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ABSTRACT The lack of coordinated spectrum access for IoT wireless technologies in unlicensed bands
creates inefficient spectrum usage and poses growing concerns in several IoT applications. Spectrum
awareness becomes then crucial, especially in the presence of strict quality-of-service (QoS) requirements
and mission-critical communication. In this work, we propose a lightweight spectral analysis framework
designed for strongly resource-constrained devices, which are the norm in IoT deployments. The proposed
solution enables model-based reconstruction of the spectrum of single radio-bursts entirely onboard without
DFT processing. The spectrum sampling exploits pattern-based frequency sweeping, which enables the
spectral analysis of short radio-bursts while minimizing the sampling error induced by non-ideal sensing
hardware. We carry out an analysis of the properties of such sweeping patterns, derive useful theoretical
error bounds, and explain how to design optimal patterns for radio front-ends with different characteristics.
The experimental campaign shows that the proposed solution enables the estimation of central frequency,
bandwidth, and spectral shape of signals at runtime by using a strongly hardware-limited radio platform.
Finally, we test the potential of the proposed solution in combination with a proactive blacklisting scheme,
allowing a substantial improvement in real-time QoS of a radio link under interference.

INDEX TERMS Central frequency estimation, cognitive radio, dynamic spectrum access, interference,
Internet-of-Things, jamming, spectral analysis, spectrum sensing, unlicensed bands, wireless coexistence.

I. INTRODUCTION is already scarce due to multiple technologies competing

Radio-frequency (RF) communication over industrial, scien-
tific, and medical (ISM) unlicensed bands is a pivotal element
of the Internet-of-things (IoT). The last two decades have
witnessed the release and evolution of wireless technologies
over ISM-bands, such as IEEE 802.11, IEEE 802.15.4, and
IEEE 802.15.1, which have de facto triggered a massive
shift towards the IoT paradigm in countless applications and
domains [1]. While the share of IoT applications migrat-
ing to a licensed spectrum is expected to increase with the
advent of 5G standard [2], ISM-bands-based solutions are
expected to remain the first choice for many applications
requiring short-range communication [3], thanks to low to
non-existent deployment costs and worldwide applicabil-
ity [4]. The main drawback is that the unlicensed spectrum
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over overlapping channels and mutually jeopardizing com-
munication quality [5]. Besides, additional interference can
be caused by electrical equipment [6] or deliberate RF jam-
ming [7]. Apart from a few proprietary solutions [8], there is
a lack of mechanisms for intra-technology spectrum manage-
ment and medium-access coordination [9]. Moreover, today’s
IoT wireless devices do not decode, or analyze the properties
of signals from other technologies but pursue interference
mitigation via threshold-based energy-sensing [10], and a
posteriori channel-quality evaluation [11] only. The conse-
quence of an inadequate interference mitigation strategy is
error-prone communication, which leads to reduced perfor-
mance guarantees. Such a scenario is critical for applications
with strict quality-of-service (QoS) requirements, which are
common in the Industrial IoT (IIoT) domain [12]. However,
the relevance of the problem is also escalating for applications
with more relaxed QoS, e.g., building automation, due to
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massive deployment of IoT devices. As both the research
community and the standardization groups [13] have iden-
tified the issue, several solutions have been proposed [14] to
augment and exploit radio-resource awareness in ISM-bands
by spectral monitoring [15] and signal classification [16].
The critical insight is that the more profound is the knowl-
edge of the nature and dynamics of interference in time,
frequency, and space, the more efficient and adaptive the
resource allocation can become. Spectrum scanning and anal-
ysis is a master tool in this sense, as it reveals both the
allocation and the spectral footprint of RF signals. The conse-
quent spectrum-awareness paves the way for the employment
of elaborate approaches such as white-space prediction and
dynamic spectrum access [17], which are gaining momentum
as the interference level in ISM-bands escalates.

While the market offers some miniaturized spectrum mon-
itoring solutions [18], they mainly perform a relatively slow
frequency sweep over large bands, and their target use-case is
limited to manual network troubleshooting. As it is not trivial
to integrate such solutions with existing low-complexity (LC)
IoT (LC-IoT) devices [19], a common workaround is to rely
on software-defined radio (SDR)-based analysis [20]. On the
other hand, a fully onboard solution that ensures compati-
bility with existing LC-IoT platforms is a more appealing
and cost-effective alternative for IoT applications. Unfortu-
nately, most solutions in the literature seem unsuitable for
the LC-IoT devices as they present at least one of the fol-
lowing caveats: i) the required sampling rate and/or memory
consumption exceed the specifications, and ii) the required
sensing and/or processing time are too long for IoT-network
requirements. These points constitute the primary motiva-
tion for this work, which presents a comprehensive and
lightweight framework for onboard spectrum sensing and
analysis. The proposed solution employs detection, sensing,
and model-based spectrum reconstruction of single signal-
bursts, and it is designed to accommodate platforms with
different radio and processing capabilities. Experimental tests
performed with TelosB motes (a 15-year-old platform) give
baseline performance results as a guarantee of extremely
low hardware requirements. This work claims the following
scientific contributions:

1) the first approach of its kind extending the capabilities
of LC-IoT hardware to the edge of real-time spectrum
analysis with burst-based spectrum reconstruction.

2) a thorough analysis of the error properties and opti-
mization of the intra-burst sampling patterns with
guidelines on how to extend the results to a wide range
of radio platforms.

3) the theoretical study of the performance of the
sub-system used for central frequency estimation and
its empirical validation via measurement campaign.

4) key-insights on the implementation of an elaborate
sampling-and-estimation machine on IoT platforms
with extreme constraints on radio and processing
capability.
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5) real-world tests on the accuracy of the proposed solu-
tion with RF signals of various modulations and
bandwidths.

6) a use-case showing that the proposed method signifi-
cantly increases the QoS of ISA100.11a-compliant [11]
time-slotted channel-hopping (TSCH) under severe RF
interference.

We organize the remainder of the work as follows.
Section II gives an overview of coexistence in unlicensed
bands and spectrum analysis, while Section III sketches the
proposed method. Section IV discusses the spectrum sam-
pling mechanism and its properties, and Section V explains
the spectrum reconstruction approach and derives estimation
bounds. Section VI tests the accuracy of spectrum recon-
struction, while Section VII presents a real-world use-case
of the developed solution. Finally, Section VIII summarizes
the conclusions.

Il. BACKGROUND

Numerous [oT short-range communication systems operate
in the 2.4 GHz ISM-band, exploiting an 85 MHz-wide unli-
censed spectrum. The lack of a common coexistence frame-
work that coordinates the time and spectrum usage among
different IoT technologies is a well-documented issue and has
stimulated many approaches in the literature.

A. COGNITIVE RADIO METHODS

A cognitive radio (CR) is a radio system that can acquire
information on the radio environment and adapt its operating
parameters accordingly [14]. The CR approach was intro-
duced to enable opportunistic transmission of license-exempt
devices (secondary users) over licensed bands [21]. At the
same time, CR is particularly relevant to coexistence in over-
crowded unlicensed bands, where cross-technology coordi-
nation is often absent, and the wireless networks show mutual
interference-like disruptive effects. A critical aspect of CR
is the design of the spectrum scanning mechanism used to
reveal the presence of primary users (licensed devices) and
determine their spectral occupancy. For example, [22] dis-
cusses the timing of the spectrum scanning under ON/OFF
interference models with different arrival/idle-time distribu-
tions, while the use of maximum-likelihood and Bayesian
inference in this context is proposed in [23]. The optimization
of the scanning process under the assumption of an ON/OFF
interference model is also studied in [22] and [23]. The
primary/secondary user approach of such works encompasses
signal detection but not signal analysis, meaning that the
spectral features of the signal are not estimated. Moreover,
the detection-only approach becomes limiting when the pri-
mary user technologies are many, and their spectral allocation
and spectral footprint is diverse, which is the case of IoT
in unlicensed bands. For this reason, several methods have
been proposed that target the classification of the interference
in a supervised [24], [25] or unsupervised (model-based)
fashion [26].

VOLUME 8, 2020



S. Grimaldi et al.: Onboard Spectral Analysis for Low-Complexity loT Devices

IEEE Access

B. CHANNEL ADAPTATION IN lioT STANDARDS

Despite the availability of several CR mechanisms, the wire-
less standards for [oT have not yet embraced the approach and
rely instead on basic or naive coexistence techniques. Notable
examples are the IEEE 802.15.4-based IIoT standards, such
as WirelessHART, ISA 100.11a, and WIA-PA, which are
widely used for closed-loop control and monitoring applica-
tions. The standards commonly provide a frequency-diversity
mechanism via TSCH, to counterbalance communication
performance drop in moderately interfered environments
(e.g., coexistence with IEEE 802.11 WLANSs [27]). In par-
ticular, the ISA100.11a standard includes different frequency
hopping patterns and an optional spectrum management
mechanism with a-posteriori channel blacklisting. The mech-
anism periodically monitors channel-specific metrics and
blacklists the channels exhibiting poor properties (i.e., short-
ens the hopping-sequence). The approach, like others in
the literature [28], [29], provides a channel selection policy
that maximizes packet delivery ratio in the long term, but
that is not ideal for time-critical communication [30], where
QoS requirements encompass a time-horizon of few trans-
missions. It means that a sudden quality-drop on multiple
channels can rapidly cause a radio-link blackout [31] without
leaving enough time for a measure-and-adapt mechanism to
operate.

C. FUNDAMENTALS OF SPECTRUM ANALYSIS

Spectral analysis of RF signals is possible through several
approaches. We briefly overview the two architectures that
are more relevant to contextualize the solution presented in
this work, while we remind to specific literature for further
details [32].

The most straightforward and traditional architecture is
the superheterodyne or swept-tuned spectrum analyzer (SSA)
shown in Fig. 1a. The SSA carries out spectrum analysis by
sweeping the downconverted version of the signal through
a band-pass filter (BPF) and measuring its output for dif-
ferent frequency bins. The performance of SSAs is affected
by the BPF-bandwidth, called resolution-bandwidth (RBW),
as a narrow RBW increases the resolution of the analysis
at the cost of longer sweep time, hindering the analysis of
short bursty signals. Modern solutions [33] employ a differ-
ent architecture with a DSP-based real-time spectrum analy-
sis that enables higher frequency-resolution and processing
speed, allowing to profile bursty signals of sub-ps dura-
tion [32]. The operating principle is represented in Fig. 1b,
and bases on the fast Fourier transform (FFT) of the signal
after downconversion. The capture bandwidth, in this case,
is limited by the Nyquist frequency, meaning that a sampling
rate exceeding twice the bandwidth of the analyzed signal
is required. Moreover, to extract the spectrogram of short
radio bursts, multiple FFT operations need to be performed
within the duration of the burst [32], which escalates sample
rate and hardware requirements. While the real-time analy-
sis needs powerful dedicated platforms, we show how the
SSA-inspired architecture in Fig. 1c applied to single signal
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(c) The employed approach to burst-based spectrum sampling
with embedded IoT platforms.

FIGURE 1. Simplified block diagrams of different architectures for
spectrum analysis. The blocks operating digital processing are
represented in gray.

bursts is a key component to realize a fully onboard spectrum
analysis solution for LC-IoT hardware. We present such a
solution in Section III and Section IV.

D. CHALLENGES OF SPECTRUM ESTIMATION

WITH loT HARDWARE

The FFT-based spectrum analysis is the leading approach in
the related literature. Unfortunately, such a method collides
with the characteristics of LC-IoT devices in many ways.
First, the Nyquist theorem poses a tight requirement on the
sampling rate, which means, e.g., at least 40 MS/s for profil-
ing IEEE 802.11 signals. It translates into an instantaneous
bandwidth that is unrealistic for LC-IoT devices. Moreover,
the presence of other in-band emissions, such as jamming
devices [7], [34], or wideband RF noise (e.g., microwave
ovens [6]) further complicates the definition of sampling
requirements. Finally, computing the FFT for the detected
bursts is a time- and memory-consuming task for embed-
ded hardware and workarounds are needed. For example,
the computation of FFT in the presence of incomplete sam-
pling is discussed in [35]. The approach is formalized in
the compressive sensing framework (see [36] and references
therein), which allows the reconstruction of the signal spec-
trum from incomplete and sub-Nyquist sampling. The price
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FIGURE 2. Overview of the proposed approach to burst-based spectral analysis together with the examined dynamic spectrum access application.

to pay for this approach is an increased computational com-
plexity w.r.t. FFT alone, which makes the method unsuitable
for LC-IoT platforms.

Another notable obstacle to onboard spectral analysis is
the acquisition of RF signals at the radio interface. Most
radio platforms only provide measurements of the RF power
through the received signal strength indicator (RSSI) [37],
which is a heavily pre-processed and real-valued version
of the raw I/Q data handled internally by the radio chip.
The RSSI samples are usually the result of both channel-
and moving-average-filtering (MAF) that has a significant
low-pass filter effect and introduces sample-correlation.
The MAF is especially problematic since it removes the
super-kHz frequency content and renders FFT-based analysis
worthless. Moreover, the onboard microcontroller limits the
RSSI sampling rate, which can be orders of magnitude lower
than the Nyquist-rate. All these effects make burst-based
FFT analysis impossible with most LC-IoT platforms. In this
paper, we show instead that an alternative solution is possi-
ble by embracing an optimized SSA empowered by central
frequency estimation and spectrum reconstruction.

Ill. OVERVIEW OF THE PROPOSED SOLUTION

This section gives a brief overview of the different modules
of the system proposed in Fig. 2. It also sketches mini-
mum hardware requirements for the target IoT platforms.
Later, Sections IV and V provide exhaustive description
of the intra-burst sampling and the spectrum reconstruction
modules.

A. GLOBAL SCANNING AND BURST DETECTION

The first component of the solution in Fig. 2 provides global
spectral scanning and burst-detection capabilities. The detec-
tor reveals the initial transient of radio-bursts following a
non-coherent threshold-based approach. The scanning pro-
cess can target any spectral region within the ISM-band and
continuously scrutinizes the energy samples available with
the specific platform (e.g., IEEE 802.15.4-compliant RSSI
samples). For minimizing the false-positive detection, each
device performs a quick radio-calibration [38] during the
booting process, profiles the noise-floor at its radio interface,
and adapts the detection-threshold accordingly.
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B. INTRA-BURST SPECTRUM SAMPLING

When the burst detector is positive, the intra-burst sampling
system is activated (IBSP-block of Fig. 2). The system oper-
ates as the SSA described in Section II, with the notable
difference that the frequency sweep is not linear but fol-
lows a pre-calculated intra-burst sampling pattern (IBSP),
as represented in Fig. lc. The choice is due to the limited
sampling rate achievable with LC-IoT radios compared to the
typical duration of radio bursts. A linear IBSP would have
a small chance of being completed within the radio-burst
lifetime, potentially leading to vast unexplored regions of
the signal spectrum. Instead, the proposed system acquires
sparse frequency samples and then relies on matched spectral
models to estimate the spectral shape. The problems that such
a system addresses are a consistent measurement error due to
time- frequency-correlation of samples, slow stabilization of
frequency synthesis circuit, and limited sampling rate. Our
model in Section IV takes into account these non-idealities
allowing the optimization of the IBSP for different LC-IoT
platforms.

Example requirements: i) Sampling of the RF signal at the
radio interface with a rate of at least' 10kS/s, ii) availability
of samples before full stabilization of the onboard frequency
synthesizer.

C. SPECTRUM ESTIMATION

As the burst detection system signals the end of the radio-
burst, the frequency samples are rearranged and sent to
the spectrum reconstruction module. The module employs
three parametric spectrum models, where the parameters are
sequentially fitted using a greedy-algorithm for mean squared
error (MSE)-minimization. The estimation of the central fre-
quency is based instead on a specific estimator, which we
study separately in Section V-C. The model with the low-
est MSE is then chosen as a spectral estimate, and spec-
tral parameters (e.g., bandwidth) are extracted. The analysis
is operated in real-time, and the spectral estimate is avail-
able after platform-dependent processing time. To keep the
method implementable on a broad set of LC-IoT platforms,

1t allows the spectral analysis of radio bursts with a minimum duration
of &~ 400 ps over a 50 MHz band (see Section VI).
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we have designed a modular structure where the number and
complexity of spectral models can be adapted. Furthermore,
we have included a fallback method in the form of linear
interpolation (LI), providing a parameter-fitting-free recon-
struction method for platforms with extreme constraints.

Example requirements: i) onboard microcontroller allow-
ing LI in real-time of ~ 50 — 8bit-samples. ii) optionally,
non-linear model fitting with parameter space of size in the
order of magnitude of ~ 103 points.

D. SPECTRUM AWARENESS

The real-time estimation of signal spectrum de facto opens
interesting possibilities for CR applications, such as dynamic
spectrum access for low-power devices. While a comprehen-
sive discussion on the potential use of the spectral informa-
tion falls outside the scope of this work, we show how the
proposed solution can be used to enhance the reliability of an
ISA100.11a radio link under interference (see Section VII).

IV. INTRA-BURST SPECTRUM SAMPLING

Swept-spectrum sampling with commodity radio front-ends
is slow and error-prone, and specific intra-burst sampling pat-
terns (IBSPs) are needed to ensure acceptable performance.
In this section, we define a rationale for finding patterns
that optimize the sampling process affected by measurement
errors, sample-correlation, and incomplete sampling.

A. DEFINITION AND NUMERICAL PROPERTIES OF IBSPS
The (I, k)-IBSPs are here formally introduced, and later some
baseline properties are derived.

Definition 1: A (l, k)-IBSP S is a l-tuple {so, 51, ..., Si—1}
where each element s, € Z verifies |s,| <k, Yn € [0,] — 1]
withk e N, k > 1.

Definition 2: A (1,k)-IBSP S is said to be com-
plete if it is a permutation of the (2k + 1)-tuple
{—k,—k+1,...,0,...,k—1,k}.

The elements of the IBSP are the frequency-offsets which
guide the radio front-end in the process of sampling the
spectrum of the radio burst. Specifically, the IBSP element
s; maps onto the actual frequency value f;; = f; + &s;, where
/1 is the center of the IBSP (e.g., the index s; = 0) and &
is the granularity of frequency selection. For example, it is
8¢ = 1 MHz for the platform considered in this work. When
| = 2k + 1, the IBSP allows the collection of the maximum
number of unique frequency samples over the 67(2k + 1)-
MHz-wide frequency region. The following lemma clarifies
the cardinality of complete (/, k)-IBSP sets.

Lemma 1: The set of all (I, k)-IBSPs, S x has cardinality
(2k 4+ 1), while the subset Crx € Six of (I, k)-IBSPs that are
also complete has cardinality 2k + 1)!.

Proof: See Appendix A. g

Lemma 1 arises from basic combinatorics and shows that
even the subset of complete-IBSPs is extremely numerous.
For example, the exploration of a 51 MHz band with 1 MHz
granularity and a (51, 25)-complete-IBSP implies a selection
within a set of &~ 1.5 x 10 IBSPs. The subsequent step is
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the introduction of a sampling-error model so that the selec-
tion of IBSP can be adequately formulated as a minimization
problem within the C; x set, which ultimately points to IBSPs
with desirable error properties.

B. EFFECTS OF NON-IDEAL SAMPLING—THE ERROR
MODEL

High sampling rate and fast frequency switching are favor-
able points for executing IBSPs. Anyway, as discussed
in Section II-D, LC-IoT front-ends fall short on these
requirements, and usually add other non-idealities leading
to sub-optimal sampling, which are 1) temporal correlation
among samples (RSSI filtering) 2) uncertainty in the sam-
ple value, 3) constrained RBW, and 4) inaccurate frequency
selection. We examine these effects separately.

1) TIME-CORRELATION

Given the time-window T, of a MAF with uniform weighting
coefficients, we introduce F(t), t > 0, as the cumulative
distribution of the MAF weights. Then, it is F'(t) = t/T, for
0 <t <T,and F(t) = 1 fort > T,.. Let us consider a
sample acquired at the sampling instant t; = fo + iT, with T
IBSP sampling period and # initial time. Then, the correlation
function C(#; — ;) = 1—F(t; —t;—;) quantifies the influence
of the sample with index i — j on the current sample i. If
the IBSP sampling rate is higher than the rate of the filtering
process, i.e., Ty < T, at least one of the previous samples
is correlated with the current one. The cumulative effect of
previous samples is given by Zf‘;l C(iTs), where L, € IN
is the highest integer such that L.Ty < T, and represents
the number of past samples contributing to the correlation.
Based on this model, we define Ec as the component of
the IBSP-sampling error due to the MAF. In particular, E¢
describes the error level carried by a generic spectral-sample,
s;, of the IBSP S, when sampling the power spectral density
(PSD) X (f) centered around f. It is

Lc
Ec(i) =) C(Ty) Disi, sij), ¢))

J=1

where D(s;, si—j) = |X(fa + 5i8r) — X(fa + si—j8¢)| is the
spectral distance calculated as the difference of the PSD at the
frequencies pointed by the IBSP elements s; and s;_j, fa =
fe —f1 is the frequency offset between the signal and the IBSP
center, and D(s;, s;—j) = 0if j > i. In practice, the higher
is the difference between the PSD value of correlated-
samples, the higher the sampling error. An interesting effect
of the time-correlation is that, as the sampling rate increases,
the number of correlated samples (L.) increases, and the error
component E¢c grows. Hence, the model suggests that over
a certain sampling rate, the gain of having more samples is
progressively nullified by the MAF error.

2) ADDITIVE NOISE

The second component of the error function is an additive

white Gaussian noise (AWGN) process n(i) of variance o2,
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which models the uncertainty on the measurement of each
sample due to platform’s intrinsic accuracy. The value is
customarily reported by RF chip vendors in the form of RSSI
accuracy or can easily be determined with calibration [38].

3) CHANNEL FILTERING

The RF signal is commonly pre-processed with a digital chan-
nel filter [39] (see Fig. 1c), where the filter-bandwidth reflects
the PHY specifications (e.g., adjacent-channel rejection) of
the implemented standard. Albeit the filter does not introduce
sampling errors in the strict sense, it constrains the RBW,
which leads to a correlation between spectral samples closely
spaced in frequency. We model this correlation by means of
the normalized auto-convolution Ry (f) = H.(f) ® H.(f),
with H.(f) the frequency response of the channel filter. Then,
the measurement system introduces no frequency-correlation
in IBSP samples spaced at least B.-MHz, with B, the width
of the support of H.(f).

4) VCO STABILIZATION

As the IBSP sampling rate can be particularly demanding,
the circuitry employed for frequency regulation might not be
fast enough to correctly stabilize the output of the onboard
voltage-controlled oscillator (VCO) between consecutive
spectral samples (see [39]). The effect is that a sample might
be acquired on an inaccurate frequency, leading to measure-
ment errors. A common solution in embedded-platforms is
the use of a VCO in a phase-locked loop (PLL) configuration.
For this reason, we use the second-order PLL transient-state
model in [40] for expressing the evolution of the frequency
selection error ey during the transition from frequency f;_; to
fiasey(t) = |fi — fi—ilknte=®, t > 0; w, is the natural fre-
quency of the PLL, depending on the specific circuit-design
and k, is a normalization constant such that k,te~“"" < 1.
We then assume that the resulting sampling-error component
Evy (i) is linearly related to ey () with angular coefficient given
by the spectral distance D(s;, s;—1), hence

Ev(i) = D(si, siDlfs; — fory lknTse ™75, 2

since the exponential term is always calculated in the sam-
pling instants, which are periodic with 7.

5) AGGREGATE MODEL

Under this assumption, it is possible to write the total error of
a IBSP sample i as

E(i)
= Ec(i) + Ev() + n(i)

L(:
=Y CGTo) D(si. i) +DCsi. sieOlfs,— s 18 (T5) (i),
J=1

3

where we let gy (T) £ k,Tse~Ts. Hence, E(i) is a ran-

dom vector with mean u; = Ec(i) + Ey(i) and variance
2

of = 01%. Since both (1) and (2) depend on the spectral
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distance D(s;, s;), it follows that a model of the observed
spectrum is needed to derive a closed-form expression of the
total sampling error E(i). Therefore, we make the simplifying
assumption that the difference D(s;, s;) varies linearly with
the spectral distance i.e., D(s;,s;) ~ kedrls; — s;|, with
ks regulating the slope of the spectrum model. Under this
assumption, (3) simplifies into

Le
Ejin(i) = ke Y CGTo) Isi — i

j=1

k87 1si — sic112gv(To) + n(i).  (4)

Finally, the cumulative sampling error &j;,(S) arising from the
entire (I, k)-IBSP S, follows from (4) as
-1 L,
Ein(S) = kér [ > D0 CGT) Isi = sic]
i=1 j=i
-1 -1
+ogvTO Y Isi— s P+ Y n. )
i=1 i=0

with the time-correlation and VCO settling errors acting from
the sample i = 1 collected after the first frequency selec-
tion, and with the noise component perturbing all the IBSP
samples.

C. FINDING OPTIMAL IBSPS

This section studies the error function in (5) and later designs
an optimization problem that takes into account the possibil-
ity of incomplete IBSPs due to the physical constraints of the
platform and the limited duration of radio-bursts. We begin
with the following theorem to provide the lower bound on
the cumulative sampling error.

Theorem 1: Let S be a complete (1, k)-IBSP and consider
the sample-error model in (5), then, if the number of corre-
lated samples is L, = 1 the following bound holds on the
cumulative sampling error of S

E [Ein($] = (I = 1) krdf ep(Ty), (6

with e,(Ty) £ C(Ty) + kn(SfTse_‘“"Ts the sampling error
induced by the previous IBSP sample.
Proof: See Appendix B. ]
Corollary 1: Let S be a linear (1, k)-IBSP constructed as
Sin = {(=1+1)/2,(=14+3)/2,...,(1—-1)/2}, and let L, < 1,
then both Sj;, and its reverse Sl/in are complete (1, k)-IBSPs
and attain the mean sampling error bound in (6) with equality
sign.
Proof: See Appendix C. ]
Theorem 1 and its corollary prove that linear IBSPs are
an optimal choice w.r.t. the sampling error, while (5) gives
a practical method for its estimation. Unfortunately, linear
IBSPs are of limited interest in real-world implementations,
since they explore the target spectral region slowly and might
hinder the spectrum estimation when only a few samples are
available (short-bursts/slow-sampling). Such a problem loops
back into the limitation of SSAs in capturing transient events,
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which is described in Section II-C, as linear IBSPs de facto
realize a burst-based SSA with a discrete frequency sweep. In
other words, the truncation of the linear IBSPs might result
in a relevant region of the spectrum remaining unobserved, as
we verify in Section VI.

D. THE CONSTRAINED IBSP INTEGER PROGRAM

The remainder of this section focuses on finding complete
IBSPs with favorable properties, even in the case of incom-
plete sampling. For this purpose, we target the error function
in (5) and formulate the following constrained optimization
problem

miniSmize Eiin(S) (7a)
subject to: so = 0 (7b)
m
Y fi—hoa <0 (7¢)
i=0

Z ZRH(fSi _fSifj) —keor <0, (7d)

i=1 j=1

where the inequality constraints (7b), (7c) and (7d) cen-
ter the IBSP around the detection frequency f; and
restrict the solution-space to the IBSPs that satisfy both
frequency-correlation and sampling-symmetry properties
w.r.t their partial IBSP length m < [. The parameters kpy;
and k., are discussed in the following sections.

1) CENTERING IBSP

The element sy in (7b) shifts the IBSP center f; w.r.t the
detection frequency, and its selection depends on the assump-
tion on signal spectrum. It is reasonable to assume that the
expected value of the detection frequency coincides with
the spectral center for symmetric PSD - we justify this
idea during the assessment central frequency estimation in
Section VI-B. If the assumption is correct, then the choice
so = 0 guarantees that, on average, the IBSP locks on the
spectral center of the signal under analysis, which is the
desired property.

2) FREQUENCY-BALANCE

Inequality (7c) ensures that the first m-samples of the IBSP
are taken in a balanced manner on the right and the left side of
f1 such that the sum of the relative frequency shifts is at most
kpai-MHz. This balancing avoids the situation where the first
part of the IBSP predominantly explores only one side of the
spectrum, potentially leading to inaccurate spectrum recon-
struction. The linear IBSPs are the most notable example of
unbalanced IBSPs that violate constraint (7c) for a significant
span of kp,; values.

3) FREQUENCY-CORRELATION

Constraint (7d) considers the RBW of the radio-system and
ensures that the total frequency-correlation among the first
m-samples is lower than the parameter k... As discussed
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TABLE 1. Model parameters of the target platform [39] and setup
parameters for the optimization problem.

Parameter Value Description

oy 1MHz Minimum frequency step.
fn 25kHz PLL natural frequency (estim. from 7Ty co).

Tvco 192 ps VCO settling-time.
Te 128 us Moving-average filter period.
Fy 9.9kS/s IBSP sampling rate.
L¢ 1 Number of time-correlated samples.

L, k) (51,25) IBSP length and total span (51 MHz).
ky 6 dB/MHz Angular coefficient of spectrum model.

m, kcor, Kpal k/2,0.8-m, 1MHz, Constraints parameters.

T T
— Le > 1 region

R : v
(‘GE 102k . v v 4 : v E
W v
= w7 a
S
= (o]
=
o 10 J
>
2 0 Min (UP)
= o Min (so = 0) =
g i Min (CP) [
S 102 ' x  Max(CP) [

4 / v Max (UP)

% f { T

5 10 15 20 25

Sampling Rate (kS/s)

FIGURE 3. Minimum-error solutions of (7) and error-bound (6) vs. IBSP
sampling rate for unconstrained problem (UP), fully constrained
problem (CP), and constraint (7b) only. The maximum-error solutions are
shown as a reference.

before, a high-RBW induces measurement correlation in
closely-spaced spectral samples, which is quantified by the
auto-convolution function Ry (f). Thus, this constraint plays
an opposite role w.r.t. £;,(S), since it discards solutions where
the first m-samples are densely grouped in certain spectral
regions, with parameter k., tuning the spectral-sparsity of
the feasible IBSPs.

E. COMPUTING PLATFORM-SPECIFIC OPTIMIZED IBSPS

The presented optimization problem allows deriving opti-
mized IBSPs for a wide range of devices. The solution
of the non-linear integer-program (7) is, in fact, an IBSP
tailored to the characteristics of a specific radio front-end
through the parameters of the cost function &£;,(S) in (5).
Specifically, we target a LC-IoT IEEE 802.15.4 platform
and initialize &;,(S) using the model-parameters reported
in Table 1. Problem (7), which is NP-hard [41], is solved via
a random-search approach. The linear IBSPs are tested first,
to boost convergence-time in case the selection of kp,; and
kcor allows linear IBSPs as feasible solutions. Fig. 3 shows the
feasible minima of the cost function (7) for different sampling
rates (i.e., 1/7T;) when optimizing complete (51, 25)-IBSPs
for the analysis of a 51 MHz-wide frequency region. The
figure also shows the bound (6) and the effect of the three
constraints (7b), (7c), and (7d) on the feasible minima.
As expected, the unconstrained problem yields linear IBSPs,
which exactly matches the lower-bound in the region where
the approximation L, = 1 is valid. The inclusion of the three
constraints shifts up the minimum considerably, as several
IBSPs become unfeasible; yet, it is expected that these IBSPs
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provide better sampling performance in real-cases, which we
verify in Section VI.

V. SPECTRUM RECONSTRUCTION

This section develops a method for reconstructing the spectral
shape, starting from the set of noisy samples collected by the
previously described IBSP-based spectrum scanner.

A. PARAMETRIC SPECTRUM MODELING

In order to reconstruct the signal spectrum from the acquired
IBSP samples, we introduce a multi-model (MM) parametric
reconstruction. The method aims to give a certain degree
of flexibility in spectral reconstruction and accommodates
several modulated signal formats. In fact, since the nature of
the incoming signals is generally unknown, it is challenging
to make hypotheses on their PSDs, which suggests the use
of comprehensive spectral models. Conversely, the process-
ing limitations of LC-IoT hardware impose constraints on
the complexity of the model, suggesting a limited number
of parameters to optimize. We thereby describe the chosen
models, where 6 is the parameter vector and fc (which is
common to all the models) is the estimated central spectral
frequency, whose derivation concerns Section V-C.

1) RAISED-COSINE (RC) SPECTRUM

The RC model follows the classic formulation of raised-
cosine filters [42] and has parameter vector § = {ﬁ, B, B}.
Particularly, the roll-off parameter 8§ € [0, 1] controls the
slope of the spectral tails and B affects the width of the flat-top
part of the spectrum. The introduction of this model originates
from the fact that RC-filters are a common choice for the
pulse-shaping of modulated signals.

2) HYPERBOLIC-TAILED (HT) SPECTRUM
The HT spectrum model is defined as

Yu(.f) = I(V _f ff| <

and 0 = {fc, a, T}, where the non-negative parameter o
controls the spectral decay and T expands and shrinks the
flat-top part of the spectrum. The model is inherently similar
to the RC (7! and B have a similar effect) except for the
spectral tails, which are entirely convex to accommodate the
typical OFDM spectral footprint without relying on more
complex models [43].

®)

—
— % + 1) , otherwise,

3) GAUSSIAN SPECTRUM (GS)
The GS model has the simplest formulation and the lowest
number of parameters. It is

_7y .
Y6(0.f) = exp (—@) r—il<s ©

2

with§ = {fc, o'}, where o regulates the width of the Gaussian
bell. The auxiliary parameter B controls the support of the
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model and does not generally require fitting. The motivation
of the GS arises from the need for a long-tailed and non-
flat-top spectrum model.

4) LINEAR INTERPOLATION (LI)

The LI method is included as a low-complexity fallback
mode. The LI algorithm interpolates the available IBSP-trace
to reconstruct missing spectral samples arising from incom-
plete scanning. Since LI is not a parametric model, it does
not need parameters fitting or central frequency estimation;
hence, it is expected to be notably faster.

B. PARAMETER ESTIMATION STRATEGY
Considering the non-linearity of the chosen spectrum models,
we employ a non-linear least-squares (NLLS) parametric esti-
mation. The general formulation of the estimation problem is
-1
min > anl V(6. fo + 8m) — Y (fo + &ym)I’
n=0

st.lj <6 <u, Vjell,M], (10)

where Y (f) is the IBSP-sampled spectrum, Y, f) is the
target model to optimize, @ is the (M + 1)-parameters vector
of the spectrum model, and fy is the lowest frequency of
the IBSP, ie., fo = f; — ork for complete (I, k)-IBSPs.
The coefficients a, are unitary if the sample at frequency
fo + d¢n is acquired and a, = 0 otherwise. Finally, the con-
straints /; and u; are used to restrict the solution-space
to physically meaningful parameters, e.g., 8 € [0, 1] in
the RC model. Problem (10) is solved as separate NLLS
parametric estimation problems for the different spectrum
models. There are several techniques for solving the single
NLLS problems, e.g., gradient-methods. Since the algorithm
is executed at runtime on resource-constrained embed-
ded platforms, a lightweight and derivative-free method is
required. For this reason, we have selected a straightfor-
ward alternating-variable optimization, which we describe in
Algorithm 1. The proposed optimization is repeated for all
the spectral models and the minimum-MSE (MMSE) model
Y (0P, f) is selected in the MM. Although the proposed
approach considerably reduces the complexity of the NLLS
problem, it requires particular attention to the sequential
parameter fitting procedure. Particularly, since the central
burst frequency f, is estimated as the first step, a poor estima-
tor (i.e., a shifted central frequency) could irremediably affect
the fitting of the other parameters and severely compromise
the accuracy of the reconstructed spectrum. We study this
problem in detail in the next section and propose ad hoc
methods for estimating f,.

C. CENTRAL FREQUENCY ESTIMATION

We begin the section by proposing an estimator for f. and
deriving its estimation bias and variance together with the
related Cramér-Rao lower bound (CRLB). These analytic
insights are used to design four variants of the original esti-
mator of increasing complexity. The candidate estimators
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Algorithm 1 Sequential NLLS Algorithm

Load estimated central frequency fe: Initialize step
vector dg; set g(0) = max;

forj:=1toM do

Initialize parameter 9( ) = = [; in vector 0;

Initialize 1,4, € IN st Dnax < (wj —1j) /3¢, ;
fori:=1to I, do

update parameter vector

0 _(fc,el,...,e +(1 Ddg.,...,0Mm);

render model Y (9, BB
calculate g(i) = MSE[Y(8; f), Y(F)];
update Ag(i) = g(i) — g(i — 1);
if Ag(i) > O then
local minimum, save 9
save model MMSE g(l —1);

(opt) (i— 1)

<—9

break;
save 9(0'7 ) 0(')
save model MMSE g();
end
end

are then implemented in the target LC-IoT platform, and
their performance is experimentally assessed and discussed
in Section VI. Our mathematical traction has some points
of contiguity with the fine frequency estimators analyzed by
Jacobsen [44] and references therein, and Candan [45]. Albeit
they also target fast frequency estimation, these approaches
are based on the discrete Fourier transform and require infor-
mation on both the magnitude and phase of the measured
signals. In contrast, our approach only relies on noisy and
often incomplete real-valued samples of the spectral density.
We begin by defining a measurement model, which is used
throughout the section.

1) SPECTRUM MEASUREMENT MODEL (SM MODEL)
Let Y[n] = X[n] + N,[n] noisy spectral samples with N,[n]
AWGN noise samples and n € Nsuchthat0 <n <N — 1.
The discrete spectrum X [n] represents the local value of the
PSD X (f) at the points fy + ndy, with f the lowest frequency
component of the IBSP. Let X (f) be strictly limited within
the interval [fy, fo + d/(N — 1)] and centered around f, =
fo+mdr,m e N,withO <m <N —1, and §; € R frequency
granularity.

We introduce now a simple estimator for f, and study its
mean and variance in the following propositions.

Proposition 1: Given the SM model and the central
frequency estimator

fe=f+E/S, (11)

with S 2 YNy, E & YN nsyinl 1if X(f) is
symmetric around f., the following approximation for the
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estimation bias holds at the 5 % significance level
Elfe] —fe = ;N u /13, (12)

if the coefficients of variation (c.v.) satisfy c.v.(S) > 0.005,
cv.(E) <0.39, with 602 measurement noise variance.
Proof: See Appendix D. O

Proposition 1 and its proof provide a simple method for
constructing a central frequency estimator with controlled
bias. It is also evident from (12) that the bias term is governed
by the SNR pi2 /o 2. Tt follows that, if the SNR is sufficiently
high, the estimation bias tends to zero under three hypothesis:
i) the IBSP span is broader than the signal spectrum, ii)
the central frequency is one of the scanned bins, and iii)
the IBSP is complete and explored in its entirety, i.e., the
burst is sufficiently long. Hypothesis i) is generally verified,
as the frequency span achievable with the IBSP is constrained
by the limits of the ISM-band only. Hypothesis ii) is also
typically correct since IoT radio front-ends enable adjustable
central frequencies with a minimum step of 1 MHz [37].
Unfortunately, not much can be said about the veracity of
hypothesis iii), as it depends on how fast is the IBSP sampling
rate Fy compared to the duration of incoming bursts 7. If it
is Fy - Tp < 2k + 1 (see Section IV), the estimator in (11) is
generally biased.

The remainder of this section focuses on low-variance
estimation, deriving useful properties. Finally, we propose an
estimator that, even being theoretically biased, ensures vari-
ance close to the CRLB and low bias even with incomplete
sampling.

Proposition 2: If the spectrum X(f) is symmetric
around f;, then the variance of the estimator fc in (11) is
approximated at the 5 % significance level by

A Naoz
Var[f.] ~ -

[1d + 1387aN2 + 3N + 16, (13)
Hs

with us, Wwg, and the c.v. constraints as in Proposition 1.
Proof: See Appendix E. (|
Theorem 2: Given the SM model and g(n, m) the value at
f = fo+ndr of the PSD centered at f. = fo+mdy of the signal
to be measured, then, the CRLB of any unbiased estimator of

feis
Varlf,] = 0287/ Z (E)g(r:nm)) , (14)

where g(n, m) = X(fo + ndy, fo + mdy) expresses the depen-
dence of the PSD on both the absolute frequency fo +ndy and
its central frequency fy + mdy.

Proof: See Appendix F. U
Inequality (14) shows that the lower bound on estimation
variance depends on the spectral shape of the signal to be esti-
mated by way of its first derivative w.r.t the central frequency
index m. Next, we derive more treatable bounds by making
assumptions on the spectral shape of the incoming signals.
The CRLBs are then experimentally verified in Section VL.
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TABLE 2. Candidate central frequency estimators and theoretical
characteristics.

Estimator Method Bias Variance
Det Raw detection frequency Very Low Uncontrolled
Max arg max ¢ {Y(f)} Medium a2
El Implements (11) Medium/Low Low (13)
E2 Pre-processed El Very low Low (13)

Corollary 2: If the spectrum g(n, m) is triangle-shaped,
hence the absolute value of its first derivative w.r.t. m cal-
culated in its non-null region [Ng— , Ng+] is kg, then the CRLB
for the central frequency estimator is

2.2
870,

Var[f,] > _
Vel = o, — N

(15)

with 002 variance of the spectrum measurement noise and
0 <Ng <Ng+t <N-—1
Proof: See Appendix F. O
Corollary 3: If the spectrum g(n,m) is Gaussian with
parameters [ty = mdy and o2, then the CRLB for the central
[frequency estimator is

6,252
2ro o, 8;

Varlf, ’
ar[f] > Zi\]:—_r:ln—l l'2 exp (—(l/O'g)z)

(16)

withi = n —m.
Proof: See Appendix F. 0
Inequalities (15) and (16) provide useful lower bounds on
variance, which hold in case of linear and Gaussian spectra
respectively. The bounds provide baseline reference points
for comparing the performance of candidate estimators when
the format of the spectra to be measured are unknown, or its
closed-form expression is unavailable.

D. THE PROPOSED ESTIMATORS
Based on the mathematical insights of Section V-C we define
four estimators of increasing complexity. We introduce their
setup and highlight the salient properties in Table 2.

2 (Det) . . .

- fe is the most straightforward estimator, where the
estimated spectral center is the detection frequency of the
interference burst. It requires virtually no processing time,
and it is expected to provide unbiased estimation for signals
with symmetrical PSD. Unfortunately, its variance is gov-
erned by the variance of the detection frequency; hence, it is
expected to grow unacceptably for wide-band signals.

- fc(MaX) estimates f. with argmax{Y(f)}, therefore the
maximum-amplitude sample locates the central frequency.
It is a suitable choice when the entire IBSP is explored and
the samples have a low-noise level. It requires a maximum
search within a sample set with a cardinality of at most 2k+-1.
Two important drawbacks are that i) the estimation variance is
directly linked to the measurement noise variance, and ii) its
bias is strongly affected by missing samples.

El
- fc( ) is a direct implementation of (11). The estimator
has theoretical low bias (12) and low variance (13) with large
sample sets. Nevertheless, both the bias and the variance are
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TABLE 3. Specifications of the test signals.

Label Modulation Scheme 1/Q Sample Rate BB Filter  Total BW
A BPSK 8MS/s RC 6.6 MHz
B 0-QPSK 33MS/s RRC 15.8 MHz
C OFDM (QAM) 10 MS/s 4.1 MHz
D None (WGN) [5,25]MS/s variable

expected to worsen in real cases due to incomplete IBSP sam-
pling, which reduces the SNR M% /002 and causes asymmetry
around f.

- ﬁ.( & requires three additional steps after calculat-
ing fc(El . First, the sample set is pre-processed, and a LI
version of the observed spectrum is generated. Second, (11) is
re-evaluated over the LI spectrum and centering the esti-
mation on fc(El). Finally, the theoretical bias is calculated
with (12) and corrected. These steps aim to improve the per-
formance in the presence of short bursts (i.e., few samples),
while its gain over fc(El) is expected to be negligible for long
bursts.

VI. EXPERIMENTAL ANALYSIS

This section analyzes the performance of spectrum estima-
tion in a controlled measurement setting. Later, Section VII
complements the analysis with a use-case in a CR link.

A. EXPERIMENTAL SETUP

The proposed method, including all the modules of Fig. 2,
is implemented in Contiki OS and entirely executed on the
IEEE 802.15.4 compliant Crossbow TelosB platform [46],
based on the TI-CC2420 transceiver [39]. Since the plat-
form poses several hardware constraints, both on the radio
and processing capabilities, it is an excellent candidate for
testing the proposed method. The implementation-specific
parameters are given in Table 1. A complete (51, 25)-IBSP,
optimized as described in Section IV, is implemented in
the platform, providing analysis of radio bursts with up to
51 MHz bandwidth. The reference signals are generated via
the software-defined radio (SDR) NI-USRP 2921. The sig-
nals, listed in Table 3, have different modulation schemes,
I/Q rate, and baseband (BB) filters, which provide diverse
spectral footprints. A third device, the USRP N210, which is
used for validation purposes, samples the generated signals
with a sample rate of 50 MS/s, and computes the reference
spectra via FFT. In Table 3, we show the total bandwidth of
the reference signals measured with an SNR of approximately
80dB. In order to eliminate the effects of radio-channel and
external RF noise, we use a direct RF port-to-port connection
via RF pigtails for both the SDR and the TelosB device.

B. CENTRAL FREQUENCY ESTIMATION

The first series of experiments analyze the accuracy of the
central estimators proposed in Section V-C. The estima-
tion system is tested with signal D with 45 MHz bandwidth
and variable burst duration ranging from 0.4ms to 8ms.
Particularly, 0.4 ms meets the physical limit of our TelosB
implementation (i.e., only three samples are collected), due to
the maximum achievable sampling rate of IBSPs reported
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TABLE 4. Bandwidth estimation error (MHz) of spectrum reconstructed with linear interpolation (LI) and spectrum Models (RC, HT, GS, and MM). In bold

the lowest mean estimation error.

Signal BW Reference Model
Label  Definition Value LI RC HT GS MM
6dB (o) 0.4 MHz —0.6 (0.2) —-3414.2) -2.0(Q2.0 —0.6 (0.2) —-1.2 (1.2)
A ENB (0) 02MHz -1.3(0.3) —4.54.00 -23(2.0) —0.9(0.4) —1.5 (1.3)
Total (6) 0.7MHz —1.2(04) —54(5.6) —23(3.6) —0.4(0.6) —1.0 (1.4)
6dB (o) 6.3 MHz 3.1 (1.7) —2.03.4) —6.7(3.4) 0.8 (6.5) —0.2 (3.5)
B ENB (o) 2.1 MHz 3.9 (1.8) —3.2 (4.5) —4.3(6.0) 2.9 (1.3) 1.3 (4.2)
Total (0) 10.5MHz 2.1 (2.3) 2.4 (3.5) —5.0(5.8) 1.7 (1.6) 3.6 (4.7)
6dB (o) 2.3MHz —3.43.1) —4.6(44) —354.0 —0.9(2.6) —23@3.7)
C ENB (0) 12MHz —3.0(2.7) —4.4 (4.8 —2.6(40 —0.5(3.2) —1.9 (4.1)
Total (0) 3.1MHz —1.7(1.7) —3.6(4.4) —2.4(4.1) 0.3 (2.6) 0.3 (1.0)
Avg. Burst Lenght (us) implementation of (12). Fig. 4 shows the important effect
0 1000 2000 3000 4000 5000 . - .
8 8 8 8 of this term for sub-ms radio-bursts, together with the 5 %
102l significance level test of Proposition 1.
g
E 1) VARIANCE BOUNDS
2 100 T~ . In Fig. 4 we show the CRLBs derived in (15), and (16) where
s £+ CRLB for Gaussian Spectra (o7 = 10) 77 777 77 7 o v s s e e, = 2 . .
2 : the parameters k; and o, of the Gaussian and triangle-shaped
CRLB for Triangle-shaped Spectra (ks = 15dB/MHz): i tvvreeeeeeiiiiiiiiii: spectral models are determined by fitting the models to the
. : . : reference spectrum. In particular, the triangle-shaped spec-

X Det ° FE; — — — Th. Variance
\v4 Max —H— Ey — - — - — Bias Correction

Estim. Bias

0 10 20 30 40 50
Avg. Samples per Burst

FIGURE 4. Experimental validation of the candidate f¢-estimators, with
theoretical CRLBs (15), (16), bias correction (12) with 5 % significance level
(s.l1.) test (11), and theoretical variance (13).

in Table 1. Fig. 4 reports the estimation accuracy expressed
in terms of the estimation bias and variance, showing a good
fit with the theoretical properties in Table 2. Notably, using
the detection frequency as an estimator (i.e., fC(Det)) ensures
low bias but shows no variance reduction from using more
samples, which reflects into mediocre performance. The esti-
mator fc(Max) provides instead a more reasonable compromise
between simplicity and performance, showing a standard
deviation between 6 — 8MHz. Unfortunately, ﬁ.(Max) shows
considerable bias when operating with less than 10 samples,
which renders it unsuitable for profiling sub-ms radio-bursts.
The implementation of (11) alone does not seem to be par-
ticularly promising as fC(E]) shows similar bias and variance
performance w.r.t. fc(Max) but requires the computation of
the terms E and S of (11). Finally, fc(m) provides the best
performance in terms of bias, which is always lower than
1.6 MHz for any recorded burst-duration while its variance
matches fc(Max). A substantial benefit of fC(Ez) comes from
the bias correction term, calculated in real-time with direct
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trum shows lower CRLB than the Gaussian spectrum, which
is due to the smoothness of the Gaussian spectrum, leading
to a low-valued first derivative dg(n, m)/dm. As expected,
the higher the variation of the spectrum g(n, m) with respect
to the central frequency bin m, the lower is the attain-
able estimation variance. On the other hand, approaching
the CRLB seems unrealistic for LC-IoT hardware, since
the non-negligible RBW smoothens the measured spectrum,
as discussed in Section IV. For this reason, the use of plat-
forms ensuring narrow/tunable channel filter, hence lower
RBW, is preferable, as the impact on estimation variance can
be contained. We believe that a more relevant bound can be
obtained by repeating the proofs of (16) and (15), and sub-
stituting g(n, m) with its frequency-domain convolution with
the frequency response of the employed channel filter. Unfor-
tunately, such quantity does not generally have a closed-form
expression, unless a model of the real filter response is taken.
Finally, we highlight the role of the frequency granularity,
as the CRLB grows quadratically with &7 in (14). While in
the tested platform, d¢ is 1 MHz, the capability to select fre-
quency on a smaller scale is expected to lower the achievable
CRLB and improve the estimation variance (13).

C. SPECTRAL ESTIMATION

We employ the signals A, B, and C in Table 3 to test the
accuracy of spectrum estimation. Specifically, we record
the output of the different spectrum models and the linear
interpolation (LI) and evaluate their goodness-of-fit w.r.t.
the reference spectra. In this experiment, we target the
assessment of the model-fitting process only, by ensur-
ing a fixed number of samples in the (51, 25)-IBSP mea-
surement process. The effect of incomplete sampling
is then separately studied in Sections VI-B and VI-D.
Table 4 summarizes the estimation error for different band-
width definitions, i.e., 6 dB-bandwidth, equivalent noise
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TABLE 5. Distortion of reconstructed spectrum and % of model selection
in MM (lowest MSE). In bold, the lowest distortion.

Signal Metric Model

Label LI RC HT GS MM

% LSE - 4% 23% 73% -
A LSD (dB) 7.6 12.5 7.6 8.1 7.4
PSNR (dB) —0.6 —-5.0 —1.0 —-1.3 -0.8

% LSE - 57% 5% 38% -
B LSD (dB) 15.8 11.7 13.6 8.4 10.6
PSNR(dB) —-68 —-44 —-57 —-0.1 -3.0

% LSE - 0% 0% 100 % -
C LSD (dB) 5.9 6.9 5.7 5.5 5.7
PSNR (dB) -0.3 -—1.1 0.1 —-0.1 0.2

bandwidth (ENB), and total bandwidth, calculated as an
equivalent 20 dB-bandwidth. The estimation error is cal-
culated as the difference between reference and estimated
bandwidth so that a negative value indicates bandwidth
overestimation. The multi-model (MM)), i.e., the lowest-MSE
model for each burst, and the Gaussian Spectrum (GS) model
ensure the most stable performance over the different signals,
with the GS model fairing better than the MM with signal A.
We observe that, despite its simplicity, the LI model shows
acceptable bandwidth estimation performance for signals
which are narrowband w.r.t. the RBW of the detection system.
Conversely, LI performs considerably worse than the MM
and GS models for larger bandwidths (i.e., signal B), as it
fails to compensate for the incomplete IBSP-sampling. The
RC and HT models tend to overestimate the bandwidth of all
the reference spectra.

Table 5 analyzes the goodness of spectral reconstruction by
means of the log-spectral distortion (LSD) measure, which
is defined as D} = Y N'[101og;o(F(fo + i8y)/Y (fo +
iSf))]z, with Y (f) and Y (f) reference and estimated PSD over
N-spectral points, and §; as defined in Table 1. The peak
signal-to-noise ratio (PSNR) is given as a support metric.
Similarly to the bandwidth estimation test, we observe that
the MM and GS models ensure the best performance for
all the tested signals. As expected, the LI method provides
adequate spectral fitting with narrowband signals but suffers
5 dB-higher LSD than the MM with signal B. Table 5 also
shows the probability of the candidate models being selected
in the MM, i.e., producing the MMSE solution. The results
show that the GS model is chosen frequently with signals
A and C, while its selection rate drops with signal B. This
is likely driven by the employed root-raised-cosine (RRC)
pulse-shaping filter reflecting into a spectrum with steeper
roll-off, which is better accommodated by the RC model. The
overall results show that there is a certain advantage of using
more complex models rather than simple interpolation, and
the advantage grows as the bandwidth of the signal increases
w.r.t. the RBW of the IoT system. Ultimately, the configura-
tion for the spectrum reconstitution block should be dictated
by the requirements of the target use-case. Particularly, if the
accurate reconstruction of the spectral shape is relevant to the
application (e.g., wireless-technology identification), the use
of the MM is advised.
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FIGURE 5. IBSP error vs. distortion of estimated spectrum; 32
samples (top) and 12 samples analysis (bottom), effect of constraints
in (7), and error bound (6).

D. THE INFLUENCE OF IBSP ERROR PROPERTIES

The analysis in Section IV predicts that the selection of the
IBSP influences the cumulative sampling error. This section
targets the experimental validation of the assumption and
ultimately evaluates the impact of the sampling error on the
spectrum estimation accuracy.

Fig. 5 analyzes how the cumulative error of the IBSP
influences the LSD of the reconstructed spectrum. The
non-linear integer program (7) is solved for different setups
of constraints, yielding sampling patterns with different error
properties, which we program into the spectrum estima-
tion module. In Fig. 5 (top), we show the LSD for sig-
nal bursts recorded with a mean number of 32-samples,
meaning that around 62 % of the (51, 25)-IBSP is exploited.
Three essential results arise from this case: i) there is a
significant difference (6 dB) between the spectral distor-
tion achievable with the least and the most errored IBSPs,
ii) the best unconstrained-solution (i.e., the linear IBSPs)
worsens the LSD of about 5dB w.r.t the best constrained-
solution, and iii) the minimum solution obtained by disen-
gaging the frequency-correlation constraint (7d) is marginally
more favorable than the one with full-constraints. Fig. 5
(bottom) shows the estimation behavior with shorter radio-
bursts, which leads to exploring only 24 % of the IBSP. In
this case, the linear IBSPs perform equally poorly, which
strengthens the hypothesis that linear IBSPs are unsuitable
in case of fast radio bursts or slow sampling. Particularly,
the analysis of estimation performance of (51, 25)-IBSPs
with an exploration ratio of 20 % to 25 % is important since
i) the related® burst duration is in the order of magnitude
of 1 ms, which is fairly common for IoT wireless standard,
and ii) the explored spectrum is 51 MHz, which approaches

2With respect to the IBSP sampling rate of &~ 10kS/s achievable with the
target LC-IoT platform.
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FIGURE 6. Fast vs. accurate sampling: trade-off between IBSP period and
bandwidth estimation error with CC2420 radios. A rescaled version of the
theoretical error bound (6) is shown as a reference.

the largest signal bandwidth in the 2.4 GHz ISM-band
(i.e., IEEE 802.11ac/ax). Finally, we conclude that the inclu-
sion of platform constraint (7c) in the non-linear program (7)
is vital for ensuring optimal sampling performance.

We investigate the effects of different sampling periods
in Fig. 6. A variable sampling delay has been implemented
in the TelosB platform to progressively relax its IBSP sam-
pling rate and reveal the impact of the different sample-
rate-dependent error components (VCO stabilization, MAF),
as they act on slightly different time-scales. In particular,
we analyze how the bandwidth estimation is affected by
different sampling periods. To isolate the effect, we ensure
a constant amount of IBSP samples. In Fig. 6 we also overlay
the theoretical error bound (6) to give a visual reference on
the predicted error trend. The experiment proves that the esti-
mation error is stable for sample periods longer than 210 ps,
which supports the assumptions made in Section IV about the
time-domain characterization of the IBSP-error, as the VCO
is expected to be substantially stable after 192 ps.

E. ON PROCESSING REQUIREMENTS

The implementation of runtime spectrum estimation in
LC-IoT hardware entails important design choices. The most
notable trade-off is the unfeasibility of floating-point arith-
metic and the need to use heavily-optimized custom imple-
mentations of mathematical functions. For ensuring realistic
processing time on the employed platform (which relies on
a TI-MSP430 microcontroller), we rely on look-up tables
and second-order Taylor approximations for exponential and
trigonometric functions in the models. Fig. 7 shows the
cumulative distribution of processing time for the full-model
spectrum reconstruction, divided by processing steps. The
most burdensome step is the multi-model fitting, which takes
on average 89 % of the total time. The LI method (included in
the pre-processing stage) provides indeed a much faster - yet
less accurate - alternative, which executes in 5.7 ms on aver-
age, including central frequency estimation. These results are
strongly platform-dependent, which is good news as newer
IoT platforms systematically outperform the MSP430. Lastly,
ensuring fast processing is crucial to bound the sensing and
estimation period in spectrum sensing strategies, as we show
in Section VII.
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F. REMARKS

A high IBSP sampling rate has two contrasting effects. On the
one hand, it allows profiling shorter (hundreds of us) radio
bursts, which are common in IoT-related RF transmissions.
On the other hand, it worsens the estimation performance as
it collides with the slow dynamics of onboard VCO-tuning
and RSSI-computation. Employing optimized IBSPs greatly
enhances the estimation process allowing spectrum estima-
tion of bursts with durations down to 400 ps even with fairly
old radio platforms. Thanks to optimized IBSPs, real-time
spectral reconstruction can be achieved even with LI methods
only, leading to 5 ms to 6 ms execution time, when a trade-off
with estimation accuracy is possible. When the platform
allows it, a complete multi-model LSE approach is beneficial
for improving the accuracy of the estimated spectrum.

VII. USE CASE—-ANTICIPATIVE BLACKLISTING WITH
SPECTRAL ESTIMATION

Lightweight and onboard spectrum analysis provides com-
pelling opportunities for cognitive and dynamic medium
access, even when the network is exclusively composed of
LC-IoT devices. Although a thorough exploration of such
applications is outside the scope of this work, we present a
relevant use-case where the proposed method reinforces an
industrial IoT standard with real-time Spectrum Estimation
and Anticipative Blacklisting (SEAB).

A. THE SEAB APPROACH

We developed SEAB to safeguard the performance of
ISA100.11a [11] wireless industrial standard in the presence
of severe interference by augmenting its TSCH mechanism.
In SEAB, the receiver node proactively scans the ISM-band
in between two consecutive data-transmissions and analyzes
at runtime the spectrum of detected radio bursts to iden-
tify repeating high-energy bursts. The receiver exploits the
spectrum data to update a 1 MHz-resolution spectral map,
which is, in turn, used to update a dynamic channel blacklist.
The state of the blacklist reflects the spectrum shape of the
newly detected bursts and information about the previous
state of the spectrum. The blacklist is then uploaded to the
transmitter using three short feedback packets, shielded using
redundancy and frequency diversity, and immediately used
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FIGURE 8. Time-diagram of the SEAB coordination mechanism.

to adapt the channel-hopping sequence in the next scheduled
transmission. The coordination scheme loosely resembles the
sensing and report sections for the IEEE 802.15.4 slot-frame
that Chiti et al. propose in [47], which is only based on
threshold-based detection of PUs. Later, as the interfering
signal ceases, the channels are progressively re-allocated and
can be used again for data transmission. The employed mech-
anism and the associated timings are reported in Fig. 8.

B. EXPERIMENTAL SETUP

1) RADIO-LINK

We establish an indoor 10 m-LoS radio-link between two
TelosB nodes. The devices are programmed with a TSCH
scheme following® the ISA100.11a Index 1 specifica-
tions [11]. The transmission of IEEE 802.15.4 maximum-size
packets is uni-directional and periodic (2s), represent-
ing a rather general use case in slow-periodic open-loop
wireless-control schemes [48]. The SEAB spectrum manage-
ment system, built on an optimized version of the spectrum
estimation solution, operates on top of the TSCH mecha-
nism. Given the hardware limitations of the platform, few
adjustments are necessary to ensure compatibility with the
employed communication scheme. In particular, only the GS
model is used, and the number of bursts analyzed per scan-
ning session is constrained to minimize the spectrum analysis
time, which is sketched in Fig. 8.

2) INTERFERENCE

The radio link is exposed to two types of RF distur-
bances: time-varying broadband RF jamming, and IoT cross-
technology interference. The jammer is a USRP device [49]
emitting signal D (see Section VI-A) with approximately
40MHz of total bandwidth, 10 ms bursts with 50% duty
cycle, at the maximum power allowed by the hardware. The
center frequencies 2.43 GHz and 2.455 GHz are alternated on
a 180 s-basis. The signal falls in the domain of partial-band
time-varying jamming [7]. In the second experiment, the jam-
mer is replaced with an IEEE 802.11n access point in
20 MHz-mode generating a continuous data-stream on IEEE
802.11 channel 3, while the same layout of the jamming
experiment is retained for a fair comparison. An overview of
the described spectral allocation is given in Fig. 9.

C. REAL-TIME QoS METRICS
The main advantage of SEAB compared to a posteriori spec-
trum management is the fast reaction time, i.e., the channel is

3Due to the hardware constraints of TelosB motes, the duration of time
slots is 20 ms in place of the ISA100.11a-compliant 10 ms or 12 ms
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FIGURE 9. Spectral allocation of the radio-systems in the experiments.

blacklisted before its communication quality is affected. For
this reason, we drop long-term-averaged performance metrics
and favor a QoS analysis centered on real-time indicators and
worst-cases. We adopt: 1) the (n, k)-firm deadline for streams
with real-time requirements introduced by Ramanathan et al.
in [50], which is satisfied if at least n over the last k packets
are correctly decoded, and 2) the number of consecutive
dropped/missed packets. The selected metrics are especially
relevant for industrial control [51] and cyber-physical sys-
tems, where the resilience to external disturbances plays a
vital role in ensuring that deadlines for the real-time tasks are
met [52].

D. RESULTS AND ANALYSIS

1) STEADY-STATE ANALYSIS

First, we use the (n, k)-firm deadlines metric to assess the
probability of dynamic failure [50], i.e., the probability of the
ISA100.11.a communication violating the (n, k)-firm dead-
lines on packet delivery for some x = n/k. In Fig. 10,
we show the analysis over 1122 packets (37 min), repeated
for two different arbitrary values of k, when the TSCH link
is affected by the described time-varying RF jamming signal.
The figure shows that the jamming signal is deadly for the
radio-link even when adopting the TSCH diversity scheme,
inflicting a dynamic failure probability of 0.82 for (4, 5)-firm
deadlines and greater than 0.9 for (24, 30)-firm deadlines
(point x = 0.8 in Fig. 10). The result suggests an important
benefit of SEAB over pure TSCH, with the CDF curves
considerably shifting towards the interference-free case and
with the dynamic failure probability reduced to 0.38 and 0.03
for the (4, 5) and (24, 30)-firm deadlines respectively. SEAB
ensures (n, 5)-firm deadline close to no-interference case for
0 < n < 3, since at least 3 out of the last 5 packets are
correctly received 95.4 % of the time, with 99.8 % for the
interference-free scenario. This leads to a considerable reduc-
tion of the cumulative (3, 5)-dynamic failure time, i.e., the
aggregated time where less than 4 out of the last 5 packets
are received, from 346 s to 24 s.

In Fig. 10, we also show the behavior of static-channel
communication as a reference, with the selected channel
lying within the band affected by the jammer. Unacceptable
real-time performance is reported with the CDF of dynamic
failures always above 0.4 due to long strikes of missed pack-
ets, as the time-frequency overlap of interference and signal
bursts frequently brings the IEEE 802.15.4 PHY below its
optimal SNR region. The analysis is repeated when the SDR
is substituted with an IEEE 802.1 1n access point, maintaining
the same experimental layout. In this case, the performance
drop is less severe, yet the SEAB spectrum management
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TABLE 6. Real-time QoS analysis: Mean (1) and worst case (w.c.) of
(n, 5)-ratio on packet delivery, consecutive transmission failures (CTF)
and communication blackout duration (CBD).

Interference Source

Method  Metric None 802.11n RF Jammer
o w.c. M w.c. M w.c.
(n,5) 4.92/5 4/5 4.59/5 2/5 3.01/5 0/5

TSCH CTF 1.000 1 1.042 2 1.928 7
CBD 2s 2s 2.08s 4s 3.86s 14s
TSCH (n,5) 4.92/5 4/5 4.68/5 2/5 4.57/5 2/5
with CTF 1.000 1 1.032 2 1.062 2
SEAB CBD 2s 2s 2.06s 4s 2.12s 4s

leads to a 7 % reduction of dynamic failures of (3, 5)-firm
deadlines. This can be interpreted as a positive side-effect of
SEAB, as the solution is programmed to intervene only in
the presence of wide-band, high-power, and high duty-cycle
interference. Since the 20 MHz-wide IEEE 802.11n signal
format resembles some of the characteristics of the jam-
ming signals, SEAB autonomously blacklists a subset of the
overlapped channels, leading to the observed performance
increase. Finally, Table 6 sums up the analysis showing the
mean and worst-case performance of the ISA100.11 link
in the described scenarios. In the table, we also report the
number of consecutive transmission failures, which we ana-
lyzed later in this section, and the duration of communication
blackouts, i.e., a period with no successful transmission.

2) TRANSIENT-STATE ANALYSIS

The key-features of SEAB are the burst-based spectrum esti-
mation and the channel adaptation process executed before
each transmission. This means that the hopping sequence
is promptly adapted based on the newest available chan-
nel states. In Fig. 11, we show how this reflects into a
fast blacklisting in case of sudden and severe interference.
The beneficial result is that the QoS undergoes virtually no
transient-state with performance deterioration before being
addressed. While it takes on average 9.9 s to have at least
90 % of the affected channels blacklisted, in 93 % of the
experiments at least one channel was blacklisted before the
first data-transmission in the presence of jamming. This
means that while SEAB requires a certain time to bring
the channel-list to a steady-state, the most affected chan-
nels undergo immediate (first estimation cycle) blacklist-
ing, which helps to safeguard the QoS. The channel list is
then gradually restored to its original state (de-blacklisting)
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when the cause, i.e., the jammer, is removed. The described
dynamic, visible in Fig. 11, helps explaining the signifi-
cant improvement over the pure ISA100.11a TSCH scheme
reported in both Table 6 and Fig. 10. The proposed mecha-
nism also is helpful in minimizing the occurrences of con-
secutive transmission failures, as it is shown in Fig. 12.
The ISA 100.11a hopping sequences are indeed designed to
limit the number of consecutive failures induced by IEEE
802.11 WLANSs, which explains why they perform quite
poorly when exposed to strong wide-band interference with
dynamic spectral features. Fig. 12 shows how the adaptiv-
ity of SEAB outclasses the original TSCH scheme in the
presence of jamming by manifesting strikes of two consec-
utive transmission failures in only six occurrences over 1122
packets.

3) CHANNEL PERFORMANCE

Lastly, we show in Fig. 13 long-term channel-specific statis-
tics on the packet delivery ratio (PDR) in the different
experiments. From the figure, the reader can infer the set of
channels more affected by the jammer, and how SEAB helps
to dynamically rearrange the TSCH sequence over the best
performing channels, according to the current spectrum state.
As a result, the PDR of the basic TSCH scheme is improved
on all the available channels. In particular, we observe that
some channels (e.g., 20 to 23) show a dramatic PDR boost,
as SEAB well-adapts to the slow frequency-switching nature
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of the jammer avoiding over-blacklisting. Only in one case
(channel 17), the channel is never allowed in the TSCH
pattern, as SEAB constantly detects a spectral tail of the
jamming signal.

E. REMARKS

The examined use-case is a limited but promising proof-
of-concept of reliable wireless communication with soft
real-time requirements for devices with modest hardware
capabilities in unpredictable RF scenarios. On the other hand,
we recognize that there are many other potential applications
for the proposed spectrum estimation method. Moreover,
there is a long road ahead to turning spectrum estimation
with LC-IoT hardware into reliable communication, with the
grand-challenge represented by applications with real-time
requirements. We, therefore, leave future works to exploit the
potential of lightweight spectrum analysis in the context of
dynamic spectrum allocation, unsupervised classification of
IoT technologies, detection, and avoidance of RF jammers
of different natures (e.g., fast-sweeping jammers [7]).

VIIl. CONCLUSION

There is an evident gap between state-of-the-art spectrum
analysis techniques and the actual implementations hitting
the ToT market. Besides, the work of the cognitive radio
research community shows a division between the spectrum
sensing methods, which focus on primary user detection,
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and sophisticated signal analysis relying on high-resolution
measurements, which are unsuitable for low-complexity IoT
(LC-10T) hardware. This work strives to bridge the two
approaches by proposing a spectrum analysis method that
substantially differs from the proposals in the literature, and
ensures suitability for a large family of LC-IoT devices.
The method proves that signal burst detection, intra-burst
swept sampling, and ultimately parametric spectrum recon-
struction, are possible even on severely-constrained devices.
The solution produces a spectrum estimate of single signal
bursts requiring a sampling rate of two to three orders of
magnitude below the Nyquist rate. As the method borders the
capabilities of LC-10T radios, ad hoc sampling patterns with
optimal error properties are demanded. We have presented
the mathematical setting of such an optimization problem for
radio platforms with different characteristics and experimen-
tally validated the method by showing the tangible impact
of optimal patterns on the accuracy of the reconstructed
spectrum. Tests in a controlled RF environment have shown
the advantage of employing parametric spectrum models,
as well as the baseline performance of lightweight interpola-
tion, which is a viable spectrum reconstruction alternative for
extremely constrained platforms. Finally, we have proven the
tangible benefit of the proposed spectrum estimation solution
by augmenting a TSCH link under substantial RF interfer-
ence. We have verified that the proposed method identifies
and adapts to the spectral footprint of the interfering signals
in a proactive manner providing over 50 % improvement of
real-time PDR and a 71 % reduction of the worst-case outage
time.

APPENDIXES

APPENDIX A

PROOF OF LEMMA 1

Any (I, k)-IBSP can be constructed by choosing from a set of
2k + 1 distinct elements, hence there are (2k + l)l distinct
IBSPs. If the IBSP is complete, each element has to be
unique since Definition 2. It follows that the total number of
(2k + 1)-complete IBSPs is leifl i=Qk+ 1L

APPENDIX B

PROOF OF THEOREM 1

It is needed to minimize &, in (5) w.rt. the IBSP S.
We examine the first two terms Ec j, and Evy j, sepa-
rately as they depend on S. The study of Ec jx(S) =
kedr Zf;ll Z/L;  C(jTy) |s; — si—j| reveals that the dependence
from the IBSP S manifests through the difference [s; — s;_j].
With L = 1, it is Ec jin(S) = kpdp C(Ty) Zf;ll ls; — si—1].
From Definition 2 follows that, if s;, s; € S, and S is (I, k)-
complete it is s; # sj, Vi # j. Thus, the problem of
minimizing Ec¢ j, is equivalent to the problem of arranging
[-unique integers (with [ = 2k + 1) sp,...,s;—1 in the
interval [(—I 4 1)/2, (I — 1)/2] such that the sum Y "'_] s;
is minimized. The problem has trivial solution since the min-
imum distance between two elements of any complete IBSP
is unitary and only two minimum-sum configurations exist,
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which are S, = {(—-1+1)/2, (=1 +3)/2,...,(l—1)/2} and
itsreverse S, = {({—1)/2,(I—3)/2, ..., (=1+1)/2}. Then,
itis Ec 1in(Sm) = Ec 1in(Sy,) = (I — 1) kp8y C(T).

The analy51s of the VCO-related error term Ey jin(S) =
k,« G gV(T)Zl 1 1si = siz 112 follows the same reasoning,
since min{|s;—s;_1|>} = 1, then both S,,, and S/, minimize the
error component so that Ev iy (Sy) = Ev in(S),) = kf(sz-(l —
1)ér gv (Ty). Since the additive noise term n(i) does not depend
on S, the cumulative error becomes

-1
Ein(S) =Y n(i) + (I — D kedr[C(Ty) + v (Ty)]. (17)
i=0

Since n(i) is an AWGN term, &;;(S) follows a Gaussian
distribution with mean (I — 1)ks8¢[C(Ty) + 8;gv(Ty)] and
variance lof,. Therefore, if the statistical expectation oper-
ator is applied to both members and it is noted that both
the terms Ec i, and Ey jj, are minimized by S,, and S,
the lower bound of (17) follows as E[&£;,(S)] = (I —
1) kr&¢ (C(Ts) + 5ng(TS)), which is true for any complete
(1, k)-IBSP S, thus verifies the thesis in (6).

APPENDIX C

PROOF OF COROLLARY 1

The IBSPs Sj;, and Siin are complete since Definition 2. The
optimality of both IBSPs simply follows from the proof of
Theorem 1, since (17) is true only for § = Sy, or S = S l/m.

APPENDIX D

PROOF OF PROPOSITION 1

The ex ected value of fc is derived from (11) as E[fc] =
fo+E| XN nsrving/ N7 Ynl|. Given the SM model,
the argument of the expected value is a ratio of two
Gaussian random variables E and S, with distribution
N(ug, o 028f Zn 0 n2) and N (us, NO’Z) respectively, with
ns = ano X[n] and pg = ano n8;X[n]. The ratio
distribution W is a Cauchy-Lorentz [53] which has undefined
statistical moments, hence undefined bias. Therefore, we use
the result of [54] to approximate the ratio W = E/S as
normally distributed at the 5 % significance level if the coef-
ficients of variation are c.v.(S) > 0.005, and c.v.(E) < 0.39.
If W is normally distributed, then the second-order Taylor
series also approximates the first two moments of W with
5% significance level, so that E[W] /LE//L5+(TS /LE//LS =
Z n(SfX[n]/ Zn 0 ! X[n] +c7 N[,LE/[,LS,aS shown in [54].
Then, it is E[fc] ~ (fo + ne/wms) + oy /,LE//,LS Recognizing
that first term of the sum gives the central frequency of
symmetric spectrum X (f) centered in fo = fo + mdy, with
0 < m < N — 1, leads to the approximation E[fc] ~
fe + 02 Nug/u3 which is true with 5% significance level,
proving the thesis in (12).

APPENDIX E

PROOF OF PROPOSITION 2

Analogously to Proposition 1, the estimation variance
Var[fc] = Var[fo + E/S] can be approximated with the
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second-order Taylor expansion [54] so that Var[fc]

o2ud/nt + o} /u with 5% significance level if c.v.(S)
0.005 and c.v.(E) < 0.39. Then, we express crg
Var[8; YN nN,[n]] = 5}03(2N3 +3N2 + N)/6 where the
Faulhaber’s formula [55] glves the closed-form of the sum
Also itis O'S = Var[z N [n]] = Na Plugging aE and
(TS in the expression of Var[fc] and rearranging the terms in

N proves the thesis.

v &

APPENDIX F

PROOF OF THEOREM 2

Let Y = X 4+ N, be the AWGN measurement of the SM
model. The spectrum to be estimated can be written as a
function of both its central frequency f. = f() + méy and the
absolute frequency f = fo+ndy as g(n, m) £ X (fo +ndyr, fo+
méy). Its log-likelihood function [56] is

N-1
N
Inp(Y, m)= ) In (27103) — —02 Z(Y[n] —g(n,m)>.
=0
(18)
Using the general CRLB for signals in AWGN [56] leads to

92 In p(Y, m)]_l (19)

Var[m] > — E
ar[m] > |: o

As the log-likelihood (18) is plugged into (19) and the first
derivative w.r.t. the parameter m is carried out, it is

A N—1 2
Var([f.] ag(n, m) 5
8} Eo ( o ) E (20)
n=

since fo = fo + mds. The inequality (20) is true only if
the likelihood p(Y, m) satisfies the regularity condition [56],
which is E[dIn p(Y, m)/dm] = 0, for 0 <m < N — 1. The
condition is always satisfied since

|:ln dgn, m)i| l2 Z 35’(” m) E[Y[n]

om o5 =
—gn,m)] =0, (21)

as E[Y[n]] = X (fo + néy, fo + méy), thus the lower bound of
the thesis (14) is proved.

APPENDIX G

PROOF OF COROLLARY 2 AND 3

Let g(n,m) = go + ksjn — m|, with k;, € R and
go st gn,m) = 0, for n € [Ny, Ng+], while
g(n,m) = 0 elsewhere. Then, it is |dg(n, m)/dm| =
ks for n € [Ng-,Ng+], and |dg(n,m)/dm| = O oth-

erwise. Under this hypothems the right side of inequal-
1ty (14) becomes 628f /SN (3g(n, m)/am)? = aga]%/
ZniN, (0g(n, m)/om)*> = 035}/1%2( o+ — Ng-), which
provesg the thesis (15). Corollary 3 follows when (14) is

calculated for g(n, m) Gaussian with mean u, = méy = f.
and variance U!?’ which leads to the thesis (16).

43043



IEEE Access

S. Grimaldi et al.: Onboard Spectral Analysis for Low-Complexity loT Devices

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

U. D. Ulusar, F. Al-Turjman, and G. Celik, “An overview of Internet of
Things and wireless communications,” in Proc. Int. Conf. Comput. Sci.
Eng. (UBMK), Oct. 2017, pp. 506-509.

D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From IoT
to 5G I-IoT: The next generation IoT-based intelligent algorithms and
5G technologies,” IEEE Commun. Mag., vol. 56, no. 10, pp. 114-120,
Oct. 2018.

M. O. A. Kalaa, J. Guag, and S.J. Seidman, “An outlook on wireless
coexistence with focus on medical devices,” IEEE Electromagn. Compat.
Mag., vol. 7, no. 3, pp. 60-64, Oct. 2018.

M. Gidlund, T. Lennvall, and J. Akerberg, “Will 5G become yet another
wireless technology for industrial automation?” in Proc. IEEE Int. Conf.
Ind. Technol. (ICIT), Mar. 2017, pp. 1319-1324.

R. Natarajan, P. Zand, and M. Nabi, “Analysis of coexistence between
IEEE 802.15.4, BLE and IEEE 802.11 in the 2.4 GHz ISM band,” in
Proc. 42nd Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2016,
pp. 6025-6032.

Y. Matsumoto, M. Takeuchi, K. Fujii, A. Sugiura, and Y. Yamanaka, *‘Per-
formance analysis of interference problems involving DS-SS WLAN sys-
tems and microwave ovens,” IEEE Trans. Electromagn. Compat., vol. 47,
no. 1, pp. 45-53, Feb. 2005.

M. Lichtman, J.D.Poston, S.Amuru, C. Shahriar, T.C. Clancy,
R. M. Buehrer, and J. H. Reed, “A communications jamming taxonomy,”
IEEE Secur. Privacy, vol. 14, no. 1, pp. 47-54, Jan. 2016.

ANI1017: Zigbee and Silicon Labs Thread Coexistence With Wi-Fi.
Accessed: Nov. 29, 2019. [Online]. Available: www.silabs.com

C. E. C. Bastidas, J. A. Stine, A.Rennier, M. Sherman, A. Lackpour,
M. M. Kokar, and R. Schrage, “IEEE 1900.5.2: Standard method for mod-
eling spectrum consumption: Introduction and use cases,” IEEE Commun.
Standards Mag., vol. 2, no. 4, pp. 49-55, Dec. 2018.

IEEE Standard for Information Technology, IEEE Standard 802.11-2016,
Dec. 2016, pp. 1-3534.

Wireless Systems for Industrial Automation: Process Control and Related
Applications, document ISA 100.11a-2011, International Society of
Automation, 2011.

E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
Internet of Things: Challenges, opportunities, and directions,” IEEE Trans
Ind. Informat., vol. 14, no. 11, pp. 4724-4734, Nov. 2018.

IEEE Standard for Definitions and Concepts for Dynamic Spectrum
Access: Terminology Relating to Emerging Wireless Networks, Sys-
tem Functionality, and Spectrum Management—Redline, 1IEEE Stan-
dard 1900.1-2019 (Revision IEEE Std 1900.1-2008), Apr. 2019, pp. 1-144.
T. M. Chiwewe, C. F. Mbuya, and G. P. Hancke, ““Using cognitive radio for
interference-resistant industrial wireless sensor networks: An overview,”
IEEE Trans Ind. Informat., vol. 11, no. 6, pp. 1466—-1481, Dec. 2015.

M. Hoyhtya, A. Mammela, M. Eskola, M. Matinmikko, J. Kalliovaara,
J. Ojaniemi, J. Suutala, R. Ekman, R. Bacchus, and D. Roberson, “Spec-
trum occupancy measurements: A survey and use of interference
maps,” [EEE Commun. Surveys Tuts., vol. 18, no. 4, pp.2386-2414,
4th Quart., 2016.

W. Liu, M. Kulin, T. Kazaz, A. Shahid, I. Moerman, and E. De Poorter,
“Wireless technology recognition based on RSSI distribution at sub-
nyquist sampling rate for constrained devices,” Sensors, vol. 17, no. 9,
p. 2081, Sep. 2017.

Q. Zhao and B. M. Sadler, ““A survey of dynamic spectrum access,” I[EEE
Signal Process. Mag., vol. 24, no. 3, pp. 79-89, May 2007.

Metageek. Wi-Spy Data Sheet. Accessed: Nov. 29, 2019. [Online]. Avail-
able: https://www.support.metageek.com/

V. Sokolov, A. Carlsson, and I. Kuzminykh, “Scheme for dynamic channel
allocation with interference reduction in wireless sensor network,” in Proc.
4th Int. Sci.-Practical Conf. Problems Infocommun. Sci. Technol. (PIC S T),
Oct. 2017, pp. 564-568.

M. A. Taha, M. T. Abdallah, H. Al Qasem, and M. A. Sada, “Dynamic
spectrum analyzer using software defined radio,” in Proc. Int. Conf. Inter-
act. Mobile Comput. Aided Learn. (IMCL), Nov. 2012, pp. 167-172.

C. Cordeiro, K. Challapali, D. Birru, and S. Shankar, “IEEE 802.22: The
first worldwide wireless standard based on cognitive radios,” in Proc.
Ist IEEE Int. Symp. New Frontiers Dyn. Spectr. Access Netw. (DySPAN),
Nov. 2005, pp. 328-337.

F. Mehmeti and T. Spyropoulos, “To scan or not to scan: The effect of
channel heterogeneity on optimal scanning policies,” in Proc. IEEE Int.
Conf. Sens., Commun. Netw. (SECON), Jun. 2013, pp. 264-272.

43044

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]
(40]

(41]

(42]
(43]

[44]

(45]

(46]

(47]

H. Kim and K. G. Shin, “Fast discovery of spectrum opportunities in
cognitive radio networks,” in Proc. 3rd IEEE Symp. New Frontiers Dyn.
Spectr. Access Netw., Oct. 2008, pp. 1-12.

S. Grimaldi, A. Mahmood, and M. Gidlund, ‘‘Real-time interference iden-
tification via supervised learning: Embedding coexistence awareness in
10T devices,” IEEE Access, vol. 7, pp. 835-850, 2019.

S. Grunau, D. Block, and U. Meier, “Multi-label wireless interference
classification with convolutional neural networks,” in Proc. IEEE 16th Int.
Conf. Ind. Informat. (INDIN), Jul. 2018, pp. 187-192.

E. Axell, S. O. Tengstrand, and K. Wiklundh, “Online classification of
class a impulse interference,” in Proc. IEEE Mil. Commun. Conf. (MIL-
COM), Oct. 2017, pp. 180-184.

F. P. Rezha and S. Young Shin, “Performance analysis of ISA100.11a
under interference from an IEEE 802.11b wireless network,” IEEE Trans
Ind. Informat., vol. 10, no. 2, pp. 919-927, May 2014.

Y. Serizawa, R. Fujiwara, T. Yano, and M. Miyazaki, “Reliable wireless
communication technology of adaptive channel diversity (ACD) method
based on ISA100.11a standard,” IEEE Trans. Ind. Electron., vol. 64, no. 1,
pp. 624-632, Jan. 2017.

V. Kotsiou, G.Z. Papadopoulos, D. Zorbas, P. Chatzimisios, and
A.F. Theoleyre, ‘“Blacklisting-based channel hopping approaches in
low-power and lossy networks,” IEEE Commun. Mag., vol. 57, no. 2,
pp. 48-53, Feb. 2019.

L. Tytgat, O. Yaron, S. Pollin, I. Moerman, and P. Demeester, “Analysis
and experimental verification of frequency-based interference avoidance
mechanisms in IEEE 802.15.4,” IEEE/ACM Trans. Netw., vol. 23, no. 2,
pp. 369-382, Apr. 2015.

S. Grimaldi, M. Gidlund, T. Lennvall, and F. Barac, “Detecting commu-
nication blackout in industrial wireless sensor networks,” in Proc. IEEE
World Conf. Factory Commun. Syst. (WFCS), May 2016, pp. 1-8.
Tektronix. Fundamentals of Real-time Spectrum Analysis—Primer,
Tektronix. Accessed: Mar. 2, 2020. [Online]. Available: https://www.tek.
com/primer/fundamentals-real-time-spectrum-analysis

V. Iglesias, J. Grajal, M. A. Sanchez, and M. Lopez-Vallejo, “Implemen-
tation of a real-time spectrum analyzer on FPGA platforms,” IEEE Trans.
Instrum. Meas., vol. 64, no. 2, pp. 338-355, Feb. 2015.

Q. Liu, M. Li, X. Kong, and N. Zhao, “Disrupting MIMO communications
with optimal jamming signal design,” IEEE Trans. Wireless Commun.,
vol. 14, no. 10, pp. 5313-5325, Oct. 2015.

L. Sujbert and G. Orosz, “FFT-based spectrum analysis in the case of
data loss,” in Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC),
May 2015, pp. 800-805.

A. Ali and W. Hamouda, ‘““Advances on spectrum sensing for cognitive
radio networks: Theory and applications,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 2, pp. 1277-1304, 2nd Quart., 2017.

IEEE Standard for Low-Rate Wireless Networks, IEEE Standard 802.15.4-
2015, Apr. 2016, pp. 1-709.

Y. Chen and A. Terzis, “On the mechanisms and effects of calibrat-
ing RSSI measurements for 802.15.4 radios,” in Proc. EWSN, 2010,
pp. 256-271.

Texas Instruments. 2.4 GHz IEEE 802.15.4/ZigBee-Ready RF Transceiver.
Accessed: Nov. 29, 2019. [Online]. Available: www.ti.com

F. M. Gardner, Phaselock Techniques, 3rd ed. Hoboken, NJ, USA: Wiley,
2005.

R. Hemmecke, M. Koppe, J.Lee, and R. Weismantel, ‘“Nonlinear
integer programming,” 2009, arXiv:0906.5171. [Online]. Available:
http://arxiv.org/abs/0906.5171

N. S. Alagha and P. Kabal, “Generalized raised-cosine filters,” IEEE
Trans. Commun., vol. 47, no. 7, pp. 989-997, Jul. 1999.

C. Liu and F. Li, “Spectrum modelling of OFDM signals for WLAN,”
Electron. Lett., vol. 40, no. 22, pp. 1431-1432, Oct. 2004.

E. Jacobsen and P. Kootsookos, ‘‘Fast, accurate frequency estimators [DSP
tips & tricks],” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 123-125,
May 2007.

C. Candan, “A method for fine resolution frequency estimation from three
DFT samples,” IEEE Signal Process. Lett., vol. 18, no. 6, pp. 351-354,
Jun. 2011.

Memsic. TelosB Mote Platform Datasheet. Accessed: Nov. 29, 2019.
[Online]. Available: www.memsic.com

F. Chiti, R. Fantacci, and A. Tani, “Performance evaluation of an adap-
tive channel allocation technique for cognitive wireless sensor net-
works,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp.5351-5363,
Jun. 2017.

VOLUME 8, 2020



S. Grimaldi et al.: Onboard Spectral Analysis for Low-Complexity loT Devices

IEEE Access

[48] C.-E. Lindberg and A.J. Isaksson, “Comparison of different sampling
schemes for wireless control subject to packet losses,” in Proc. Int. Conf.
Event-based Control, Commun., Signal Process. (EBCCSP), Jun. 2015,
pp- 1-8.

[49] National Instruments. USRP-2921 Software Defined Radio Device.
Accessed: Nov. 29, 2019. [Online]. Available: www.ni.com

[50] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment tech-
nique for streams with (m, k)-firm deadlines,” IEEE Trans. Comput.,
vol. 44, no. 12, pp. 1443-1451, Dec. 1995.

[51] P. Park, P. D. Marco, and K. H. Johansson, ‘““Cross-layer optimization for
industrial control applications using wireless sensor and actuator mesh
networks,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3250-3259,
Apr. 2017.

[52] T. Zhang, T. Gong, C. Gu, H.Ji, S. Han, Q. Deng, and X. S. Hu, “Dis-
tributed dynamic packet scheduling for handling disturbances in real-time
wireless networks,” in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp. (RTAS), Apr. 2017, pp. 261-272.

[53] V. D. Barnett, “Order statistics estimators of the location of the cauchy
distribution,” J. Amer. Stat. Assoc., vol. 61, no. 316, pp. 1205-1218,
Dec. 1966.

[54] J. Hayya, D. Armstrong, and N. Gressis, ‘A note on the ratio of two nor-
mally distributed variables,” Manage. Sci., vol. 21, no. 11, pp. 1338-1341,
Jul. 1975.

[55] D. E. Knuth, “Johann faulhaber and sums of powers,” Math. Comput.,
vol. 61, no. 203, p. 277, Sep. 1993.

[56] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

SIMONE GRIMALDI (Member, IEEE) received
the B.Sc. and M.Sc. degrees in telecommunica-
tion engineering from the University of L’ Aquila,
L’ Aquila, Italy, in 2010 and 2015, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Information Systems and Technol-
ogy, Mid Sweden University, Sweden. In 2015,
he was an M.Sc. thesis worker with ABB Cor-
porate Research, Visteras, Sweden. His current
research interests include reliable wireless com-
munication in harsh environments, interference management, and coexis-
tence of wireless technologies.

VOLUME 8, 2020

LUKAS MARTENVORMFELDE received the
B.Sc. degree in electrical engineering from the
Ostwestfalen-Lippe University of Applied Sci-
ences, Lemgo, Germany, in 2017, where he
is currently pursuing the corresponding M.Sc.
degree. He worked as a Student Research Assis-
tant at the Institute Industrial IT (inIT), Lemgo,
Germany. In 2019, he was a Research Intern at the
Department of Information Systems and Technol-
ogy, Mid Sweden University, Sundsvall, Sweden.
His research interests include industrial communication systems with the
focus on wireless technologies.

AAMIR MAHMOOD (Senior Member, IEEE)
received the B.E. degree in electrical engineer-
ing from the National University of Sciences and
Technology (NUST), Pakistan, in 2002, and the
M.Sc. and D.Sc. degrees in communications engi-
neering from the Aalto University School of Elec-
trical Engineering, Finland, in 2008 and 2014,
respectively. He worked as a Research Intern at
the Nokia Researcher Center, Finland, in 2014,
a Visiting Researcher at Aalto University, from
2015 to 2016 and also a Postdoctoral Researcher at Mid Sweden Univer-
sity (MIUN), Sweden, from 2016 to 2018. Since 2019, he has been an
Assistant Professor with the Department of Information Systems and Tech-
nology, MIUN. His research interests include low-power local/wide-area
networks, energy-delay aware radio resource allocation, and RF interference/
coexistence management.

N MIKAEL GIDLUND (Senior Member, IEEE)
received the Lic. Eng. degree in radio commu-
nication systems from the KTH Royal Institute
of Technology, Sweden, in 2004, and the Ph.D.
degree in electrical engineering from Mid Sweden
University, Sweden, in 2005. From 2008 to 2015,
he was a Senior Principal Scientist and Global
Research Area Coordinator of Wireless Technolo-
gies, ABB Corporate Research, Sweden. From
2007 to 2008, he was the Project Manager and the
Senior Specialist with Nera Networks AS, Norway. From 2006 to 2007,
he was a Research Engineer and also the Project Manager of Acreo AB,
Sweden. Since 2015, he has been a Professor of computer engineering
with Mid Sweden University. He holds more than 20 patents (granted and
pending applications) in the area of wireless communication. His current
research interests include wireless communication and networks, wireless
sensor networks, access protocols, and security. He is an Associate Editor of
the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.

M

v'"‘

43045



