 0.007805 0.003366 0.020613 0.0126034  0.002973
Improveme RMSE 98.05% 97.87% 95.98% 94.33% 32.58%
Mean 97.98% 97.94% 96.47% 94.07% 34.03%
Median 97.94% 97.81% 97.13% 93.46% 35.34%
percentage(
%) 5D. 98.22% 97.51% 94.21% 94 95% 27.80%
Improveme RMSE 41.03% 9.79% 94.47% 18.23% 14 26%
nt
(Compare Mean 36.11% 10.35% 94.23% 1.55% 14 64%
To DS-
SLAM) Median 32.67% 11.39% 93.85% 13.36% 14.10%
percentage(
%) S0, 50.80% 7.76% 92.85% 23.08% 13.14%
Improveme RMSE 0.32% -5.57% 2017% 15.12% B.73%
nt
(Compare IMean -0.34% -8.33% 16.24% 13.74% 9.45%
To
DynaSLAM) Median 0.78% -1158% 15.03% 10.32% 11.83%
percentage(
%) 5D. 2.22% 311% 2522% 19.05% 5.49%

sequence, and the other four sequences are two people walk-
ing through the office, which is regarded as a high dynamic
sequence. In freiburg3_walking_static sequence, camera is
held in place. And in the freiburg3_walking_xyz sequence,
camera moves in three directions (X, y, z). While in the
freiburg3_walking_halfspher sequence, camera moves on a
small hemisphere of approximately one meter diameter, and
in the freiburg3_walking_rpy sequence in the camera along
the main axis (roll-pitch-yaw) rotate at the same position.

In addition, the data set provides methods for system
evaluation - Absolute Trajectory Error (ATE) and Relative
Pose Error (RPE) [22]. ATE represents the global consistency
of the trajectory, while RPE measures the translation and
rotational drift.

B. EXPERIMENTAL RESULTS
In this section, the experimental results of the SLAM system
in this paper will be presented to illustrate the performance
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TABLE 2. Translation drift results.

RMSE 0411713 0.186759 0124113 03231182 0.00€353
Wean DI0M5T 0079623 028631 0921737  000E214
ORB-SLAMZ
meter(m)
Median 0212753 0014046 0.143121 0353232 0007413
5D 0273214 0168832 0312542 12100034 0004469
RMSE 003302 001087 0162316 00302166 0007532
Mean 0025801 0.009223 0.101548 00231482 C.00E507
DS-SLAM
meter(m)
Median 0019973 0008139 0046238 0023148 0005626
50 0021881 0005146 0.126579 00152312 000792
RMSE 0020635 000932 0.059172 00Z79TH  CO0ELGE
DynasLam Msan  DOLTOS1  0.007972 0.04z291 00246824 0007052
meter(m)
Median 0015154  0.006852 0030183 00235154 00014
5D 001069  0.004829 0042288 D0I1ATIS  00B4135
RMSE 0019365  0.009529 0.043682 00262494 Q007025
Mean 0017203  0.008371 0.035528 C023058 Q006094
PSPNel-SLAM
meter(m)
Median 0015635  0.00THIZ 0.030127 00210834 0.005332
5D 0000521 0.001518 0.c25379 00125358 0.003103
RMSE 9522 94904 2070k aLe8k 24.50%
(c;:;:::?:;)":m— wean 44.40% 59 49t 815Uk 9750 ZoEL%
SLAM2) Median 2205 4652% 73 95k 94.03% 28,07
peicatiinush] 50 us.51% ura yLuk uB .96 21
RMSE 1zo0m a85% 73.08% 13134 67
(C:':“”[;;’::;': B's- wean 32320 u.2a% 62,014 0.2 6.30%
sLAM) Median 2172 8054 31840 Bam 523
E=tceniaus] 50 95.50% 163 12,95 12.i0% 150
RMSE 470% 2244 25,168 B.13% 14.31%
btk Wean 25 -5.01% 15.99% 5.52% 13 5%
{Compare To
DynaSLAM) Median L1 -8.064 oim 5.3 13.16%
Poiceiney) 5D 1090 5824 33.98% 183% 15.51%

of the system in the TUM RGB-D dynamic scene dataset. All
experiments were performed on a computer equipped with an
Intel i7 CPU, GTX1070 GPU and 16 GB of memory.

The quantitative comparison results are shown
in Tables 1-3. The experimental results of the system
and ORB-SLAM2, DS-SLAM and DynaSLAM in the five
sequences of the data set were compared. The evaluation
indexes are Root Mean Squared Error (RMSE), Mean Error
(Mean), Median error and Standard Deviation error (SD).
Root mean square error (RMSE) describes the deviation
between the estimated value and the true value, so the smaller
the value, the closer the representative estimated trajectory
is to the true value; The average error reflects the average
level of all estimated errors; the median error represents a
medium level of all errors; Standard deviation (SD) reflects
the degree of dispersion of system trajectory estimates. These
kinds of objective evaluation algorithms show the difference
between the estimated trajectory and the true value of the
system, reflecting the stability and reliability of the system.

1) QUANTITATIVE RESULTS

The experimental results of the PSPNet-SLAM system
and ORB-SLAM2, DS-SLAM and DynaSLAM in the five
sequences of the data set are shown in Tables 1-3.
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TABLE 3. Rotational drift results.

m fie haitiote

RMSE 7954316 3259705 8322576 6483836 (028514
Mcan 5060222 1430645 5602490 2931081 0257020
ORB-SLAM2
degree/100met:
E“'ff,lm;e Sl Median 4130905 0333766 2755375 1410445 0244766
5D 5250082 287343¢ 6145101 5229999 0123434
RMSE 0.848542 0.27523€ 3245959 0.662985 0265777
DS-SLAM Mean 0623587 0246111 206628 0.622621 0239274
degree/100meters
(°/100m) Median 0460808 0229568 0997454 0622621 0229004
5D 057523  012308¢ 2502902 0408712 0115683
RMSE 0622853 0.252227 132067 07933 0271277
DynaSLAM Mean 0491677 0224558 0957276 0692715 0244294
degree/100meters
(°/100m) Median 0401068 0310065 0684801 0620858 0232113
) 0382350 0.114855 0905488 0386466 0117932
RMSE  0.605015 0258295  0.987776 075518  0.258071
PSPNet-SLAM Mean  0.477198 0231103  0.798435 0661354  0.231536
degree/100meters
(°/100m) Median  0.306670  0.214762 0.672541 0.50100 0.220510
SD. 0371917 011533€ 0579908  0.364345  0.113966
: . RMSE  9239%  9208% 8813% 88.35% 9.49%
CompareToore-  LEIINNCTE TN <L) 8575% 82 74% 9.92%
SLAM2) Median ~ 09042%  3566% 7559% 58.03% 991%
percentage(’) sD 9292% 95.99% 9056% 93.03% 7.67%
| . RMSE  2870% 615% 6957% -1391% 290%
[c:.:;;g‘r’:?:gs Mean 23484 6.10% 61364 -6.22% 323%
SLAM) Median  1392% 6.45% 3257% 192% 371%
percentage(X) sD 35.34% 5.30% 76.83% 10.86% 1.48%
| RMSE 2864 —241% 2521% 181% 487%
Eg:;:'”;ﬁ.’: Mean 294% -292% 1659% 4534 522%
DynasLAM) Median ~ 109% 30.74% 179% 1655 499%
percentage(k) 5D 273% -042% 3596% 572% 336%
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FIGURE 4. Absolute trajectory error of ORB-SLAM2, DS-SLAM, DynaSLAM,
and PSPNet-SLAM in fr3_w_rpy sequence.

It can be seen from Tables 1-3 that compared with
the ORB-SLAM?2 system, the SLAM system can greatly
reduce the absolute trajectory error and the relative pose
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FIGURE 5. The relative pose error of ORB-SLAM2, DS-SLAM, DynaSLAM
and PSPNet-SLAM in the fr3_w_rpy sequence.
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FIGURE 6. The camera trajectories of the ORB-SLAM2, DS-SLAM,
DynaSLAM and PSPNet-SLAM in fr3_w_rpy.

error in all sequences, improving performance and stabil-
ity; Compared with DS-SLAM, the SLAM system in this
paper has different degrees of decline in absolute trajectory
error and translation drift error in five sequences. In the
highly dynamic sequence freiburg3_walking_xyz(f_w_xyz)
and freiburg3_walking_rpy(f_w_rpy), the improvement
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(a)Point cloud map (b)Octree map

FIGURE 7. Semantic point cloud map and semantic octree map.

TABLE 4. Time evaluation.

TMES s)
m ean trackhg tin e
m ean trackhg tin e
m ean tracking tin e
m ean trackhg tin e

Sequence
0RB-SLAM 2
DS-SLAM
DynaSLAM
PSPN et-SLAM

fw_xyz
0.06798468
0.121047
0.4767328
0.6584909

fw_static

0.06163752
0.1092362
0.5134688
0.6125528

fw_halhere
0.06625328
0.119646
0477465
0.6599212

fs static

0.04936602
0.1027732
0.1662794
05943463

fw_mpy
0.05969586
0.115098
0.03888276
0.6375569

is obvious. Only in reiburg3_walking_halfsphere(f_w_
halfhere), there is a small gap compared with the DS-SLAM
results. Compared with the DynaSLAM system, the SLAM
system can improve the performance and stability of most
high dynamic sequences. The results show that the SLAM
system can improve the robustness and stability of the SLAM
system in highly dynamic scenes. However, in low dynamic
sequences, such as the fr3_sitting_static sequence, the error
reduction is small because ORB-SLAM?2, DS-SLAM, and
DynaSLAM can already handle low dynamic scenes well and
achieve good performance, so the space that can be improved
is limited.

2) QUALITATIVE RESULTS

Figure 4 shows the absolute trajectory error ATE of
ORB-SLAM2, DS-SLAM, DynaSLAM and this SLAM sys-
tem in the highly dynamic freiburg3_walking_rpy sequence.
Figure 5 shows the RPE results of the ORB-SLAM?2,
DS-SLAM, DynaSLAM and this SLAM system in the highly
dynamic freiburg3_walking_rpy sequence. It can be seen
that the absolute trajectory error and relative pose error of
the SLAM system in this paper have different degrees of
reduction. Figure 6 shows the camera trajectories of the
ORB-SLAM?2, DS-SLAM, DynaSLAM and PSPNet-SLAM
systems in the highly dynamic freiburg3_walking_rpy
sequence. It can be seen that the camera trajectory of the
system trajectory in this paper can well coincide with the
ground truth trajectory.

3) SEMANTIC POINT CLOUD MAP AND SEMANTIC OCTREE
MAP

The experimentally generated semantic point cloud map and
semantic octree map are shown in Figure 7. The display and
chair on the point cloud map and the octree map are colored.

4) TIME ANALYSIS

This part of the experiment is used to evaluate the tracking
time of each system. The average tracking time is shown
in Table 4. The PSPNet-SLAM proposed in this paper focuses
on trajectory error and semantic map construction, so it does
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not optimize real-time performance of the PSPNet-SLAM. In
PSPNet-SLAM, the process of solving homography matrix
by PROSAC and removing camera motion by inverse trans-
formation of homography matrix takes a part of time, so the
real-time performance is not good enough.

V. CONCLUSION

The existence of dynamic objects has great influence on the
estimation of trajectory and pose, and it is very practical
to eliminate dynamic objects to reduce trajectory and pose
error. At the same time, semantic segmentation network can
detect a priori dynamic points. The ORB-SLAM?2 system is
combined with the PSPNet semantic segmentation network
to filter the feature points by optical flow and semantic seg-
mentation, detect and eliminate dynamic points, and use sta-
ble static feature points to perform motion estimation under
dynamic scenes to complete the construction of semantic
maps. The advantages of the system in reducing the trajec-
tory and pose error are verified by experimental comparison.
However, the effect of segmentation is still not ideal. On the
point cloud map, the segmentation of the object point cloud
is still not perfect. In the next work, the segmentation of the
point cloud will be studied and the rendering of the map will
be optimized.
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