
Received February 6, 2020, accepted February 28, 2020, date of publication March 2, 2020, date of current version March 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977763

A Compact Brain Storm Algorithm
for Matching Ontologies
XINGSI XUE 1 AND JIAWEI LU 2
1Fujian Key Laboratory for Automotive Electronics and Electric Drive, Fujian University of Technology, Fuzhou 350118, China
2College of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China

Corresponding author: Xingsi Xue (jack8375@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61503082, in part by the Natural
Science Foundation of Fujian Province under Grant 2016J05145, in part by the Program for New Century Excellent Talents in Fujian
Province University under Grant GY-Z18155, in part by the Program for Outstanding Young Scientific Researcher in Fujian Province
University under Grant GY-Z160149, and in part by the Scientific Research Foundation of Fujian University of Technology under
Grant GY-Z17162 and Grant GY-Z15007.

ABSTRACT An ontology can formally present the domain knowledge by specifying the domain concepts
and their relationships, which is a kernel technique for addressing the data heterogeneity issue in the
semantic web. However, since existing ontologies are developed and maintained independently by different
communities, a concept and its relationship with the others could be described in different ways, yielding the
ontology heterogeneity problem. To solve this problem, in this work, we formally construct an optimal model
for it, and propose a similarity measure for distinguishing identical ontology entities. Since determining the
high-quality ontology alignment is a complex process, we propose to utilize a Brain Storm Optimization
algorithm (BSO) to optimize the alignment. BSO is a recently developed Swarm Intelligence algorithm
(SI), which can effectively solve the complex optimization problem by imitating the human’s idea gener-
ating process. However, classic BSO needs to cluster various ideas in each generation and carry out the
evolving operators on all ideas, which increases the computational complexity. To improve the efficiency of
BSO-based ontology matcher, a Compact BSO (CBSO) is further proposed, which can reduce the memory
consumption by utilizing the probabilistic representation on the idea cluster, and improve the algorithm’s
speed through the compact crossover operator and perturbation operator. The experiment uses the benchmark
track provided by the Ontology Alignment Evaluation Initiative (OAEI) to test our approach’s performance.
The comparisons among the state-of-the-art ontology matchers and our proposal show that CBSO-based
ontology matcher can efficiently determine high-quality ontology alignments.

INDEX TERMS Ontology matching, compact brain storm optimization algorithm, ontology alignment
evaluation initiative.

I. INTRODUCTION
An ontology can formally present the domain knowledge
by specifying the domain concepts and their relationships,
which is a kernel technique for addressing the data hetero-
geneity issue in the semantic web [1]. Fig. 1 shows an
example of two ontologies. In the figure, the rectangle rep-
resents the class, e.g. ‘‘Electronics’’, ‘‘Personal Computers’’
and ‘‘Microprocessors’’, the lines between two classes repre-
sents their relationship ‘‘has a’’, and each class has the data
properties to describe its features, e.g. ‘‘Microprocessors’’

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

has ‘‘PID’’, ‘‘Name’’, ‘‘Quantity’’ and ‘‘Price’’. However,
since the ontologies are developed and maintained indepen-
dently by different communities, they might use the same
term to define different class, e.g. ‘‘Accessories’’, or utilize
different words to define the same class, e.g. ‘‘Personal Com-
puters’’ and ‘‘PC’’, yielding the ontology heterogeneity prob-
lem. To support the inter-operation between ontology-based
intelligent applications, it is critical to determine the rela-
tionships between two ontologies’ entities, e.g. the equiva-
lence relationship (≡) between ‘‘Personal Computers’’ and
‘‘PC’’, the subsumption relationship (≥) between ‘‘Photo
and Cameras’’ and ‘‘Digital Cameras’’, the disjointness rela-
tionship (⊥) between ‘‘Microprocessors’’ and ‘‘PC board’’,

43898 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3008-8782
https://orcid.org/0000-0001-5408-8309
https://orcid.org/0000-0001-5773-9517

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

FIGURE 1. An example of matching two ontologies.

and further bridge the semantic gap between two ontologies.
Ontology matching can determine the identical entities in
an automatic or semi-automatic way, which is an effective
technique for solving the ontology heterogenous problem [2].

Since the ontology could be described through its architec-
ture graph (the nodes represent the concepts and instances,
and the edges represent the relationships between them),
the ontology matching problem could be seen as the determi-
nation of the largest isomorphic sub graph between two archi-
tecture graphs of two ontologies to be matched. Supposing
|O1| and |O2| are respectively the cardinalities of two ontolo-
gies, the computational complexity of an ontology matcher
usually isO(|O1|·|O2|), which would yield the out of memory
error and long runtime when the scale of ontology entities
is large. In addition, the terminologies used to define the
ontology entities are semantically rich and ambiguous, e.g.
the same terminology can be applied to define different enti-
ties, which would cause many local optimal solutions. Due
to the complexity of the ontology matching process, Swarm
Intelligent algorithm (SI) becomes an effective method for
solving ontology matching problem [1]. Recently, various SI
algorithms, such as EvolutionaryAlgorithm (EA) [3], Particle
Swarm Optimization algorithm (PSO) [4] and Artificial Bee
Colony algorithm (ABC) [5], have been utilized to match
the ontologies and obtain acceptable results. Brain Storm
Optimization (BSO) algorithm is a recently developed SI [6],
which imitates the human’s idea generating process to solve
the complex optimization problem. Being inspired by the
success of BSO in various domains [7]–[12], in this work,
we propose to use it to address the ontology matching prob-
lem. Beside the ontology alignment’s quality, the matching
efficiency of a matcher is also very important [13]. Classic
BSO executes the clustering operation in each generation
and carry out the evolving operators on all solutions, which
increases the computational complexity. To improve the effi-
ciency of BSO, in this paper, we further propose a Compact
BSO (CBSO), which utilizes the probability vector to approx-
imate the idea cluster and execute BSO’s evolving process.
CBSO can significantly reduce BSO’s memory consumption
because it does not need to execute the clustering process, and
decrease the runtime through the compact crossover operator

and perturbation operator.Moreover, we also propose a novel
similarity measure to distinguish the heterogeneous ontology
entities, which integrates three kinds of similarity metrics to
ensure the alignment’s quality. In particular, the contributions
made in this paper are as follows:

• an optimal model for ontology matching problem is
constructed,

• a hybrid similarity measure is proposed to calculate the
entities’ similarity,

• a CBSO is proposed to efficiently match the ontologies.

The rest of the paper is organized as follows: Section II
presents the related work; Section III defines the basic
concepts about ontology, ontology matching problem and
similarity measure; Section IV describes in details the
CBSO-based ontology matching technique; Section V shows
the experimental results; and finally, Section VI draws the
conclusion.

II. RELATED WORK
A. BRAIN STORM ALGORITHM
BSO was proposed by Shi [6] in 2011, which is to solve
the complex problem through imitating the brain storm-
ing sessions. Two features of BSO make it outstanding:
(1) the clustering operator that partitions all the ideas gen-
erated into different groups, and (2) the creating operator that
produces new ideas through the grouped ideas. The recent
researches mainly focus on improving the classic BSO’s per-
formance in terms of the above two features. Zhan et al. [14]
proposed a simple grouping strategy to reduce the cluster-
ing process’s computational complexity, and a new creating
operator to generate high-quality idea. Cao et al. [15] and
Li et al. [16], [17] applied a randomly clustering approach,
which evenly partition the current ideas and new ideas,
and they also proposed the new creating operators to bet-
ter trade off the algorithm’s exploitation and exploration.
Zhou et al. [18] not only utilized the random grouping strat-
egy, but also used a dynamic step-size schedule based creating
operator. Cheng et al. [19] presented a partially re-initializing
strategy based creating operator, which can ensure the popu-
lation diversity during the evolving process. Cao et al. [20]
used Differential Evolution (DE) and the step-size schedule
based creating operator to improve the new idea’s solution.
Chen et al. [21] took the group’s structure information into
account and further proposed an affinity propagation based
clustering operator to dynamically adjust each idea group’s
scale. Li et al. [22] proposed a vector grouping learning
scheme and use it to improve BSO’s population diversity and
search efficiency. Song et al. [23] proposed a simple BSO
algorithm with a periodic quantum learning strategy which
utilized a fitness value based clustering strategy to reduce
the clustering process’s computational burden and resist pre-
mature convergence, and a simplified idea updating strategy
and a quantum-behaved individual updating with periodic
learning strategy to enrich the diversity of newly generated
ideas. More recently, Aldhafeeri and Rahmat-Samii [24]

VOLUME 8, 2020 43899

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

proposed a binary version of Brain Storm Optimization
algorithm (BBSO) to address the, a discrete optimization
problem. BBSO utilized the Hamming distance based binary
grouping operation, and two binary evolving operator to gen-
erate new idea.

In general, BSO is an effective algorithm but not efficient
in terms of speed and memory consumption. To improve the
efficiency of BSO, in this work, we propose a CBSO, which
utilizes the probabilistic distribution to represent various idea
groups and perform the idea creation. A run of CBSO can
significantly improve BSO’s efficiency in terms of speed and
memory consumption, while at the same time ensure the
quality of solution.

B. SWARM INTELLIGENCE ALGORITHM BASED
ONTOLOGY MATCHING TECHNIQUE
Many Machine Learning (ML) techniques have been applied
to match ontologies to determine high-quality alignment,
such as Logistic Regression (LR) [25], Neural Network
(NN) [26], Word Embedding (WE) [27], Graph Embedding
(GE) [28], Support Vector Machine (SVM) [29], Cluster-
ing Algorithm [30], Decision Tree (DT) [31] and so forth.
Researchers also try to improve the matching efficiency
through the high performance computing techniques such
as Parallel Computing (PC) [32] and Cloud Computing
(CC) [33]. Due to the complexity of the ontology matching
process, recently, SI-based technique has become an efficient
approach for determining high-quality ontology alignment.

The first generation of SI-based matchers aimed at solving
the ontology meta-matching problem, i.e. how to determine
the optimal parameters to aggregate different matchers and
optimize the quality of obtained ontology alignment. Genet-
ics for Ontology ALignments (GOAL) [34] was the first
SI-based ontology meta-matcher, which used Evolutionary
Algorithm (EA) to optimize the aggregating weight set of
different ontology matchers. Ginsca and Iftene [35] pro-
posed to use EA to optimize the all the parameters in the
whole meta-matching process, which included the aggregat-
ing weight set and a threshold for filtering the final alignment.
Xue and Wang [1], [36] introduced a new metric to mea-
sure the ontology alignment’s quality, which did not require
the utilization of golden standard alignment, and formally
defined ontology meta-matching problem. Their approach
was able to match multiple ontology pairs at a time and
overcame three drawbacks of the EA-based meta-matchers.
More recently, He et al. [5] used Artificial Bee Colony (ABC)
algorithm to address the ontology meta-matching problem,
whose results were better than the EA-based matchers.

Since ontology meta-matching matchers need to main-
tain several similarity metrics during the matching process,
which consumes huge memory, the second generation of
SI-based matchers focus on directly determine the optimal
ontology entity correspondence set. GAOM (Genetic Algo-
rithm based Ontology Matching) [37] was the first SI-based
ontology entity matcher, which regarded two ontologies as
two discrete entity sets and employed EA to determine the

optimal alignment. Similarity, MapPSO [4] used Particle
Swarm Optimization (PSO) to determine the optimal entity
correspondence set. In particular, PSO introduced a new
quality measure on the ontology alignment, which depended
on the statistical results on the alignment. Alves et al. [38]
utilized a Memetic Algorithm (MA), which combined EA
with a local search process, to execute the instance-based
ontology matching process. They first matched the instances
and then propagated the similarity values from the instance
level to the corresponding concept level. Chu et al. [39] pro-
posed a new similarity measure that modeled two ontologies
in a vector space and used the cosine distance to calculate
two entities’ similarity, and on this basis, they used EA to
optimize the alignment’s quality. Our proposal belongs to
the second generation of SI-based ontology entity matcher.
Different from the population-based SI, we utilize the com-
pact encoding mechanism on the population to save the mem-
ory consumption, and use the compact evolving operators to
improve the algorithm’s searching efficiency. To the best of
our knowledge, this is the first time that CBSO is proposed
and utilized for solving the ontology matching problem.

III. PRELIMINARIES
A. ONTOLOGY AND ONTOLOGY MATCHING PROBLEM
An ontology defines the domain concepts and the relation-
ships, which can be defined as a 3-tuple (C,R, I), where
C , R and O are respective the sets of concept,
relationship (such as ‘‘is-a’’ and ‘‘has-a’’) and instance.
In generally, concept, relationship and instance are called
entities. To bridge the semantic gap between two heteroge-
nous ontologies, we need to execute an ontology matching
process to determine the identical entity pairs, and the entity
correspondence set obtained is called the ontology alignment.

An ontology alignment’s quality can bemeasured by recall,
precision and f-measure [40], but these metrics require a
golden standard alignment, which is not available especially
when the scale of ontology is huge. Since the recall value
of an alignment is proportional to its cardinality, and the
precision value is proportional to the average similarity value
of the entity mappings, we utilize the following metrics to
approximately measure an alignment’s quality:

r(A) =
|A|

max{|O1|, |O2|}
(1)

p(A) =

∑
simValuei
|A|

(2)

f (A) =
2× r(A)× p(A)
r(A)+ p(A)

(3)

where functions r(A), p(A) and f (A) respectively approx-
imately measure the alignment A’s recall, precision and
f-measure, |O1|, |O2| and |A| are respectively the cardinalities
of two ontologies O1, O2 and A, simValuei is the similarity
value of the ith pair of entities.

43900 VOLUME 8, 2020

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

Next, we construct an optimal model for the ontology
matching problem:

max f (A)
s.t. A = (a1, a2, · · · , a|O1|)

T

ai ∈ {1, 2, · · · , |O2|}, i = 1, 2, · · · , |C1|

(4)

where |O1| and |O2| respectively represent the cardinalities
of two ontologies O1 and O2, ai, i = 1, 2, · · · , |O1| is the ith
entity mapping, i.e. ith entity in O1 is mapped to aith entity
in O2.

B. SIMILARITY MEASURE
Similarity measure takes as input two entities and out-
puts a real number in [0,1] reflecting their similarity.
In particular, 1 means two entities are identical, while
0 means they are completely different. There are mainly three
kinds of similarity measure: string-based similarity measure,
dictionary-based similarity measure and context-based sim-
ilarity measure. Currently, since simply using a single simi-
larity measure can not ensure the result’s confidence, usually,
it is necessary to aggregate several similarity measures to
ensure the alignment’s quality. The similarity measure used
in this work combines three categories of similarity measures
mentioned above, which calculates two entities’ similarity
value through context-based similarity measure, and mea-
sures each context element pair’s similarity by string-based
and dictionary-based similarity measures. To be specific, for
each concept in the ontology, we utilize its context informa-
tion to construct a profile for it, which consists of the infor-
mation from its direct ascendant and descendants. On this
basis, similarity value sim(e1, e2) between two entities e1 and
e2 is calculated according to Eq. 5, which is a context-based
similarity measure:∑|p1|

i=1 max
j=1···|p2|

(sim′(p1,i, p2,j))+
∑|p2|

j=1 max
i=1···|p1|

(sim′(p2,j, p1,i)

2× min(|p1|, |p2|)
(5)

where:
• p1 and p2 are the profiles of e1 and e2, respectively,
and |p1| and |p2| are the cardinalities of p1 and p2,
respectively,

• p1,i and p2,j are respectively the ith element of p1 and jth
element of p2,

• sim′() computes the similarity through string-based sim-
ilarity measure and dictionary-based similarity measure.

Given two string s1 and s2, before calculating their simi-
larity value sim′(s1, s2), we need to execute a pre-process on
them: (1) remove the punctuation and stop-words, (2) split
the strings into words and convert them into lower-case, (3)
lemmatizing and stemming the words. Then, their similarity
value calculated by soft TF-IDF [41], which is a string-based
similarity measure that shows better performance in terms
of both precision and recall in the recent study [42]. In this
work, we improve the original soft TF-IDF by considering

words equal based on the Wordnet instead of Jaro Winkler
metric [43]. The new soft TF-IDF integrates theWordnet [44]
based similaritymeasure, which is a dictionary-based similar-
ity measure, to improve the result’s precision. In particular,
we utilize the Extended Java WordNet Library (extJWNL)1

to exploit the Wordnet which an electronic lexical database
that puts various senses of words into the synonym sets,
and two words are regarded as similar if they are exactly
matched or synonymous. Last, threshold of soft TF-IDF is
set as 0.8 according to Cheatham et al. [42], and the thresh-
old of context-based similarity measure is 0.85 through the
experiment.

C. POPULATION-BASED BRAIN STORM OPTIMIZATION
ALGORITHM
In the following, the pseudo-code of the population-based
BSO is presented in Algorithm 1:

In the beginning, ideas (or solutions) are initialized ran-
domly. After that, in every generation, each idea ideai is
updated by following four steps: (1) similar ideas are clus-
tered into a group, and the best idea in each cluster is selected
as this group’s cluster center, (2) a new idea newIdeai is gen-
erated by selecting a cluster center according to Pone−cluster
or a randomly selected idea from a selected cluster accord-
ing to Pone−center , or executing the crossover on two proba-
bilistically selected cluster centers or two randomly selected
ideas from two selected clusters according to Ptwo−centers, (3)
execute the perturbation operator on newIdeai, (4) updating
ideai through comparing it with newIdeai in terms of their
fitness values. In particular, function rand(0, 1) generates a
random number in [0,1]. One of the drawbacks of the original
BSO is brought by the basic K-means clustering algorithm,
which is used to imitate the people’s group discussion during
each generation. K-means clustering algorithm needs several
iterations to cluster ideas into several groups, which increases
the algorithm’s computational complexity. For more details
on BSO, please see also [6].

IV. COMPACT BRAIN STORM OPTIMIZATION
ALGORITHM
In this section, we will present in details the CBSO, where
each idea group is described by a Probability Vector (PV)
[36], and the clustering process is simplified as the process
of updating PV. In the next, we first describe the compact
encoding mechanism, the crossover operator and the pertur-
bation operator, and then we give the pseudo-code of CBSO.

A. COMPACT ENCODING MECHANISM
Due to the complex decoding process of decimal encoding
mechanism, the binary encoding mechanism becomes the
mainstream approach for encoding and decoding solutions
for the discrete optimization problem. Since the Gray code
is an intuitive and popular binary encoding mechanism in
the computer science domain, in this work, we utilize it to

1https://sourceforge.net/projects/extjwnl

VOLUME 8, 2020 43901

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

Algorithm 1 Population-Based Brain Storm Optimization
Algorithm
Input: the population size N , the number of idea clusters m,
three probabilities Pone−cluster , Pone−center and Ptwo−centers
Output: the best cluster center

initialize and evaluate n ideas;
generation = 1;
while generation < MaxGeneration do
partition N ideas into m clusters;
select a cluster center for each cluster;
for each idea ideai do
if rand(0, 1) < Pone−cluster then

randomly select a cluster clusterj;
if rand(0, 1) < Pone−center then
newIdeai = centerj;

else
randomly select an idea ideapj from clusterj;
newIdeai = ideapj ;

end if
else
randomly select two clusters clusterj and clusterk ;
randomly select two ideas ideapj and idea

q
k ;

if rand(0, 1) < Ptwo−centers then
newIdeai = crossover(centerj, centerk);

else
newIdeai = crossover(ideapj , idea

q
k);

end if
end if
newIdeai = perturb(newIdeai);
if fitness(newIdeai) > fitness(ideai) then
ideai = newIdeai;

end if
end for
generation = generation+ 1;

end while
return the cluster center with the best fitness value;

encode each entity corresponding. An example of the encod-
ing and decoding process is shown in the Fig. 2. In this work,
we need to encode an ontology alignment, i.e. a set of concept
mappings. Since an entity correspondence’s kernel elements
are two mapped concepts, we can simply make use of their
indices in the ontologies to encode it. Here, we empirically
choose the Gray code, which is a binary encoding mecha-
nism, to encode an alignment. As can be seen from Fig. 2,
the indexmeans the source concept index and the correspond-
ing bit values are the target concept index that is encoded
through Gray code, e.g. the source concept ‘‘uterine gland’’
with index 8 is mapped to target concept ‘‘Uterine_Gland’’
with index 6 whose Gray code is 110. In particular, Gray
code 000 means a source concept is not mapped to any target
concept.

FIGURE 2. An example of encoding mechanism.

CBSO uses a PV to characterize each idea cluster. A PV’s
dimension is equal to the scale of an idea’s gene bit, and
each dimension’s range is [0,1], In particular, the value in
each PV’s dimension represents a probability of being 1 on
an idea’s corresponding gene bit. Therefore, we can utilize
a PV to generate different ideas in a group, which could be
highly similar with each other. For example, given PV =
(0.2, 0.4, 0.6)T , we first generate three random real numbers
in [0,1], say 0.5, 0.3 and 0.1. Since 0.5 > 0.2 and 0.3 < 0.4
and 0.1 < 0.6, the newly generated idea is 011. If the new
generated idea is selected as the cluster center, we will update
PV by moving it to the cluster center. In particular, given an
update step st , if the gene value of the cluster center is 1,
the corresponding dimension number of PV will increase
by st , otherwise decrease by st . In this example, assuming
st = 0.1, the updated PV is (0.1, 0.5, 0.7)T .

B. CROSSOVER OPERATOR
Given two parent ideas ideai and ideaj, the crossover operator
generates the new idea on the basis of their distance. Since the
ontology matching problem is a discrete optimization prob-
lem, the distance between ideai and ideaj can be measured
according to Eq. 6:

distance(ideai, ideaj) =
|ideai|∑
k=1

|ideai,k − ideaj,k | (6)

where |ideai| is the cardinality of ideai, ideai,k and ideaj,k are
respectively the kth gene bit value of ideai and ideaj. Next,
the new idea newIdeai are generated by partly flipping the ele-
ments of ideai, whose pseudo-code is given in Algorithm 2.

C. PERTURBATION OPERATOR
BSO’s perturbation operator can be approximated through
searching the vicinity range of ideai. To this end, a pertur-
bation matrix MC×D is first constructed to generate neigh-
bourhood of the ideai, where C = 5 is the scale of neighbour
population andD is the number of dimensions. For the sake of
clarity, given a perturbation probability pp, the pseudo-code
of generating M is shown in Algorithm 3 [45].

43902 VOLUME 8, 2020

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

Algorithm 2 Crossover Operator
newIdeai = ideai
for k = 0; k < ideai.length; k++ do
if ideai,k ! = ideaj,k then

append k to a index list index;
end if

end for
totalNum = round(rand(0, 1)× distance(ideai, ideaj));
num = 0;
n = 0;
while num < totalNum do
if rand(0, 1) < Pcrossover then
newIdeai,index[n] = (newIdeai,index[n] + 1) mod 2;
index.remove(index[n]);
num = num+ 1;

end if
n = (n+ 1) mod index.length();

end while

Algorithm 3 Perturbation Matrix Construction
** initialize M **
for int i = 0; i < C; i++ do
for int j = 0; j < D; j++ do
Mij = 0;

end for
end for
** perturb M **
for int i = 0; i < C; i++ do
generate j = round(rand(0,D));
while rand(0, 1) < pp do
Mij = 1;
j = j+ 1;
if j == D then
j = 0;

end if
end while

end for

Then,M is constructed by flipping the value inM , and the
neighborhood of ideai can be generated according to Eq. 7.

−−−−−−−→
ideaneighbor = M ⊗

−−−−→
ideaelite +M ⊗

−→
X (7)

where

−−−−−→
ideabasic =

ideai
ideai
· · ·

ideai

C×D

,
−→
X =

idea1
idea2
· · ·

ideaC

C×D

and ideaj, j = 1, 2, · · · ,C , is generated by PV i, and the
operator ⊗ is the multiplication of corresponding matrix
elements.

Finally, we select the best idea from ideai’s neighborhood
as the new idea.

TABLE 1. A brief description on the benchmark track.

D. THE PSEUDO-CODE OF COMPACT BRAIN STORM
OPTIMIZATION ALGORITHM
In the following, the pseudo-code of CBSO is given
in Algorithm 4:

V. EXPERIMENT
A. EXPERIMENTAL SETUP
In the experiment, the benchmark track provided by the
Ontology Alignment Evaluation Initiative (OAEI)2 are used
to test our approach’s performance. Each testing case in the
benchmark track consists of two ontologies to bematched and
a golden standard alignment for evaluating the alignment’s
quality. Table 1 shows a brief description about the bench-
mark track.

We compare CBSO-based matcher with OAEI’s par-
ticipants and three state-of-the-art SI-based matchers, i.e.
EA-based matcher [37], PSO-based matcher [4], ABC-based
matcher [5] and BBSO-based matcher [24]. In order to com-
parewithOAEI’s participants, recall, precision and f-measure
[40] are used to measure the alignment’s quality. The param-
eter used by CBSO (see also Section IV-D) represent a
trade-off setting obtained in an empirical way to ensure the
highest average alignment quality in all testing cases, and
the parameters of EA, PSO, ABC and BBSO are referred to
their own literatures. In particular, EA, PSO, ABC, BBSO
and CBSO’s results shown in the tables are the mean values
of thirty independent runs.

B. COMPARISON ON ALIGNMENT’S QUALITY
Tables 2 and 3 compares CBSO with SI-based matchers
by carrying out the T-test statistical analysis [46] on f-
measure, and Figure 3 compares CBSO with OAEI’s partici-
pants and SI-based matchers in terms of recall, precision and
f-measure.

Since all the algorithms are run for 30 independent exe-
cutions on each testing case, the analysis has to consider the
critical value t0.025 for 29 degrees of freedom that is equal
to 2.045. Therefore, as can be seen from Tables 2 and 3,
the alignments obtained by CBSO are better than other
SI-based matchers on all testing cases. In particular, CBSO’s
average standard deviation is lower than other SI-based
matchers, which means it is more stable when optimizing
the ontology alignments. Comparing with state-of-the-art
SI-based approaches, CBSO works based on the probabilis-
tic modeling of promising solutions, which makes it easier
to predict the movements of the populations in the search

2http://oaei.ontologymatching.org/2016

VOLUME 8, 2020 43903

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

TABLE 2. Comparison of the alignments in terms of f-measure and standard deviation stDev .

TABLE 3. T-Test statistical analysis on the f-measure.

FIGURE 3. Comparison on the alignment’s quality.

space and learn through the PVs to propose the new gener-
ation of ideas accordingly. Moreover, with the introduction
of crossover and perturbation operators, CBSO is capable
of effectively trading off the exploitation and exploration
and learning more complex probabilistic model. Therefore,
CBSO outperforms other SI-based approaches in terms of
alignment quality.

As can be seen from Fig. 3, CBSO’s f-measure is the high-
est among all OAEI’s participants and SI-based matchers,
which shows that CBSO can better trade off the recall and
precision. In particular, the quality of alignment of CBSO
is better than BBSO, which shows that CBSO’s compact
encoding mechanism and comapct operators can better trade
off the algorithm’s exploration and exploitation. Since none
of the similarity measures can effectively distinguish all the
heterogeneous concepts in any situations, it is necessary to
aggregate several similarity measures to improve the result’s
precision. We utilize a hybrid similarity measure which com-
bines three kinds of similarity measures to calculate the entity
similarity value, and therefore CBSO’s precision values are
significantly higher than other matchers that only take into
consideration one or two categories of similarity measure,
such as CroMatcher, LogMap family, Pheno family, Lily and
XMap. However, AML applies too many similarity measures
that lead to the conflicting results, which decreases the recall
value. Thus, how many matchers should be selected and
combined to ensure the quality of the alignment is one of

43904 VOLUME 8, 2020

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

Algorithm 4 Compact Brain Storm Optimization Algorithm
Input: the idea cluster’s number m = 5, three probabilities
Pone−cluster = 0.6, Pone−center = 0.4 and Ptwo−centers = 0.5,
the length of an idea (or PV) length, the maximum
generations MaxGeneration = 2000, the step length for
updating PV st = 0.1
Output: the best cluster center

**** Initialization ****
for i = 0; i < m; i++ do
for j = 0; j < length; j++ do
PV i

j = 0.5;
end for
generate the cluster center csi through PV i;

end for
generation = 1;
**** Evolving Process ****
while generation < MaxGeneration do
for i = 0; i < m; i++ do

if rand(0, 1) < Pone−cluster then
randomly select a PV PV j;
if rand(0, 1) < Pone−center then
newIdeai = csj;

else
generate an idea ideaj through PV j;
newIdeai = ideaj;

end if
else
**** Crossover ****
randomly select two PVs PV j and PV k ;
generate two idea ideaj and ideak through PV j and
PV k , respectively;
if rand(0, 1) < Ptwo−centers then
newIdeai = crossover(csj, csk);

else
newIdeai = crossover(ideaj, ideak);

end if
end if
**** Perturbation ****
newIdeai = perturb(newIdeai);
**** Update Cluster Center ****
[winner, loser] = compete(newIdeai, csi);
if winner == newIdeai then
csi = newIdeai;

end if
**** Update PV ****
for u = 0; u < length; u++ do

if winner[u] == 1 then
PV i

u = PV i
u + st;

else
PV i

u = PV i
u − st;

end if
end for

end for
generation = generation+ 1;

end while
return the cluster center with the best fitness value;

TABLE 4. Comparison on the speed.

our future work. In the next section, we will further compare
CBSO with OAEI’s participants and SI-based matchers in
terms of speed and memory consumption.

C. COMPARISON ON SPEED AND MEMORY
CONSUMPTION
In this section, we compare our approach with OAEI’s partic-
ipants and SI-based matchers in terms of speed and average
memory consumption. Since OAEI official website provides
no information on its participants’ memory consumption,
in Figure 4, we compare CBSO with SI-based matchers.
In Table 4, a matcher’s f-measure per second is calculated by
dividing its mean f-measure by the mean runtime, which is a
metric taken by OAEI to measure the matcher’s efficiency.

Supposing |O1| and |O2| are respectively the cardinalities
of two ontologies to be aligned, m is the cluster number,
and N is the population size, the computational complex-
ity of the SI-based matchers are as follows: (1) EA-based
matcher: O(|O1| · (log2|O2| + 1) · N); (2) PSO-based
matcher: O(min{|O1|, |O2|} · (log2min{|O1|, |O2|})+1) ·N);
(3) ABC-based matcher: O(|O1| · |O2| · N); (4) BBSO-based
matcher:O(|O1| · (log2|O2|+1) ·m ·N); and (5) CBSO-based
matcher: O(|O1| · (log2|O2| + 1) · m), where log2|O2| is
the length of Gray code to encode |O2| target entities.
Thus, EA-based approach and PSO-based approach’s perfor-
mances are very closed to each other, ABC-based approach’s
calculation complexity is higher than others because it
needs to maintain several similarity matrices, BBSO-based
approach’s computational complexity is relatively high since
it have to execute the clustering operation beforehand, and
CBSO-based approach utilize the PV to approximate the
clustering process and execute the evolving process, whose
computational complexity is the lowest. As can been seen
from Table 4 and Fig. 4, due to the efficiency brought by
the compact encoding mechanism and compact operators,
CBSO’s f-measure per second and the memory consumption
is significantly lower than other SI-basedmatchers. The gains
in the efficiency are achieved respectively due to CBSO’s
particular competitive learning, which is effective to lead the
algorithm to determine the optimal solution, and the simplic-
ity, which does not require all the mechanisms of a BSO,

VOLUME 8, 2020 43905

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

FIGURE 4. Comparison on the memory consumption.

rather the few steps in the algorithm are small and simple.
To sum up, CBSO can efficiently determine high-quality
ontology alignments.

VI. CONCLUSION
To efficiently match the ontologies, in this paper, we pro-
pose a CBSO-based ontology matching technique. CBSO
reduces the memory consumption by utilizing the probabilis-
tic representation of the idea cluster, and improves the speed
by using the compact crossover operator and perturbation
operator. The experiment uses the OAEI’s benchmark track
to test the performance of CBSO-based ontology matcher,
and the experimental results show that CBSO-based ontology
matcher is both effective and efficient.

In the future, we will further study the technique that
can adaptively select and combine various similarity mea-
sures according to different heterogeneity situation. More-
over, we will improve CBSO-based approach to match the
large-scale ontologies such as biomedical ontolgies, which is
an open challenge in the ontology matching domain. Another
challenge in ontology matching domain is the problem
of Instance Coreference Resolution (ICR), which requires
matching large-scale instances in the LinkedOpenData cloud
(LOD). Currently, there is no SI-based technique that could
effectively solve ICR, andwe are also interested in addressing
this challenge with CBSO.

REFERENCES
[1] X. Xue and Y. Wang, ‘‘Optimizing ontology alignments through amemetic

algorithm using both MatchFmeasure and unanimous improvement ratio,’’
Artif. Intell., vol. 223, pp. 65–81, Jun. 2015.

[2] L. Otero-Cerdeira, F. J. Rodríguez-Martínez, and A. Gómez-Rodríguez,
‘‘Ontology matching: A literature review,’’ Expert Syst. Appl., vol. 42,
no. 2, pp. 949–971, Feb. 2015.

[3] G. Acampora, V. Loia, and A. Vitiello, ‘‘Enhancing ontology alignment
through a memetic aggregation of similarity measures,’’ Inf. Sci., vol. 250,
pp. 1–20, Nov. 2013.

[4] J. Bock and J. Hettenhausen, ‘‘Discrete particle swarm optimisation for
ontology alignment,’’ Inf. Sci., vol. 192, pp. 152–173, Jun. 2012.

[5] Y. He, X. Xue, and S. Zhang, ‘‘Using artificial bee colony algorithm for
optimizing ontology alignment,’’ J. Inf. Hiding Multimedia Signal Pro-
cess., vol. 8, no. 4, pp. 766–773, 2017.

[6] Y. Shi, ‘‘Brain storm optimization algorithm,’’ in Proc. Int. Conf. Swarm
Intell. Berlin, Germany: Springer, 2011, pp. 303–309.

[7] K. Lenin, B. R. Reddy, and M. S. Kalavathi, ‘‘Brain storm optimization
algorithm for solving optimal reactive power dispatch problem,’’ Int. J. Res.
Electron. Commun. Technol., vol. 1, no. 3, pp. 25–30, 2014.

[8] H. Qiu, H. Duan, and Y. Shi, ‘‘A decoupling receding horizon search
approach to agent routing and optical sensor tasking based on brain storm
optimization,’’ Optik, vol. 126, nos. 7–8, pp. 690–696, Apr. 2015.

[9] K. Madheswari, N. Venkateswaran, and V. Sowmiya, ‘‘Visible and thermal
image fusion using curvelet transform and brain storm optimization,’’ in
Proc. IEEE Region 10 Conf. (TENCON), Nov. 2016, pp. 2826–2829.

[10] Y. Wu, X. Wang, Y. Fu, and Y. Xu, ‘‘Difference brain storm optimization
for combined heat and power economic dispatch,’’ in Proc. Int. Conf.
Swarm Intell. Cham, Switzerland: Springer, 2017, pp. 519–527.

[11] E. Dolicanin, I. Fetahovic, E. Tuba, R. CAPOR-HROSIK, and M. Tuba,
‘‘Unmanned combat aerial vehicle path planning by brain storm opti-
mization algorithm,’’ Stud. Informat. Control, vol. 27, no. 1, pp. 15–24,
Mar. 2018.

[12] F. Pourpanah, Y. Shi, C. P. Lim, Q. Hao, and C. J. Tan, ‘‘Feature selection
based on brain storm optimization for data classification,’’ Appl. Soft
Comput., vol. 80, pp. 761–775, Jul. 2019.

[13] X. Xue and J. Chen, ‘‘Optimizing ontology alignment through hybrid
population-based incremental learning algorithm,’’ Memetic Comput.,
vol. 11, no. 2, pp. 209–217, Mar. 2019.

[14] Z.-H. Zhan, J. Zhang, Y.-H. Shi, and H.-l. Liu, ‘‘A modified brain storm
optimization,’’ in Proc. IEEE Congr. Evol. Comput., Jun. 2012, pp. 1–8.

[15] Z. Cao, Y. Shi, X. Rong, B. Liu, Z. Du, and B. Yang, ‘‘Random grouping
brain storm optimization algorithm with a new dynamically changing step
size,’’ in Proc. Int. Conf. Swarm Intell.Cham, Switzerland: Springer, 2015,
pp. 357–364.

[16] C. Li, Z. Luo, Z. Song, F. Yang, J. Fan, and P. X. Liu, ‘‘An enhanced brain
storm sine cosine algorithm for global optimization problems,’’ IEEE
Access, vol. 7, pp. 28211–28229, 2019.

[17] C. Li, Z. Song, J. Fan, Q. Cheng, and P. X. Liu, ‘‘A brain storm opti-
mization with multi-information interactions for global optimization prob-
lems,’’ IEEE Access, vol. 6, pp. 19304–19323, 2018.

[18] D. Zhou, Y. Shi, and S. Cheng, ‘‘Brain storm optimization algorithm with
modified step-size and individual generation,’’ in Proc. Int. Conf. Swarm
Intell. Berlin, Germany: Springer, 2012, pp. 243–252.

[19] S. Cheng, Y. Shi, Q. Qin, Q. Zhang, and R. Bai, ‘‘Population diversity
maintenance in brain storm optimization algorithm,’’ J. Artif. Intell. Soft
Comput. Res., vol. 4, no. 2, pp. 83–97, Apr. 2014.

[20] Z. Cao, X. Hei, L. Wang, Y. Shi, and X. Rong, ‘‘An improved brain
storm optimization with differential evolution strategy for applications of
ANNs,’’ Math. Problems Eng., vol. 2015, Sep. 2015, Art. no. 923698.

[21] J. Chen, S. Cheng, Y. Chen, Y. Xie, and Y. Shi, ‘‘Enhanced brain storm
optimization algorithm for wireless sensor networks deployment,’’ in Proc.
Int. Conf. Swarm Intell. Cham, Switzerland: Springer, 2015, pp. 373–381.

[22] C. Li, D. Hu, Z. Song, F. Yang, Z. Luo, J. Fan, and P. X. Liu, ‘‘A vector
grouping learning brain storm optimization algorithm for global optimiza-
tion problems,’’ IEEE Access, vol. 6, pp. 78193–78213, 2018.

[23] Z. Song, J. Peng, C. Li, and P. X. Liu, ‘‘A simple brain storm optimization
algorithm with a periodic quantum learning strategy,’’ IEEE Access, vol. 6,
pp. 19968–19983, 2018.

43906 VOLUME 8, 2020

X. Xue, J. Lu: Compact Brain Storm Algorithm for Matching Ontologies

[24] A. Aldhafeeri and Y. Rahmat-Samii, ‘‘Brain storm optimization for elec-
tromagnetic applications: Continuous and discrete,’’ IEEE Trans. Antennas
Propag., vol. 67, no. 4, pp. 2710–2722, Apr. 2019.

[25] N. Alboukaey and A. Joukhadar, ‘‘Ontology matching as regression prob-
lem,’’ J. Digit. Inf. Manage., vol. 16, no. 1, pp. 33–42, 2018.

[26] M. A. Khoudja, M. Fareh, and H. Bouarfa, ‘‘Ontology matching using
neural networks: Survey and analysis,’’ inProc. Int. Conf. Appl. Smart Syst.
(ICASS), Nov. 2018, pp. 1–6.

[27] M. T. Dhouib, C. F. Zucker, and A. G. Tettamanzi, ‘‘An ontology align-
ment approach combining word embedding and the radius measure,’’
in Proc. Int. Conf. Semantic Syst. Cham, Switzerland: Springer, 2019,
pp. 191–197.

[28] A. Assi, H. Mcheick, A. Karawash, and W. Dhifli, ‘‘Context-aware
instance matching through graph embedding in lexical semantic space,’’
Knowl.-Based Syst., vol. 186, Dec. 2019, Art. no. 104925.

[29] F. Ali, K.-S. Kwak, and Y.-G. Kim, ‘‘Opinion mining based on fuzzy
domain ontology and support vector machine: A proposal to automate
online review classification,’’ Appl. Soft Comput., vol. 47, pp. 235–250,
Oct. 2016.

[30] X. Xue and J.-S. Pan, ‘‘A segment-based approach for large-scale ontology
matching,’’ Knowl. Inf. Syst., vol. 52, no. 2, pp. 467–484, Jan. 2017.

[31] S. Amrouch, S. Mostefai, and M. Fahad, ‘‘Decision trees in automatic
ontologymatching,’’ Int. J. Metadata, Semantics Ontologies, vol. 11, no. 3,
pp. 180–190, 2016.

[32] T. B. Araújo, C. E. S. Pires, T. P. da Nóbrega, and D. C. Nascimento, ‘‘A
fine-grained load balancing technique for improving partition-parallel-
based ontology matching approaches,’’ Knowl.-Based Syst., vol. 111,
pp. 17–26, Nov. 2016.

[33] M. B. Amin, W. A. Khan, S. Hussain, D.-M. Bui, O. Banos, B. H. Kang,
and S. Lee, ‘‘Evaluating large-scale biomedical ontology matching over
parallel platforms,’’ IETE Tech. Rev., vol. 33, no. 4, pp. 415–427, 2016.

[34] J. Martinez-Gil and J. F. Aldana-Montes, ‘‘Evaluation of two heuristic
approaches to solve the ontology meta-matching problem,’’ Knowl. Inf.
Syst., vol. 26, no. 2, pp. 225–247, 2011.

[35] A.-L. Ginsca and A. Iftene, ‘‘Using a genetic algorithm for optimizing the
similarity aggregation step in the process of ontology alignment,’’ in Proc.
9th Roedunet Int. Conf., Sibiu, Romania, 2010, pp. 118–122.

[36] X. Xue and J.-S. Pan, ‘‘A compact co-evolutionary algorithm for sensor
ontology meta-matching,’’ Knowl. Inf. Syst., vol. 56, no. 2, pp. 335–353,
2018.

[37] J. Wang, Z. Ding, and C. Jiang, ‘‘GAOM: Genetic algorithm based ontol-
ogy matching,’’ in Proc. IEEE Asia–Pacific Conf. Services Comput.
(APSCC), Guangzhou, China, Dec. 2006, pp. 617–620.

[38] A. Alves, K. Revoredo, and F. Bai ao, ‘‘Ontology alignment based on
instances using hybrid genetic algorithm,’’ in Proc. 7th Int. Conf. Ontology
Matching, vol. 946, 2012, pp. 242–243.

[39] S.-C. Chu, X. Xue, J.-S. Pan, and X. Wu, ‘‘Optimizing ontology alignment
in vector space,’’ J. Internet Technol., vol. 21, pp. 15–22, Jan. 2020.

[40] C. J. V. Rijsberge, Information Retrieval. London, U.K.: Univ. Glasgow,
1975.

[41] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg,
‘‘Adaptive name matching in information integration,’’ IEEE Intell. Syst.,
vol. 18, no. 5, pp. 16–23, Sep. 2003.

[42] M. Cheatham and P. Hitzler, ‘‘String similarity metrics for ontology align-
ment,’’ in Proc. Int. Semantic Web Conf. Berlin, Germany: Springer, 2013,
pp. 294–309.

[43] W. E. Winkler, ‘‘Matching and record linkage,’’ in Business Survey Meth-
ods, vol. 1. New York, NY, USA: Wiley, 1995, pp. 355–384.

[44] G. A. Miller, ‘‘WordNet: A lexical database for English,’’ Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[45] J.-S. Pan, Z. Meng, S.-C. Chu, and H.-R. Xu, ‘‘Monkey king evolution: An
enhanced ebb-tide-fish algorithm for global optimization and its applica-
tion in vehicle navigation under wireless sensor network environment,’’
Telecommun. Syst., vol. 65, no. 3, pp. 351–364, 2017.

[46] J. S. Hampton, Introduction to Probability and Statistics: Principles and
Applications for Engineering and the Computing Sciences. New York, NY,
USA: McGraw-Hill, 1990.

XINGSI XUE received the B.S. degree in soft-
ware engineering from Fuzhou University, China,
in 2004, the M.S. degree in computer application
technology from the Renmin University of China,
China, in 2009, and the Ph.D. degree in computer
application technology from Xidian University,
China, in 2014. He is currently a Professor with
the College of Information Science and Engineer-
ing, Fujian University of Technology. He is also
a Kernel Member of the Intelligent Information

Processing Research Center, Fujian Provincial Key Laboratory of Big Data
Mining and Applications, Fujian Key Laboratory for Automotive Electronics
and Electric Drive, Fujian University of Technology. His research inter-
ests include intelligent computation, data mining, and large-scale ontology
matching technology. He is a member of ACM. He received the 2017 ACM
Xi’an Rising Star Award and the IIH-MSP 2016 Excellent Paper Award.

JIAWEI LU received the bachelor’s degree from
the Wuxi Electrical and Mechanical College,
Jiangsu University, China, in 2018. He is currently
a Graduate Student at the College of Informa-
tion and Science Engineering, Fujian University of
Technology. His research domains include intelli-
gent computation, nature language processing, and
ontology matching technique.

VOLUME 8, 2020 43907

	INTRODUCTION
	RELATED WORK
	BRAIN STORM ALGORITHM
	SWARM INTELLIGENCE ALGORITHM BASED ONTOLOGY MATCHING TECHNIQUE

	PRELIMINARIES
	ONTOLOGY AND ONTOLOGY MATCHING PROBLEM
	SIMILARITY MEASURE
	POPULATION-BASED BRAIN STORM OPTIMIZATION ALGORITHM

	COMPACT BRAIN STORM OPTIMIZATION ALGORITHM
	COMPACT ENCODING MECHANISM
	CROSSOVER OPERATOR
	PERTURBATION OPERATOR
	THE PSEUDO-CODE OF COMPACT BRAIN STORM OPTIMIZATION ALGORITHM

	EXPERIMENT
	EXPERIMENTAL SETUP
	COMPARISON ON ALIGNMENT'S QUALITY
	COMPARISON ON SPEED AND MEMORY CONSUMPTION

	CONCLUSION
	REFERENCES
	Biographies
	XINGSI XUE
	JIAWEI LU

