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ABSTRACT Quad-rotor is very suitable for payload transportation due to the merits of high maneuverability
and free hovering. However, the unknown varying payloads can cause negative influences that act in forms
of persistent disturbances and sudden changes, damaging flight performance especially the attitude stability
seriously. Targeting the persistent disturbances, an entirely novel disturbance estimator (DE) which can
estimate non-smooth disturbances in a highly accurate manner for feedback compensation is proposed in
this paper. To deal with the sudden changes from prescribed references and the payloads that may induce
too large overshoots and input surging, a type of predictive optimal controller, which considers tracking
errors and their changing rates of a class of linear multiple-input-multiple-output systems, is developed.
Simulation results show that the system enhanced by the DE has better control performance than the ones
enhanced by the commonly used extended state observer or nonlinear disturbance observer. Compared with
the typical control approaches, the proposed control scheme enables the quad-rotor attitude system more
stable performance and more ideal inputs on both persistent disturbance and sudden change resisting during
payload transportation.

INDEX TERMS Quad-rotor, payload transportation, disturbance attenuation, predictive optimal control.

I. INTRODUCTION
Recently, quad-rotors have been widely applied in many
areas [1]–[3], due to their merits of high maneuverability,
free hovering, and vertical take-off/landing. To meet the
task requirements, many effective approaches were devel-
oped, such as proportional-integral-derivative (PID) [4], lin-
ear quadratic regulator (LQR) [5], model reference adaptive
control (MRAC) [6], feedback linearization (FL) [7], sliding
model control (SMC) [8], back-stepping (BS) [9], and distur-
bance observer-based control (DOBC) [10]–[20].

Among all applications of quad-rotors, payload trans-
portation has gained more attentions [21]. Two connection
methods are commonly used to connect the payload with a
quad-rotor, namely the flexible connection (usually shown
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as cable-suspending) and the rigid connection (no relative
movement between the payload and the quad-rotor, such
as mechanism-fixing). Both of the two connection methods
have their own application scenarios and advantages. But,
according to the references reviewed by the authors, existing
researches mainly focused on the control of quad-rotor with
flexible connection and dedicated to reduce oscillation caused
by swing angle between the suspended stuff and the aircraft
[22]–[32]. Only a few literatures studied flight control of the
quad-rotors using rigid-connection and mainly focused on
the unknown masses of the payloads. In [33], an adaptive
fractional order sliding mode control approach with mass
estimation mechanism was proposed for the quad-rotor trans-
porting time-varying payload. Wang et al. [34] developed an
integral sliding mode based adaptive robust control algo-
rithm to control a quad-rotor helicopter transporting pay-
load with unknown mass. Sadeghzadeh et al. [35] studied
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payload dropping (airdrop) application of a quad-rotor heli-
copter using a gain-scheduled PID method and a model pre-
dictive control method. Shastry et al. [36] used a nonlinear
adaptive control method to manipulate the automatic deliv-
ery system of a quad-rotor. Pratama et al. [37] employed
a PD controller to stabilize a quad-rotor in the mission of
unknown payload transportation; the uncertain inertia pertur-
bation from payloads was considered. In [38], a linear matrix
inequality-based nonlinear adaptive robust control approach
was proposed for the quad-rotor delivering packages with
unknown masses in the presence of wind field. In [39], [40],
multiple quad-rotors were applied to transport payloads with
each one controlled by PID controllers. In [41], a quad-rotor
equipped with a two degree-of-freedom robotic arm was used
to deliver payloads to remote places. The SMC approach
was used to prevent the aircraft from influences induced
by unknown payloads. From the perspective of the authors,
though the flexible connection is suitable for the payloads
with different sizes and shapes, the rigid one is more stable
and safety (payload swinging is easy to happen in flexible
connection, causing instability of altitude/attitude and col-
lision between the payload and the aircraft) during mission
execution. These lead us to focus on the flight control of quad-
rotors transporting payloads using the rigid connection.

During the period of payloads transportation, attitude con-
trol plays a decisive role in stable flight, accurate delivery, and
precise path following. However, this is a challenging task.
When the payload is empty, attitude dynamic system of the
quad-rotor is originally highly nonlinear. The pitch, roll, and
yaw torques can approximately be decoupled because of the
nearly symmetric frame structure (mathematically the inertia
matrix is diagonal) [10], [33], [43], [45], [46], [48], [51].
However, when the unknown payload is loaded using rigid
connection, symmetry of the quad-rotor is broken such that
the inertiamatrix becomes non-diagonal, which in turn results
in couplings among the pitch, roll, and yaw torques. Besides,
due to the existence of eccentricities (can be seen in Fig. 8 in
next) between the gravitational centers of the payload and the
aircraft, the quad-rotor is affected by uncertain disturbance
torques from overweight of the payload. Based on above
analyses, uncertainties, nonlinearities, and couplings in the
attitude system are all significantly escalated after loading the
payloads. Hence, studying the attitude control of the quad-
rotor in this situation is necessary and of significance in
engineering. Meanwhile, this study also enriches researches
for this application.

Although the aforementioned approaches have been
applied to the quad-rotor with or without transporting pay-
loads, they have their own flaws or are based upon assump-
tions. For example, control schemes based on the PID and
LQR methods cannot guarantee the closed-loop performance
in different flight conditions. In the MRAC approach, finding
a reference model is usually a challenging mission. As for
the FL method, detailed plant model information is required,
resulting in poor system robustness against uncertainties. The
sliding mode controller is insensitive to uncertainties and

can stabilize the system globally. However, to achieve good
system robustness against uncertainties, the accurate upper
bound (UB) of the amplitude of the uncertainties must be
available. Practically, the accurate UB may not be obtained
easily. Hence, an overestimation of the UB is usually used,
resulting in high-frequency of both switching of the control
input and chattering around sliding mode surface. This possi-
bly degrades the control performance and negatively affects
the actuator. The conventional BS method can only deal
with the constant or slowly changing uncertainties. Though
disturbance observers such as the extended state observer
(ESO) and the nonlinear disturbance observer (NDO) have
been proved to be effective to improve flight performance
of the quad-rotor systems, they show poor capability on the
estimation of non-smooth disturbances.

Motivated by the previous works, this paper proposes a
novel control scheme with disturbance attenuation and pre-
diction functions for attitude stabilization of the quad-rotor
transporting payloads. Firstly, the rotational dynamic system
is modeled as two cascade multiple-input-multiple-output
(MIMO) systems. Secondly, an entirely novel disturbance
estimator (DE) is proposed to deal with the non-smooth
disturbances. Thirdly, we develop a modified predictive
functional controller to deal with the sudden changes from
prescribed references and external disturbances. Finally, val-
idation of the proposed control scheme is carried out through
numerical simulations.

The rest part of this paper is organized as follow: Section II
summarizes scope and main contributions of this paper.
Section III proposes a novel DE and shows its stability
analysis. Section IV develops a predictive optimal con-
troller for linear MIMO systems. Section V builds the
plant model of the quad-rotor carrying payloads. Section VI
designs control scheme for the quad-rotor delivering pay-
loads. Section VII conducts contrast simulations to validate
superiority of the proposed control scheme. Finally, some
conclusions are drawn in Section VIII. One online estima-
tion algorithm and proofs of four theorems are presented in
appendixes.

II. PAPER SCOPE AND CONTRIBUTION
This paper investigates the attitude stabilization problem of
the quad-rotor transporting unknown and varying payloads
using a disturbance attenuation predictive control scheme.
The payload connected with the quad-rotor using a fixed
connection method rather than cable-suspended methods is
considered. Main contributions are summarized as:

1. In the control design, a MIMO system-based distur-
bance estimation and control technique is proposed. The
control structure is simpler than the ones decoupling
the quad-rotor system into several single-input-single-
output (SISO) subsystems [10], [11], [13]–[17], [19], [20],
[42]–[48].

2. We consider more elements such as unknown moments of
inertia, disturbance torques, and sudden changes causing
negative influences, which is more comprehensive and
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practical than existing studies [33], [34], [38] that only
took into account of the unknown weights.

3. We propose a novel DE suitable for a class of MIMO
systems to estimate the non-smooth disturbances in an
accurate manner by means of the compact form dynamic
linearization (CFDL) theory [49]. The work is original
rather than an extension of the previous works and extends
the application ranges of the existing DOs [50]–[55] sig-
nificantly. Superiority of the DE can be seen in Section III,
part F, by making comparison with the commonly used
extended state observer (ESO) [50], [54] and nonlinear
disturbance observer (NDO) [50], [55].

4. We develop a new predictive optimal controller (POC)
to degrade impacts from sudden changes. The POC has
better capability on output overshoot restraint compared
with conventional predictive approaches whose control
performances mainly depend on the length of predictive
horizon (LPH) [56]–[60]. The predictive function has been
proved to be effective to deal with sudden changes [61].

III. DISTURBANCE ESTIMATION
In this section, some notations used in the rest part of this
paper is introduced firstly. Then two assumptions and one
important lemma as preliminaries for obtaining the DE are
introduced. After deriving the formulation of the DE, we ana-
lyze its stability and illustrate its superiority by making com-
parison with the aforementioned ESO and NDO.

A. MATHEMATICAL NOTATIONS
Denote T as sampling period; S(kT ) , S(k), S is a scalar
or vector, k is a positive integer; 1S(k + 1) , S(k +
1)−S(k); ‖(·)‖ represents matrix norm; ‖(·)‖v represents the
compatible norm of a matrix; Ŝ(k) represents the estimation
of S(k) at time point kT ; diag(a1, · · · , an) denotes a n × n
diagonal matrix with diagonal elements a1, · · · , an; S(k+i|k)
represents prediction of S at time point (k + i)T based upon
S(k).

B. PRELIMINARIE
In this subsection, we consider the following general MIMO
nonlinear system:

61 : Y (k + 1)

= f (Y (k), · · · ,Y (k−ny+1),U (k), · · · ,U (k−nu+1)) (1)

where, U (k) ∈ Rm and Y (k) ∈ Rm are measureable input and
output signals at sampling time point k; ny and nu are two
integers; f (∗) = [f1(∗), · · · , fm(∗)]T is a nonlinear mapping
vector.

Two assumptions are made for system 61:
(A1): The partial derivatives of fi(∗), i = 1, · · · ,m with

respect to every entry of the
(
ny + 1

)th variable U (k) are
continuous.

(A2): System61 satisfies the generalized Lipschitz condi-
tion. That is,

‖Y (k1 + 1)− Y (k2 + 1)‖ ≤ bc ‖U (k1)− U (k2)‖

for any k1 6= k2, k1 ≥ 0, k2 ≥ 0 and U (k1) 6= U (k2). Where,
bc is a bounded positive number.
Lemma 1 [49]: Consider that system 61 satisfies A1 and

A2. If ‖1U (k)‖ 6= 0 for any k , then there exists a
time-varying diagonally dominant matrix 8c(k) ∈ Rm×m

called pseudo Jacobian matrix (PJM), such that system 61
can be transformed into the following compact form dynamic
linearization (CFDL) data model:

1Y (k + 1) = 8c(k) ·1U (k) (2)

Proof of this lemma can also be seen in [49]. It is impos-
sible to obtain analytical solution of 8c(k) since it is time-
varying and includes all system nonlinearities. In [49], many
methods were adopted to estimate the PJM. For simplicity,
one of the estimation algorithms is given in Appendix A
directly.
Remark 1: Assumption 2 and formula (2) imply that
‖8c(k)‖ ≤ bc.

C. DESIGN OF THE DISTURBANCE ESTIMATO
To get into the details of the design work, follow general
continuous MIMO affine nonlinear system is considered:

61 : Ẏ = H (Y ,U )+ B · U (3)

where, U = [u1, · · · , um]T ∈ Rm and Y = [y1, · · · , ym]T ∈
Rm are measureable input and output vectors, respectively;
B ∈ Rm×m is full rank; H (∗) = [h1(∗), · · · , hm(∗)]T is an
unknown nonlinear mapping vector and hi(∗), i = 1, · · · ,m
are not limited to the smooth type like in [50].

A forward difference-based discrete-time form of system
61 using sampling period T is given by:

6p : Y (k+1)=Y (k)+T · H (Y (k),U (k))+T · B · U (k) (4)

System (4) also satisfies A1 and A2. In next, 6p is called
plant model.
Remark 2: System (3) or (4) represents a series of dynamic

systems. Typical examples are attitude dynamic systems of
fixed-wing airplanes, multi-rotor aircrafts, space crafts and
vessels.

Generally, the fundamental ideal of disturbance estimation
for existing DOs can be stated as: for a disturbed plant model,
select an appropriate nominal model without uncertainties.
Then use states and outputs of both the plant model and the
nominal model to reconstruct the disturbance terms through
algorithms.

In this paper, a nominal model relative to the plant
model (4) is given by:

6m : Ym(k + 1) = Ym(k)+ T · Bm · U (k) (5)

where, Ym ∈ Rm; Bm ∈ Rm×m is a full rank matrix, which is
the estimation of B.

The disturbance terms need to be estimated are given by:

G(k) = H (Y (k),U (k))+ (B− Bm) · U (k) (6)

Let ε(k) = Y (k)− Ym(k). One of our main results is given
in Theorem 1. Proof of Theorem 1 is given in Appendix B.
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Theorem 1: Consider a class of disturbed MIMO system
shown in (3) or (4) satisfying A1 and A2. By selecting a
nominal model (5), then at any sampling time point kT ,
there must exist a time-varying diagonally dominant matrix
8̂c(k) such that estimation of the disturbance terms (6) can
be derived by follow disturbance estimator:

Ĝ(k) =
1ε(k)
T
+ 8̂c(k) ·1U (k) (7)

Remark 3:Compensating the plant model6p into the nom-
inal model 6m is reasonable and can usually be seen in flight
control of aircrafts. In the conventional nonlinear dynamic
inversion (CNDI) approach [62]–[64], modeling values of
the nonlinear terms were used to compensate the nonlinear
terms. While in [44], [65], values of the nonlinear terms were
estimated by the DOs rather than frommodeling such that the
CNDI was modified dramatically.
Remark 4: It can be noticed that the proposed DE only

requires the disturbance terms to satisfy A1 such that the
drawback ‘smooth’ is overcome by means of the CFDL.

D. STABILITY ANALYSIS
One of the main issues in disturbance estimation is whether or
not the difference between the real value and the estimation
under the derived disturbance estimator/observer is conver-
gent. The stability result is given in Theorem 2. Proof of
Theorem 2 is given in Appendix C.
Theorem 2: For the system (3) or (4), the estimation error

of the disturbance term between the real value (6) and the
estimated value (7) from the proposed DE under the given
nominal model (5) is bounded.

E. PARAMETER TUNING RUL
In this subsection, we aim to give qualitative tuning rules for
the parameters of the DE in Appendix A. Except for their
prescribed ranges which have been listed in the appendix,
follow tuning rules deriving from our tuning experiences from
applications are introduced.

1. µ > 0 is one of the most important parameters that would
affect convergence of the DE. A large value of µ has a
trend to accelerate convergence speed of the PJM 8̂c(k)
and restrain fluctuations at sudden change points of the
disturbances.

2. Initial value of the PJM 8̂c(k), namely, 8̂c(0), is another
most important parameter affecting convergence of the
DE. 8̂c(0) is always selected as a diagonal matrix with
diagonal elements φ̂ii(0), i = 1, · · · ,m. Small val-
ues of

∣∣φ̂ii(0)∣∣ are beneficial to restrain fluctuations at
non-smooth points of disturbances. Large values would
result in DE instability. We suggest giving the

∣∣φ̂ii(0)∣∣
small values (their signs are not important). For example,
values less than 0.01 or 0.001 or even smaller will be fine.

3. The determinations of η, α, and b1 have great arbitrary
even for different systems. They only have to follow: η ∈
(0, 2], α ≥ 1 and b1 > 0.

TABLE 1. Comparison result with the conventional ESO And NDO.

F. ESTIMATION CAPABILITY VALIDATION
Though drawbacks of the conventional ESO and the NDO
have been introduced in the Introduction part, this subsection
highlights the superiority of the DE compared with the two
DOs through simulations intuitively. Firstly, the comparison
results are summarized in follow table.

As for the NDO, although it can overcome the drawbacks
to some extent through tuning parameters, it is hard to deter-
mine its control parameters/functions.

Secondly, to validate effectiveness of the DE, we take
follow linear system as example:

ẋ = u+ d(t)

where, u represents the input. x represents the state as well
as the output. d(t) = 10sign[sin(0.5π t)] represents the dis-
turbance, sign (∗) is the symbol function. It is necessary to
emphasize that setting the amplitude of d(t) as 10 is only to
make clear understanding of the validation effects. Besides,
to make the comparisons more apparent, amplitude limitation
of the outputs is not adopted.

The rest task is to design a control scheme such that the
system can track a given prescribed reference yd . One simple
candidate controller is given by:

u(k) = ω [yd (k)− x(k)]− d̂(k)

where, ω is a tuning parameter called controller gain, d̂(k) is
the estimation of d at the sampling time point kT .
In next, d̂(k) is given by the DE, ESO, and NDO, respec-

tively, to validate the superiority of the DE. Initial conditions
are given by: d̂(0) = 0, x(0) = 0. Parameters of the ESO and
the NDO are tuned to optimal such that the response times
at the non-smooth points for observing the disturbances are
as short as possible. Contrast results of responses of unit-step
prescribed reference are shown as:

Figure 1 illustrates that, by using the same controller
gain, control performance based upon the DE is significantly
superior to the ones based on the ESO and NDO since
overshoots of the lateral two are up to 25% compared with
4% of the DE. The reason is that, in right neighborhoods
of the non-smooth points (t = 1 and t = 3), the pro-
posed DE can estimate the disturbance accurately, while the
ESO and NDO cannot, as shown in Figure 2. Hence, errors
between real value and estimation of the disturbance using
the ESO and NDO are so large that system input must surge
to suppress the disturbance and guarantee system stability,
which in turn results in the overshoot of system output,
as shown in Figure 1 and Figure 3. Figure 4∼ Figure 7 show
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FIGURE 1. Comparison of system output: ω = 10.

FIGURE 2. Disturbance estimation: ω = 10.

FIGURE 3. System input: ω = 10.

that, increasing amplitude of the controller gain ω is ben-
eficial to reduce output overshoots. However, this would
cause severe input surging, especially in initial period of the
simulation.

FIGURE 4. ESO-based system output: different ω.

FIGURE 5. ESO-based system input: different ω.

FIGURE 6. NDO-based system output: different ω.

IV. PREDICTIVE OPTIMAL CONTROL FOR MIMO SYSTEM
During the payload transportation, sudden changes usually
exist such that input surging/saturation and large output
overshoot may occur, damaging flight performance of the
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FIGURE 7. NDO-based system input: different ω.

quad-rotor. For example, the piecewise prescribed references
with jumping points bring sudden changes. Besides, loading
and dropping periods of the payloads are so short that the
external disturbance forces and torques acting on the quad-
rotor change quite fast. This would also be treated as a type
of sudden change. This section develops a novel predictive
controller to degrade the influences from the sudden changes,
with stability of the closed-loop system analyzed.

A. REVIEW OF CONVENTIONAL PREDICTIVE APPROACH
FOR LINEAR MIMO SYSTEM
In this subsection, we review the design of conventional
predictive functional controller (PFC) which is the basis
for the proposition of our controller. To make the work
clear here, we consider the plant model (4) and the nomi-
nal model (5). Notice in Theorem 2 that the error between
the real value and the estimation of the disturbance is non-
zero. Thus, outputs of the two models are not the same,
namely, Y (k) 6= Ym(k). In the conventional PFC, to min-
imize the output error such that the nominal model can
be used to design controllers, a receding-horizon feedback
correction approach is adopted and is stated as: design
a controller considering the output error Y (k) − Ym(k),
such that the closed-loop system is asymptotically stable
and the output, Y (k), of the system (5) optimally tracks
a prescribed reference, Yd (k) = [y1d (k), · · · , ymd (k)]T ,
at any sampling point kT , in terms of a given performance
index.

According to [66], following predictions of the input signal
and the output error are adopted:

U (k + i|k) = U (k), 1 ≤ i ≤ n (8){
ε(k) = Y (k)− Ym(k)
ε(k + i|k) = ε(k),

1 ≤ i ≤ n (9)

The output in receding-horizon is predicted by linear recur-
sion. Applying recursion to the nominal model (5) and using

formula (8) yield:

Ym(k + 1|k) = Ym(k)+ T · Bm · U (k)
Ym(k + 2|k) = Ym(k + 1|k)+ T · Bm · U (k + 1|k)

= Ym(k)+ 2T · Bm · U (k)
...

Ym(k + n|k) = Ym(k+n−1|k)+T · Bm · U (k + n− 1|k)
= Ym(k)+ nT · Bm · U (k)

(10)

By bringing formula (9) into (10), output prediction of the
plant model (4) is given by:

Y (k + n|k) = Ym(k + n|k)+ ε(k + n|k)

= Ym(k)+ nT · Bm · U (k)+ Y (k)− Ym(k)

= Y (k)+ nT · Bm · U (k) (11)

To derive an optimal controller, follow receding-horizon
performance index is usually adopted:

J (k) =
1
2
[Yd (k + n|k)− Y (k + n|k)]T

× [Yd (k + n|k)− Y (k + n|k)]T (12)

where, Yd (k + n|k) = [y1d (k + n|k), · · · , ymd (k + n|k)]T .
Then according to the necessary condition for the existence

of extrema, namely, ∂J (k)
/
∂U (k) = 0, the control law can

be derived and is given by:

U (k) = (nT · Bm)−1 [Yd (k + n|k)− Y (k)] (13)

B. THE PROPOSED PREDICTIVE OPTIMAL CONTROLLER
Notice that the receding-horizon performance index (12)
only considers output tracking error such that the output
overshoot would occur when the system encounters sudden
changes. To deal with this problem, a novel receding-horizon
performance index considering output tracking error and its
changing rate is developed:

J (k) =
1
2
ST (k + n|k)S(k + n|k)S(k + 1) = C · E(k + 1)+

E(k + 1)− E(k)
T

E(k) = Yd (k)− Y (k)
(14)

where, n represents the length of predictive horizon. C ∈
Rm×m is an adjustable positive definite diagonal matrix.

It can be seen that index (14) considers both tracking
error and its changing rate such that the output can track
the prescribed reference accurately and would not change
severely in the meanwhile.

In next, the rules (8) and (9), the output prediction (11), and
the receding-horizon feedback correction are combined with
formula (14) to derive our controller. Another one of our main
results is given in Theorem 3. Proof of Theorem 3 is given in
Appendix D.
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Theorem 3: Consider that a class of disturbed nonlinear
MIMO system (4) can be compensated into the given nom-
inal model (5). Then for a given definite diagonal matrix
C , the predictive optimal control law which minimizes the
receding horizon performance index (14) is given by:

U (k) = [(nT · C + I )Bm]−1
[
Y d (k + n|k)− C · Y (k)

]
(15)

where, Y d (k + n|k) is given by:

Y d (k+n|k)= (C+
1
T
I )Yd (k+n|k)−

1
T
Yd (k+n−1|k) (16)

It is obvious that Yd (k + i|k), 1 ≤ i ≤ n are available and
Y d (k + n|k) can be computed offline in advance.

C. PARAMETER TUNING RUL
In this subsection, firstly, we describe functions of each
parameters (the LPH n and the penalty factor C) in con-
troller (15) qualitatively. Secondly, we give tuning rules for
them step by step.

Function description:
Small values of n and large values of C would result in fast

response speed, short response time, and large amplitude of
inputs. The output overshoots are restrained effectively by the
factor C .
Tuning rule:
Step 1: Give both the factor C and the LPH n small values.
Step 2: Increase the value of the factor C until the output

tracking accuracy is satisfied.
Step 3: Increase the value of the LPH n to adjust the input

amplitude.

D. STABILITY ANALYSIS
An important issue in system control is whether or not the
closed-loop system under the derived control law is stable.
In this subsection, stability analysis of the control law (15) is
given in Theorem 4. Its proof is given in Appendix E.
Theorem 4: The plant (4) is controlled using predictive

optimal control law (15) for the regulator Yd (k + 1) = Y ∗ =[
y∗1d , · · · , y

∗
md

]T
= constant vector. There always exists a

positive definite diagonal matrix C making:
1) The system tracking error is convergent and

lim
k→∞
‖Y ∗ − Y (k + 1)‖v = 0;

2) The closed-loop system is bounded-input-bounded-
output (BIBO).

V. PLANT MODEL AND PROBLEM PROPOSITIO
In this paper, two assumptions are made for the quad-rotor:
(1) the quad-rotor is rigid such that its frame deformation can
be neglected, (2) the quad-rotor flies in low speed such that
the earth rotation can be ignored. Besides, to make the work
easy understanding, the payload is assumed to be cubic as
other shapes are similar with this case. A quad-rotor carrying
payload is illustrated in Figure 8 which is given by:

In Figure 8, {OB,XB,YB,ZB} represents the body frame
of the quad-rotor, whereOB is coincide with the gravitational

FIGURE 8. Sketch of the quad-rotor carrying payload using rigid
connection.

center (GC) of the aircraft. {OP,XP,YP,ZP} represents the
body frame of the payload, where OP is coincide with the
GC of the payload. OBXBZB and OBYBZB are the aircraft
symmetrical planes. The distances between OB and the pro-
jection points of the four rotor centers on OBXBZB plane are
the same and denoted as l.OP is the GC of the payload.O∗P is
the projection point of OP on OBXBYB plane with coordinate
(x0, y0). x0 and y0 are eccentricities. m and m0 are masses of
the quad-rotor and the payload, respectively. Ti, i = 1 ∼ 4 are
thrusts of four rotors, respectively. lx , ly and lz are geometrical
parameters of the payload. The orientation of the aircraft is
described by Euler angles 2 = [φ, θ, ψ]T . Assume that φ ∈
[−π

/
2, π

/
2] and θ ∈ [−π

/
2, π

/
2]. Let � = [p, q, r]T be

the body rates. The inertia tensor of the aircraft with relative
to the body frame is denoted as Jq = diag(Ix , Iy, Iz).The
moment of inertia of the payload with relative to the body
frame is given by:

1J =

 1Ix 1Ixy 1Ixz
1Ixy 1Ix 1Iyz
1Ixz 1Iyz 1Ix

 (17)

To make the work practical, the payloads transported are
assumed to be different (different shapes, sizes, masses, and
eccentricities) in different stages. Hence, in mission execu-
tion, 1J can be regarded as slowly time-varying.

A. SYSTEM MODELLING
The kinematic model describes the relationship between the
Euler angle vector and the body rate vector. In stable flight of
the quad-rotor, the Euler angles and the body rates are small
such that the kinematic model can be derived using a MIMO
as:

2̇ = � (18)

Denote kc > 0 as a constant force-to-torque coefficient.
According to Figure 8, the roll, pitch, and yaw torques M in
body frame can be expressed as:

M =

 l(−T1 + T2 + T3 − T4)
l(−T1 − T2 + T3 + T4)
kc(−T1 + T2 − T3 + T4)

 (19)
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Take follow three virtual inputs:
τφ = −T1 + T2 + T3 − T4
τθ = −T1 − T2 + T3 + T4
τψ = kc(−T1 + T2 − T3 + T4)

(20)

By applying Newton-Euler method, the rotational dynamic
model can be derived using a MIMO system as:(

Jq +1J
)
�̇ = −�×

(
Jq +1J

)
�+1M +M (21)

where,1M = [m0g ·y0,m0g ·x0, 0]T are torque disturbances
induced by the payload.

By recalling formulas (19) and (20), formula (21) can be
written as:

�̇ =
(
Jq+1J

)−1 [
−�×

(
Jq+1J

)
�+1M

]
+

[(
Jq+1J

)−1
−J−1q

]
·M+J−1q ·M

=

(
Jq+1J

)−1 [
−�×

(
Jq+1J

)
�+1M

]
+

[(
Jq+1J

)−1
−J−1q

]
·M︸ ︷︷ ︸

Fa=Fa(�;1J ,m0,x0,y0)

+ diag(l
/
Ix ,

l/
Iy,

1/
Iz)︸ ︷︷ ︸

Ba

· [τφ, τθ , τψ ]T︸ ︷︷ ︸
Ua

= Fa + Ba · Ua (22)

It can be seen that Fa = [Fa(1),Fa(2),Fa(3)]T includes all
aforementioned persistent disturbances.

The rotational movement of quad-rotor carrying payloads
are expressed by formulas (18) and (22).
Remark 5:Ix , Iy, and Iz can be measured through cycloid

method. We can see from Figure 8 and system (22) that
the uncertainties caused by the payload are relative to
1J , (x0, y0), and m0. It is easy to get intuitive understanding
of (x0, y0) and m0. While factors affecting 1J are compli-
cated. For simplicity, we take 1Ix in formula (17) as exam-
ple to introduce the payload characteristics that may bring
influences, as analyses of other elements in formula (17)
are similar. 1Ix can be computed by 1Ix =

∫
m0
r2x dm. rx

represents the distance between dm and OP, which is relative
to the eccentricities (x0, y0) and the payload dimension (for
example, side lengths of a cuboid or diameter of a sphere).
To sum up, 1J is relative to (x0, y0),m0, and the payload
dimension. In the simulation, we can measure the value of
1J in CATIA (a kind of computer aided design software)
environment when (x0, y0),m0, and the payload dimension
are given.

B. PROBLEM PROPOSITIO
It is easy to verify that the quad-rotor attitude system given
by formulas (18) and (22) satisfies A1 and A2. Then the
problems need to be addressed here are stated as:
1. Use the DE proposed in formula (7) to estimate the non-

linear term Fa = [Fa(1),Fa(2),Fa(3)]T for compensation
such that the attitude system robustness against distur-
bances from the unknown payloads can be enhanced.

2. Design predictive optimal controllers shown in
formula (15) for the quad-rotor to degrade influences
caused by sudden changes from payloads and prescribed
references.

VI. CONTROL SCHEME DESIG
In this part, the proposed DE and POC are applied to control
the quad-rotor in the application of payload transportation.

Denote 2d = [φd , θd , ψd ]T as the reference Euler angle
vector and�d = [pd , qd , rd ]T as the desired body rate vector.
To estimate Fa(�;1J ,m0, x0, y0), we select the following
nominal model:

�̇m = Ba · Ua (23)

where, �m(k) = [pm(k), qm(k), rm(k)]T is the state vector of
the nominal model. It is obvious that Ba is a full rank square
matrix.

Control structure of the proposed attitude control scheme
is given by:

By recalling formula (7) and Appendix A, we can derive
the estimation of Fa, namely F̂a:

ε(k) = �(k)−�m(k)
8̂c(k) = 8̂c(k − 1)

+
η[1ε(k)− 8̂c(k − 1) ·1Ua(k − 1)]1UT

a (k − 1)

µ+ ‖1Ua(k − 1)‖2

F̂a(k) =
1ε(k)
T
+ 8̂c(k) ·1Ua(k)

(24)

Values of the parameters used in both Appendix A and
formula (24) are given by: α = 1, b1 = 10, 8̂c(0) =
diag(0.05, 0.05, 0.05), η = 1, µ = 100.

The POCs are given by:
(1) Euler angle control:�d (k)=(n1T · C1+I )−1

[
2d (k+n1)−C1 ·2(k)

]
2d (k+n1)= (C1+

1
T
I )2d (k + n1)−

1
T
2d (k+n1−1)

(25)

(2) Body rate control:

U0(k) = [(n2T · C2 + I )Ba]−1[
�d (k + n2)− C2 ·�(k)

]
�d (k + n2) = (C2

+
1
T
I )�d (k + n2)−

1
T
�d (k + n2 − 1)

Ua(k) = U0(k)− B−1a · F̂a(k)

(26)

VII. NUMERICAL VALIDATION
In this section, four application scenarios are simulated in the
MATLAB environment. The first one validates effectiveness
of the predictive function when the quad-rotor carrying an
unknown unchanged payload tracks a piecewise step pre-
scribed reference with sudden changes. In the second one,
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we show the superiority of the proposed POC compared
with the conventional PFC. In the third one, transporting
unknown varying payloads using the quad-rotor with loading
and dropping processes is simulated. Comparisons between
the proposed scheme and the commonly used approaches
such as the conventional SMC [8], cascade PID (CPID) [4],
and FL [7] are carried out in order to show the superiority
of the proposed scheme. In the last one, we consider more
disturbances that the quad-rotor may encounter in the payload
transportation missions.

Geometrical parameter values of the quad-rotor used in this
paper are [10]: m = 2kg, g = 9.81m · s−2, l = 0.35m, Ix =
Iy = 1.25kg · m2, Iz = 2.5kg · m2, kc = 0.035.
The initial conditions are given by:{

(φ, θ, ψ |p, q, r)T0 = (0, 0, 0|0, 0, 0)T

(pm, qm, rm)T0 = (0, 0, 0)T
(27)

Three types of payloads are delivered by the quad-rotor.
Payload mass m0(unit: kg), eccentricities (x0, y0)(unit: m),
and the inertia tensor 1J (unit: kg · m2) are given by:

P1 : (x0, y0) = (0.1, 0.1) ,m0 = 1,

1J =

 0.014 −0.01 0.005
−0.01 0.014 0.005
0.005 0.005 0.022

 ;
P2 : (x0, y0) = (−0.15, 0.08) ,m0 = 0.8,

1J =

 0.007 0.01 −0.005
0.01 0.02 0.003
−0.005 0.003 0.024

 ;
P3 : (x0, y0) = (−0.18,−0.14) ,m0 = 1.2,

1J =

 0.03 −0.03 −0.013
−0.03 0.046 −0.01
−0.013 −0.01 0.064

 .
Remark 6: Values of m0 and 1J are also measured in the

CATIA environment. By referring to Figure 8, coordinates
of the projection points O∗P (x0, y0) of the three payloads
are in different quadrants. This aims to simulate different
disturbance torques from different directions such that system
robustness of the quad-rotor against disturbances induced by
the payloads can be guaranteed.

The simulation step size T = 0.002 second is used in the
next four application scenarios.

A. APPLICATION SCENARIO 1
The piecewise step prescribed reference (unit: rad) is given
by:

2d =

{[
0.1, 0.2, π

/
6
]T
, t ≤ 3s[

0.3, 0.4, π
/
4
]T
, 3s < t ≤ 6s

(28)

In this case, only the payload P3 is carried by the quad-rotor.
This simulation experiment shows how the penalty factors

C1 and C2(see formulas (25) and (26)) affect the control
performance. Effects from the LPH are neglected since they
have been discussed in [60] in detail. Values of the LPHs are
given by: n1 = 10, n2 = 10.

FIGURE 9. Control structure of the proposed quad-rotor attitude control
scheme for payload transportation. i and j are time-delayed steps.

Simulation results are given by:

FIGURE 10. Euler angle responses with different penalty factors.

FIGURE 11. Comparisons between the schemes with and without the
penalty factor: Euler angle responses.

Figure10 reveals that the Euler angle responses with large
C1 and C2(the red solid line with hollow circle) have faster
convergent speed than the ones with small C1 and C2(the
blue solid line with solid triangle and the green solid line).
Moreover, the three red solid lines with hollow circle show
that when the reference signals change at t = 3s, the Euler
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FIGURE 12. Comparisons between the schemes with and without the
penalty factor: body rates.

FIGURE 13. Simulation procedures for different payloads transportation.

angle responses have no overshoots since the LPH and the
penalty factor together soften the system input signals which
cannot surge instantly, causing overshoot phenomenon.

B. APPLICATION SCENARIO 2
In this subsection, we aim to show the superiority of the
proposed controller compared with the conventional PFC.
According to formula (13), the conventional PFCs for the
quad-rotor transporting payloads control are given by:
(1) Euler angle control:

�d (k) =
2d (k + n1)− C1 ·2(k)

n1T
(29)

(2) Body rate control:

{
U0(k) = (n2T · Ba)−1 [�d (k+n2)−C2 ·�(k)]
Ua(k)=U0(k)−B−1a · F̂a(k)

(30)

The prescribed reference is the same with (28). Parameters
C1 = diag(3, 3, 3) and C2 = diag(10, 10, 10) are used in
formulas (25) and (26). The payload P3 is carried by the quad-
rotor. Contrast results are given by:

It is clear from the two figures that the proposed control
scheme is superior to the conventional PFC in dealing with
sudden changes in two aspects:
(1) Under the conditions of the same LPHs, output of the

conventional PFC responds too fast at t = 0 and t = 3
such that too large overshoot and body rates are induced

FIGURE 14. Roll angle responses.

(see the blue line). However, in the proposed scheme (see
the red line), by introducing the parameter C , the output
errors and their changing rates are not allowed to change
too fast such that the Euler angles and the body rates
cannot change severely, which in turn avoids overshoot
successfully.

(2) Though by setting n1 = n2 = 60(the predictive period
is only 0.12 second) in the conventional PFC such that
the quad-rotor system can have the same response time
using the two controllers, the conventional PFC still has
larger overshoot and much bigger amplitudes of the body
rates than the proposed controller. The reason is that the
conventional PFC ignores the changing rate of the output
response speed.

C. APPLICATION SCENARIO 3
In this subsection, the quad-rotor transporting different pay-
loads is simulated. The prescribed reference (unit: rad) is
given by:

2d = [0.2, 0.2, 0.2]T (31)

Procedures of the quad-rotor loading and dropping the
payloads are illustrated as:

Values of parameters in formulas (25) and (26) are given
by: n1 = 10,C1 = diag(3, 3, 3), n2 = 10,C2 =

diag(10, 10, 10).
Simulation results are given by:
Conclusions can be drawn in three aspects:

(1) Figure 14∼ Figure 18 reveal that the proposed con-
trol scheme is superior to the one based on CPID and
FL. Although the SMC-based scheme can achieve the
same control performance with the proposed scheme,
Figure 18 shows chattering phenomenon, which may
damage the actuator. The superiority relies on the exis-
tence of the proposed DE which can estimate the dis-
turbances (see Figure 17) for compensation without the
availability of the amplitude UBs of the disturbances.
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FIGURE 15. Pitch angle responses.

FIGURE 16. Yaw angle responses.

FIGURE 17. Estimation of Fa by the proposed DE.

(2) Figure 17 illustrates that the DE proposed can achieve
high accuracy on estimation of the signals that have
non-smooth points.

(3) From Figure 18 and the three enlarged figures in
Figure 14∼ Figure 16, it can be seen that the proposed
POC can degrade influences from the sudden changes

FIGURE 18. Control inputs.

since no input surging occurs (see Figure18) and the
amplitudes of output fluctuations are very small.

D. APPLICATION SCENARIO 4
After demonstrating the superiority of the proposed control
scheme, we consider more practical disturbances that the
quad-rotor may encounter during the transportation period.
That is, the unmodeled dynamics Fu, the sudden changes Fs
from external circumstance, and the parameter perturbations.
They are part of the unknown term Fa in formula (22). That
is,

Fa =
(
Jq +1J

)−1 [
−�×

(
Jq +1J

)
�+1M

]
+

[(
Jq +1J

)−1
− J−1q

]
·M + Fu + Fs (32)

The unmodeled dynamics used here are given by [10]:

Fu =

 sign(sin(0.9t))
sign(sin(0.9t))+ cos(0.3t)

0.5sign(sin(0.5t))+ cos(0.3t)+ 2 cos(0.9t)

 (33)

The sudden changes are simulated by trigonometric func-
tions, which are given by:

Fs =




3 cos(ω0(t −

5
12
tf ))

−3 cos(ω0(t −
5
12
tf ))

6 sin(ω0(t −
5
12
tf ))

 ,
5
12
tf ≤ t ≤

5
12
tf + 2T


3 cos(ω0(t −

9
12
tf ))

−3 cos(ω0(t −
9
12
tf ))

6 sin(ω0(t −
9
12
tf ))

 , 9
12
tf ≤ t ≤ 9

12 tf + 2T

(34)

where, tf = 30 is the simulation time, T = 0.002 is the
simulation step size, ω0 =

π
/
T .

Notice that the geometrical parameter Ba in formula-
tion (22) is used to design control law (26). However, there
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FIGURE 19. Euler angle responses.

FIGURE 20. Control inputs.

FIGURE 21. Estimation of Fa by the proposed DE: +25 perturbation.

always exists errors between the real value and the usage
value. Here we assume that there exists +25% and −25%
perturbations for Ba, respectively. Since we still use Ba to
design the control law (26), thus, the real values of unknown
disturbances caused by parameter perturbations included in
Fa are given by: −0.25Ba · Ua and 0.25Ba · Ua.

FIGURE 22. Estimation of Fa by the proposed DE: -25 perturbation.

Settings of all control parameters, the prescribed refer-
ences, and the dropping/loading procedures are the same with
the ones in scenario 3, subsection C. Simulation results are
given by:

Conclusions of this scenario are given by:
Figure 19 reveals that, even under complicated flight cir-

cumstances, the proposed control scheme can guarantee the
robustness of the quad-rotor system. Figure 20 illustrates
that, input surging is avoided by the POC in the presence of
sudden changes. Figures 21 and 22 illustrate that the proposed
DE shows strong capability on the estimation of different
disturbances.

VIII. CONCLUSION
This paper proposes a novel cascade control scheme
with anti-disturbance capability and predictive optimal
function to realize attitude control of quad-rotor deliv-
ering unknown payloads. Conclusions are drawn as
follow:

1) The proposed DE orienting MIMO systems can esti-
mate the uncertainties in an accurate manner at the
non-smooth points, significantly enhancing system
robustness of the quad-rotor against the payload distur-
bances, unmodeled dynamics, parameter perturbations,
and external uncertainties. The DE proposed improves
estimation accuracy and expands application ranges of
the DOs.

2) The proposed predictive optimal controller can signifi-
cantly degrade influences caused by the sudden changes
from sudden loading/dropping of payloads and pre-
scribed references by considering the changing rate of
the output tracking error, which is superior to the con-
ventional predictive functional controller.

3) Simulation results show that, the proposed control
scheme is significantly superior to the ones based on
sliding model control, cascade PID, and feedback lin-
earization approaches, which are commonly used in
flight control.
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APPENDIX A
ONLINE ESTIMATION OF THE PJM [49]

PJM8c(k) Online Estimation Scheme

Updating 8̂c(k)
law = 8̂c(k − 1)

+
η·[1Y (k)−8̂c(k−1)·1U (k−1)]1UT (k−1)

µ+‖1U (k−1)‖2

Parameter
setting µ > 0, η ∈ (0, 2] , 8̂c(k) =

[
φ̂sn(k)

]
m×m

Resetting
principle φ̂ii(k) = φ̂ii(0) if:∣∣φ̂ii(k)∣∣ < b2 or

∣∣φ̂ii(k)∣∣ > αb2 or
sign(φ̂ii(k)) 6= sign(φ̂ii(0)), i = 1, · · · ,m;
φ̂ij(k) = φ̂ij(0) if:∣∣φ̂ij(k)∣∣ > b1 or sign(φ̂ij(k)) 6= sign(φ̂ij(0)),
i = 1, · · · ,m, j = 1, · · · ,m, i 6= j;
φ̂ij(0) is the initial value of φ̂ij(k),
i = 1, · · · ,m, j = 1, · · · ,m;
α ≥ 1, b2 > b1(2α + 1)(m− 1).

APPENDIX B
PROOF OF THEOREM
Subtracting formula (5) from formula (4) yields:

62 : ε(k + 1) = ε(k)+ T · G(k) (B1)

Moving ε(k) to the left side yields:

62 : 1ε(k + 1) = T · G(k) (B2)

Then at (k − 1)T , it has:

1ε(k) = T · G(k − 1) (B3)

Subtracting formula (B3) from formula (B2) yields:

1ε(k + 1) = 1ε(k)+ T ·1G(k) (B4)

Applying Lemma 1 to linearize the system (B4) yields:

62 : 1ε(k + 1) = 1ε(k)+ T ·8c(k) ·1U (k) (B5)

Finally, by making comparison between formulas (B2) and
(B5), the disturbance term can be written as:

G(k) =
1ε(k)
T
+8c(k) ·1U (k) (B6)

Using the algorithm in the Appendix A to estimate the PJM
8c(k) yields:

Ĝ(k) =
1ε(k)
T
+ 8̂c(k) ·1U (k) (B7)

where, 8̂c(k) is a time-varying diagonally dominant matrix.

APPENDIX C
PROOF OF THEOREM 2
Here we only need to prove that the error between8c(k) and
8̂c(k) is bounded.
Denote 8̂c(k) = [φ̂Tc1, · · · , φ̂

T
cm]

T and 8c(k) =

[φTc1, · · · , φ
T
cm]

T .
In resetting principles of the Appendix A, 8̂c(k) is obvi-

ously bounded. Thus, the estimation error is also bounded.
In other conditions, the estimation law for PJM can be re-

written as:
φ̂ci(k) = φ̂ci(k − 1)

+
η · [1yi(k)−φ̂ci(k−1) ·1U (k−1)]1UT (k−1)

µ+‖1U (k−1)‖2

1yi(k) = φci(k − 1) ·1U (k − 1)
(C1)

where, i = 1, · · · ,m. Denote φ̃ci(k) = φ̂ci(k) − φci(k).
Subtracting the real value φci(k) from both sides of formula
(C1) yields:

φ̃ci(k)

= φ̂ci(k − 1)− φci(k)

+
η[1Y (k)− φ̂ci(k − 1) ·1U (k − 1)]1UT (k − 1)

µ+ ‖1U (k − 1)‖2

= φ̃ci(k − 1)+ φci(k − 1)− φci(k)

−
η · φ̃ci(k − 1) ·1U (k − 1)1UT (k − 1)

µ+ ‖1U (k − 1)‖2

= φ̃ci(k − 1) · [I −
η ·1U (k − 1)1UT (k − 1)

µ+ ‖1U (k − 1)‖2
]

+φci(k − 1)− φci(k) (C2)

where, I is an identity matrix with relative dimension.
Taking norm of both sides of formula (C2) and considering
‖8c(k)‖ ≤ bc (implies ‖φci(k)‖ ≤ bc) yield:∥∥φ̃ci(k)∥∥
≤

∥∥∥∥φ̃ci(k − 1)[I −
η ·1U (k − 1)1UT (k − 1)

µ+ ‖1U (k − 1)‖2
]

∥∥∥∥+ 2bc

(C3)

Besides, we have∥∥∥∥φ̃ci(k − 1) · [I −
η ·1U (k − 1)1UT (k − 1)

µ+ ‖1U (k − 1)‖2
]

∥∥∥∥2
=
∥∥φ̃ci(k − 1)

∥∥2 + [−2+
η · ‖1U (k − 1)‖2

µ+ ‖1U (k − 1)‖2
]

·
η ·
∥∥φ̃ci(k − 1)1U (k − 1)

∥∥2
µ+ ‖1U (k − 1)‖2

(C4)

By considering η ∈ (0, 2] and µ > 0, we also have:

−2+
η · ‖1U (k − 1)‖2

µ+ ‖1U (k − 1)‖2
< 0 (C5)
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Formulas (C4) and (C5) means that there exists 0 < dc < 1
making the following work:∥∥∥∥φ̃ci(k − 1) · [I −

η ·1U (k − 1)1UT (k − 1)

µ+ ‖1U (k − 1)‖2
]

∥∥∥∥
≤ dc

∥∥φ̃ci(k − 1)
∥∥ (C6)

Here we only need to care about the existence of dc instead
of its specific value. Finally, we have:∥∥φ̃ci(k)∥∥ ≤ dc

∥∥φ̃ci(k − 1)
∥∥

+2bc ≤ d2c
∥∥φ̃ci(k − 2)

∥∥+ 2dcbc + 2bc

≤ · · · ≤ dkc
∥∥φ̃ci(0)∥∥+ 2bc(1− dkc )

1− dc
(C7)

Thus, the theorem is proved.

APPENDIX D
PROOF OF THEOREM 3
We consider the last two formulas in receding-horizon per-
formance index: S(k + 1) = C · E(k + 1)+

E(k + 1)− E(k)
T

E(k) = Yd (k)− Y (k)
(D1)

By expanding S(k + 1), we have:
S(k + 1) =

1
T
Y (k)− (C +

1
T
I )Y (k + 1)+ Y d (k)

Y d (k) = (C +
1
T
I )Yd (k + 1)−

1
T
Yd (k)

(D2)

where, I ∈ Rm×m is an identity matrix with relative dimen-
sion.

By recalling formula (12) and applying recursion method
to formula (D2), we derive:

S(k+n|k)=−C · Y (k)−(nT · C+I )BmU (k)+Y d (k + n|k)

(D3)

where,

Y d (k + n|k) = (C +
1
T
I )Yd (k + n|k)−

1
T
Yd (k + n− 1|k)

(D4)

By bringing formulas (D3) and (D4) into J (k) = 1
2S

T (k +
n|k)S(k + n|k) and letting ∂J (k)

/
∂U (k) = 0, the predictive

optimal control law can be given by:

U (k) = [(nT · C + I )Bm]−1
[
Y d (k + n|k)− C · Y (k)

]
(D5)

Y d (k + n|k) is given by formula (D4).

APPENDIX
PROOF OF THEOREM 4
Denote

E(k + 1) = Yd (k + 1)− Y (k + 1) = Y ∗ − Y (k + 1) (E1)

Bringing formulas (D4) and (D5) into (D1) and letting
n = 1 yield:

E(k + 1)

= Y ∗ − Y (k)− T · Bm · [(nT · C + I )Bm]−1

·
[
Y d (k + n)− C · Y (k)

]
= E(k)− T · (nT · C + I )−1 ·

[
Y d (k + n)− C · Y (k)

]
=

[
I − T · (nT · C + I )−1 · C

]
E(k)

= P · E(k) (E2)

Let C = diag(c1, · · · , cm), ci > 0, i = 1, · · · ,m. Then
it has P = diag(p1, · · · , pm) = diag(1 − T ·c1

1+nT ·c1
, · · · , 1 −

T ·cm
1+nT ·cm

). It is easy to find that 0 < pi = 1− T ·ci
1+nT ·ci

< 1, i =
1, · · · ,m. Denote ρ = max {p1, · · · , pm}.Thus, there exists a
positive number d1 and a small number ξ such that

0 < ‖P‖v ≤ ρ + ξ = d1 < 1 (E3)

Taking norm of both sides of formula (E2) and using (E3)
yield:∥∥Y ∗ − Y (k + 1)

∥∥
v = ‖E(k + 1)‖v
≤ ‖P‖v · ‖E(k)‖v ≤ d1 · ‖E(k)‖v
≤ · · · ≤ dk+11 · ‖E(0)‖v (E4)

Formula (E4) implies that lim
k→∞
‖Y ∗ − Y (k + 1)‖v = 0,

which also indicates that the output Y (k + 1) is bounded.
Meanwhile, formula (E4) implies that there exists a con-

stant d2 making 0 < ‖E(k)‖v ≤ d2.
Then in the predictive optimal control law (D4), it has

‖U (k)‖v

≤

∥∥∥[(nT · C + I )Bm]−1 · [Y d (k + n)− C · Y (k)]∥∥∥
v

≤

∥∥∥[(nT · C + I )Bm]−1 · C∥∥∥
v
· ‖E(k)‖v (E5)

Notice that [(nT · C + I )Bm]−1 ·C is a constant matrix and
recall that 0 < ‖E(k)‖v ≤ d2. We have ‖U (k)‖v ≤ M · d2 =
d3, which means that inputs of the system are bounded.
Thus, the BIBO of the closed-loop system is proved.
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