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ABSTRACT This paper is an extended version of the work published. Radio-frequency identifica-
tion (RFID) is widespread in industries such as supply-chain management and logistics due to its low-cost
feature. In many real-world problems, one often needs to leverage a considerable amount of RFID read-
ers to cover a large area. Many graph-based dense RFID readers system anti-collision algorithms were
proposed to address the collision problems. However, state-of-the-art collision avoidance algorithms are
centralized algorithms. In a dense RFID system, the graphs generated by the centralized algorithms could be
very complicated. Therefore, a centralized algorithm increases the computational workload of the central
server. We proposed a distributed anti-collision algorithm based on the idea of a centralized collision
avoidance algorithm called MWISBAII. In our later research, we found that due to the lack of global
information, there is a gap between the performance of our distributed algorithm and the centralized
MWISBAII. To narrow this gap, we introduced machine learning into the proposed algorithm. The machine
learning model is an empirical model that mitigates the deficiency of the lack of global information. The
experimental results show that the proposed distributed algorithm with machine learning can get almost the
same performance as the centralized MWISBAII in different experimental settings.

INDEX TERMS Large scale RFID network optimization, reader coverage collision avoidance (RCCA),
maximum weight independent set (MWIS), machine learning (ML).

I. INTRODUCTION
RFID is an automatic identification and data capture technol-
ogy, using radio frequency electromagnetic waves to transmit
signals [3]. Because RFID tags are inexpensive and extremely
portable, RFID technology is an essential part of the modern
IoT world [4]. Some common usages of RFID systems are
product identification (to replace the traditional bar code),
theft-detection, and contact-less payment [5], [6]. In addition,
RFID can also be applied in positioning [7]–[9]. A normal
RFID system has three major types of components: RFID
reader(s), RFID tag(s), and the host system (or central com-
puter) [10]. Both RFID readers and tags have antenna for
communication. Based on the type of power source, RFID
tags can be categorized into active RFID tags and passive
RFID tags. The antenna of a passive RFID tag serves as both
the power receiver and the signal transmitter. To read the
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information recorded on a passive RFID tag, the RFID reader
needs to emit the electromagnetic wave to power the passive
RFID tag. Whereas, an active RFID tag should have an inter-
nal power source (usually a battery) to power the antenna and
the microchip. Due to this reason, the transmission range of
an active RFID tag is usually much more extensive than the
transmission range of a passive RFID tag. However, active
RFID tags are more expensive and larger than passive RFID
tags [10]. In contrary, the passive RFID tags are much smaller
(often as thin as paper), so they can be installed in a passport,
a luggage tag, or even a book [11], [12]. We only consider the
RFID systems for passive RFID tags in this paper.

Because the RFID reader provides energy for passive
RFID tags, and the valid energy transmission range is
small, the coverage of a single RFID reader is limited.
Therefore, in many real-world applications, one generally
uses multiple readers to increase the coverage of the RFID
system [13]–[16]. This kind of RFID systems is referred to
as dense RFID readers systems. Tags within the activated
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interrogation range of a reader can be read by the system
if there is no collision. In reality, since the electromagnetic
wave will not disappear beyond the interrogation range, there
is an interference range, which is larger than the interrogation
range [17]. In Figure 1 (a), for the reader R1, the radii of the
interrogation range and the interference range are denoted by
d and d ′, respectively. We can use a coefficient β to represent
the relationship between d and d ′: d ′ = dβ, where β > 1.0,
means that the interference range includes the interrogation
range. In this paper, we define the interference region as
the region which is within the interference range but beyond
the interrogation range. If we only deploy the RFID readers
and tags on a two-dimensional plane, then we can abstract
the interrogation and interference range to circles. To get
full coverage of a field, the ranges of different readers may
overlap (as shown in Figure 1), which may lead to some types
of collisions.

Reader-to-reader collision (frequency interference) and
reader-to-tag collision (tag interference) are two primary
types of collisions in a dense RFID readers system [18]–[22].
There are two types of reader-to-reader collisions. Type-a
reader-to-reader collision (see Figure 1a) occurs when a
reader is within the interrogation range of another reader,
and both readers are active. The radio-frequency electromag-
netic wave emitted by the second reader prevents the first
reader from communicating with tags within its interrogation
range. Figure 1b depicts type-b reader-to-reader collision,
which occurs when a tag is in the interrogation range of one
reader (R1), but also in the interference region of another
reader (R2). If R1 wants to read the tag and R2 is also
active, then the signal of R2 may interfere with the signal
of tag; meaning, R1 cannot read tag. Reader-to-tag collision
occurs when one or more tags are in the activated inter-
rogation ranges of more than one readers (see Figure 1c).
In this example, if R1 and R2 attempt to communicate with
the tag simultaneously, the reader-to-tag collision will occur.
Furthermore, if the number of tags within an RFID reader’s
interrogation range is greater than the maximum number of
tags that can be read by an RFID reader (we use α to represent
this limit), this RFID reader cannot be activated. This scenario
can also be considered as a type of collision.

The objective of most dense RFID readers system col-
lision avoidance algorithms is to minimize the total time
used for identifying (reading) all the tags without collision.
Alternatively, to increase the read throughput (generally
defined as the number of tags read per time slot). Based on
access schemes, such algorithms are usually classified into
time-division multiple access (TDMA), frequency-division
multiple access (FDMA), and carrier-sense multiple
access (CSMA) [23]–[28]. Considering TDMA has a rela-
tively low implementation complexity and operational cost,
most of such algorithms are TDMA-based, which can be
further divided into ALOHA-based and tree-based algo-
rithms [29]. The basic idea of access scheme-based algo-
rithms is to reduce or eliminate collision by optimally
allocating temporal or frequency resources. In [24],

FIGURE 1. Some types of collisions in a dense RFID readers system.

Rezaie et al. proposed a centralized reader-to-reader collision
avoidance protocol which combines TDMA and FDMA
mechanisms. Ho et al. proposed a distributed hierarchical
Q-learning (HiQ) algorithm for minimizing the collision
rate of a dense RFID readers system [27]. HiQ makes
the optimization by assigning different time and frequency
resources to RFID readers. However, HiQ failed to consider
the existence of the interference range, and not efficient to
train when the network size is large [30]. A CSMA-based
collision avoidance algorithm (named GENTLE) for mobile
RFID networks was proposed in [28]. GENTLE assumes
that the reader-to-reader collision problem is more severe
than the reader-to-tag collision problem in a mobile RFID
network (the RFID readers could be mobile phones). The
basic idea of GENTLE is to use beaconmessages to eliminate
reader-to-tag collision and use the multi-channel solution to
avoid the reader-to-reader collision. Reference [31] proposed
a tree splitting-based anti-collision algorithm for ultra-high
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frequencyRFID systems. This algorithm accelerates the split-
ting process as well as increases the system read throughput.
A dense RFID readers system anti-collision protocol stack
named Season was proposed in [32]. Season does not assume
the existence of the interference range, which may lead to a
different result than the theoretical expectation in practice.
Season utilizes one phase (at the beginning) to collect data
from the tags which are not within the overlapping inter-
rogation ranges of different readers. After the first phase,
Season converts the anti-collision problem to the Maximum-
Weight-Independent-Set (MWIS) problem and employs two
phases to selectively active some readers. Those two phases
might be executed multiple iterations until all the tags have
been read. The algorithm proposed in [33] requires a planned
deployment of RFID readers, which makes it possible for the
algorithm to get the accurate location information of each
reader. Based on the interrogation and interference regions
of RFID readers, this algorithm schedules the activation of
readers to enable all the areas to be covered at least once at the
end. Reference [34] presents a distributed approach (ADRA)
for the scenarios when a central server does not exist.
ADRA assumes that there could be multiple applications
running in the system and issue identification requests. Based
on the assumption, ADRA works in an adaptive way to
make the idle readers not to participate in the coordination.
A common limitation of the algorithms, as mentioned earlier,
is that the readers cannot read tags within their overlapped
interrogation ranges simultaneously, which causes delays.
MRTI-BT addressed this issue through bit tracking [35].
Besides, MRTI-BT also prevents common tags from being
identified multiple times by different readers.

In some scenarios, passive RFID tags not only serve as the
object identifiers but also have some complex functionalities.
For instance, the wireless sensor could be integrated into an
RFID tag, which leverages the energy harvested by the tag’s
antenna to drive the wireless sensor module and transmit
the data collected by the sensor module [36], [37]. Because
the wireless sensors need to work uninterruptedly, it is chal-
lenging (if not impossible) to leverage the above-mentioned
anti-collision algorithms to keep all the wireless sensors
online. In this case, one needs to sacrifice some sensor nodes
(deactivating some of the RFID readers could help to avoid
the collision, but some RFID tags might be inaccessible by
the system), and allow the whole system to enable as many
sensor nodes online as possible. The problem of selectively
activate or deactivate the interrogation ranges in a dense RFID
readers system to allow the system to read as many tags at
the same time as possible is known as reader-coverage col-
lision avoidance (RCCA) problem [38]. Figure 2 depicts an
example RFID system, where only two readers are active to
enable the system to keep communicating with the maximum
number of tags. One of the state-of-the-art RCCA algorithms
is MWISBAII [2]. This algorithm first transforms the RCCA
problem into a MWIS problem, and uses graph theory to
solve the MWIS problem. In a dense RFID reader system,
the graph representation of the MWIS problem could be

FIGURE 2. An example RFID system with four readers (R1, R2, R3, and
R4). R2 and R3 are active, while R1 and R4 are off.

huge, increasing the burden on the central computer. To keep
the performance of the centralized MWISBAII as much as
possible and distribute the computing task into each reader,
we proposed a machine learning assisted distributed RCCA
algorithm. We leverage the MWISBAII to label the training
data for machine learning and apply the trained model to
our distributed algorithm. Different from our initial algo-
rithm proposed in [1], the new algorithm first utilizes the
trained model to predict whether to activate and deactivate
some of the readers and then use our initial algorithm to
handle the rest of the readers. To the best of our knowledge,
no machine learning-based approach has been proposed to
solve the RCCA problem. The contributions of this paper are
summarized below:

1) We convert the RCCA optimization problem into a
supervised learning problem. Thereby, the algorithm
is more straightforward than most unsupervised rein-
forcement learning algorithms.

2) Our machine learning model is light-weighted and
straightforward. Therefore, it can be efficiently
deployed to RFID readers.

3) The proposed method is fully distributed after train-
ing, and the performance is close to the centralized
algorithmwithout increasing the information type from
one-hop to multi-hop.

The remainder of this paper is organized as follows.
We state the RCCA problem in detail in Section II.
In Section III, we discuss some MWIS algorithms. Because
MWISBAII leverages GWMIN2 to solve the MWIS
representation of the RCCA problem, we describe the
GWMIN2 algorithm through a step-by-step example. Then
we describe the transform and conquer algorithm MWIS-
BAII. We review our distributed MWISBAII algorithm in
Section IV. Section V presents the proposedmachine learning
auxiliary approach and gives an example of using this algo-
rithm in solving the RCCA problem. Section VI presents the
experimental results of the performance of MWISBAII and
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our distributed algorithm (with or without machine learning
auxiliary). At the end (in Section VII), we conclude this paper
and put forward some ideas of future work.

II. PROBLEM STATEMENT
Reader-coverage collision avoidance (RCCA) problem is
about which reader(s) in a dense RFID readers system should
be activated to allow the whole system read as many RFID
tags without collision as possible at the same time [38].

In this paper, we suppose that the readers in the dense
RFID readers system have identical technical specification
such as the radius of the interrogation range d ; the radius of
the interference range d ′ = dβ (β > 1.0); and the maximum
number of tags can be read by each reader (denoted by α).
Assume the dense RFID readers system has N readers andM
tags, then we define the set of readers as {ri|1 ≤ i ≤ N , i ∈
N}, and the set of tags as {ti|1 ≤ i ≤ M , i ∈ N}. For the ith
reader ri, we useRi andR′i to represent the set of tags within its
interrogation range and the set of tags within its interference
range respectively. Because d ′ is greater than d , Ri ⊆ R′i. |Ri|
is the number of tags in Ri, and |R′i| is the number of tags
in R′i. The result of the RCCA algorithm can be represented
as a subset ϒ of the set of all readers. Only the readers in
ϒ should be activated. The result should meet the following
constraints:

1) if ri, rj ∈ ϒ , i 6= j, then Ri
⋂
R′j = ∅ and R

′
i
⋂
Rj = ∅;

2) if ri ∈ ϒ , then |Ri| ≤ α and |Ri| > 0.

We define that T = {Ri : ri ∈ ϒ}, which is the set of tags
can be read by the RFID system. The goal of the RCCA algo-
rithm is to find a set ϒ , such that |T | is as large as possible.
In practice, we also consider the total energy consumption of
the system. Therefore, besides maximizing |T |, we also want
to minimize the number of activated readers |ϒ |. An efficient
RCCA algorithm should also derive a solution with a high
T/R ratio (the number of readable tags divided by the number
of activated readers): |T |/|ϒ |.

III. RELATED WORK
The purpose of the MWIS problem is to find a set of vertices
for any given undirected graph, where no two vertices are
adjacent in the original undirected graph and the total weight
of vertices should be as large as possible. Since the MWIS
problem is NP-hard [39], when the graph is complex, often
we can only derive a near optimal solution.

A few simple, yet effective greedy algorithms for solv-
ing the MWIS problem are GMIN [40], GMAX [41], and
GWMIN2 [42]. The GMIN algorithm repeats the following
process until no vertex can be selected (the graph is empty):
select a vertex of the minimum degree from the graph and
put it into the set I (I is an empty set at the beginning of the
algorithm), then remove this vertex and its neighbors. The
GMAX algorithm deletes a vertex of the maximum degree
at each step until no vertex can be deleted (no edge in the
graph), then puts all the remaining vertices into the set I . The
result set I is the MWIS. Sakai et al. [42] showed that both

GMIN and GMAX can give a MWIS where the total weight
is greater than or equal to

∑
v∈V (G) ω(v)/(deg(v)+1) (ω(v) is

the weight of v, deg(v) is the degree of v), while GWMIN2 can
give a MWIS that the total weight is greater than or equal to∑

v∈V (G) ω(v)
2/

∑
u∈neighbors(G,v) ω(u) (neighbors(G, v) rep-

resents all the neighbors of v in G).
Du and Zhang [43] proposed a distributed MWIS algo-

rithm. Their algorithm allows each node to make a partial
solution, where each node broadcasts the partial solution as
a message to each of its neighbors. To achieve the different
trade-off between approximation accuracy and space com-
plexity, they introduced a parameter H to lead the nodes to
truncate some partial solutions before broadcasting the mes-
sage. The higher the H value, the more accurate approxima-
tion their algorithm can achieve. When H = +∞, the nodes
will not truncate any partial solution. The problem of this
algorithm is when the number of nodes is huge, the message
size could be exponentially large.

A. GWMIN2 Algorithm
To find the MWIS on a given undirected graph G = (E,V )
(E is the set of edges, V is the set of vertices; we use the same
graph representation in our proposed algorithm), the first
step in GWMIN2 algorithm is to use an equation (Eq. 1) to
evaluate the cost of each vertex v ∈ V .

cost(G, v) =
ω(v)∑

u∈neighbors(G,v) ω(u)+ ω(v)
(1)

The second step in GWMIN2 is to pick the vertex v with
the highest cost and then add v into the independent set I .
Finally, delete v and its neighbors from G, and repeat the first
and the second steps until no vertex can be selected. Set I is
the solution.

In a simple example MWIS problem depicted in Figure 3,
there are four vertices {v1, v2, v3, v4}with weights {7, 7, 9, 6}
respectively. We use Eq. 1 to get the cost of each of them:
• cost(G, v1) = 7/23 ≈ 0.3043478261
• cost(G, v2) = 7/20 = 0.35
• cost(G, v3) = 9/22 ≈ 0.4090909091
• cost(G, v4) = 3/11 ≈ 0.2727272727
Vertex v3 has the highest cost value. Thus, we add v3 to

I , and remove v3 and its neighbors from G. By repeating the
above steps, we get the MWIS: I = {v3, v2}. The total weight
of vertices in I is 16. Because this example is straightforward,
the result is the best possible solution. However, when the
graph is large, GWMIN2 can only guarantee a relatively
optimal solution.

B. MWISBAII
Maximum Weight Independent Set Based Algorithm
(MWISBA) [38] ideally assumes that the interference range
does not exist. Thereby, in nature, it cannot detect and
avoid type-b reader-to-reader collisions. Based onMWISBA,
MWISBAII [2] considers the interference range, which
allows the RFID system to avoid all types of collisions
depicted in Figure 1. The main idea of the MWISBAII is to
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FIGURE 3. An example MWIS problem. Each circle represents a vertex;
the red number beside each vertex represents the weight of that vertex.

FIGURE 4. An example RFID system with four readers (R1, R2, R3,
and R4).

transform the reader-coverage collision avoidance (RCCA)
problem into a MWIS problem. The GEMIN2 algorithm is
then used to solve this MWIS problem. Lastly, the solution
of MWIS problem can be transformed back to the solution of
RCCA problem.

For example (see Figure 4), there are four readers in a dense
RFID reader system. Assume each reader only has one inter-
rogation range, and the maximum number of tags that can be
read by each reader is α = 10.We use integer i to represent the
ith reader. In this example, i ∈ {1, 2, 3, 4}. To transform this
RCCA problem into MWIS problem, first, the MWISBAII
will append a vertex vi to graphG if the number of tags within
the interrogation range of the ith reader is less than or equal
to α. If there are any tags within both the interrogation range
of the ith reader and the interference/interrogation range of
the jth reader, an edge will be associated to vi and vj in G.
Therefore, this RCCA problem will be transformed into the
MWIS problem shown in Figure 3. The solution of the above
MWIS problem is I = {v3, v2}, which was mentioned before.
This means that R3 and R1 should be activated to allow
the RFID system to read as many tags as possible without
collision.

IV. THE DISTRIBUTED MWISBAII
To allow each RFID reader to be involved in the computation
and decision process, we proposed a distributed MWISBAII
in [1]. In our distributed algorithm, we assume that each

reader already has the information on how many tags within
its interrogation and interference range (in practice, one could
use RFID positioning technology to collect that informa-
tion [44]). Besides, each reader should have a local data field
that contains the following components:

• A local undirected graph (or local graph) G∗ =
(V ∗,E∗).

• The status of reader (STAT) that has four possible values:

– LOCK: The reader will not receive signal from
neighbor readers.

– OPEN: The reader is waiting for signals from neigh-
bor readers.

– ACTIVE: The reader is activated.
– OFF: The reader cannot be activated.

• A sender buffer BUFFERout .
• A receiver buffer BUFFERin.

Readers communicate with each other through signals,
which we define as a six-tuple: (i_, j_,CODE,VALUE). The
main idea of the distributed MWISBAII is to let each reader
build a local graph with the one-hop information. Then, let
each reader compute and broadcast the cost. Readers make
local decisions (whether to activate or not) regarding their
local graphs. If a reader cannot decide on this iteration,
it will move on to the next iteration until the decision been
made.

The algorithm can be described as the following steps
(suppose this reader is the ith reader):
Step-1: Initialize the graphG∗ = (V ∗,E∗). First, set STAT

to LOCK. For the ith reader, if |Ri| ≤ α, then we associate a
vertex vi in G∗. The weight of vi is equivalent to |Ri|. We call
vi a local vertex. For all readers, other than the ith reader (∀j ∈
{j|1 ≤ j ≤ N }): if R′i

⋂
R′j 6= ∅, we associate a vertex vj (we

call it non-local vertex) and an edge (vi, vj) toG∗. Go to step-3
(skip step-2).

Step-2: Remove all the redundant vertices in G∗ (if the
program just finished executing step 1, then this step will be
skipped). For each non-local vertex vj(j 6= i, vj ⊆ V ∗), if the
status (STAT) of the jth reader is OFF, we simply remove vj
from G∗. If the status (STAT) of the jth reader is ACTIVE,
we remove vj and its neighbors from G∗. Go to step-3.

Step-3: Compute the cost value of the local vertex. For
each local vertex vi, the cost value of it is calculated by Eq. 1.
Go to step-4.

Step-4: Prepare the signals to be sent. For each non-local
vertex vj inG∗, if there is an edge (vi, vj) between it and a local
vertex, we create a signal (i_ = i, j_ = j,CODE=UPDATE,
VALUE= cost(G∗, vi)). Afterwards, we put this signal into
the sender buffer BUFFERout . Go to step-5.

Step-5: Send and receive signals alternatively. Set the
status (STAT) to LOCK. For each signal (i_, j_,CODE,
VALUE) in BUFFERout ; if the i_th reader’s status (STAT)
is ACTIVE, we send this signal to the i_th reader (put into
the i_th reader’s BUFFERin), and remove this signal from
BUFFERout . Change the status (STAT) to OPEN. If there are
non-local vertices in G∗, wait for a short period of time τ
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FIGURE 5. The readers’ local data fields at each step of the first iteration by applying the distributed MWISBAII algorithm on a
simple example. ‘‘w’’ denotes vertex weight; ‘‘c’’ denotes vertex cost.
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to receive signals. Repeat step 5 until BUFFERout is empty
and the number of signals in BUFFERin equals the number
of non-local vertices in G∗. Go to step-6.
Step-6: Process the signals in BUFFERin. Set the sta-

tus (STAT) to LOCK. For each signal (i_, j_, CODE,
VALUE) in BUFFERin: if the CODE=UPDATE, we update
the cost value of vi_ to VALUE; else, if CODE = ACTI-
VATED, we remove the vertex vi_ and the vertex vj_ from G∗

(just ignore it if vj_ has already been removed); else (CODE
= DEACTIVATED), we simply remove vi_ from G∗. Go to
Step-7.

Step-7: Make a local decision. If G∗ is empty, change
the status (STAT) to OFF, and for each non-local vertex vj,
send a signal (i_ = i, j_ = j, CODE=DEACTIVATED,
VALUE=N/A) to the jth reader. Following this, stop the
algorithm. If G∗ is not empty, find the vertex with the highest
cost value. If this vertex is a local vertex vi: change the
status (STAT) to ACTIVATE, and for each non-local vertex
vj, send a signal (i_ = i, j_ = j,CODE=ACTIVATED,
VALUE=N/A) to the jth reader, and stop the algorithm. If the
vertex with the highest cost value is not a local vertex, then
go to step-2 (next iteration).

The deletion of vertices in a reader’s local graph may cause
the need for its neighbor readers to delete some of the vertices
in their local graph. This may result in a domino effect. Due
to the consideration of efficiency, we need to reduce the
number of messages transmitted between readers. Therefore,
in some cases, when a reader has made the decision, it will
not send any signal to the other readers. This may finally
cause a deadlock in the system [45]. To resolve the deadlock
problem and assure a higher efficiency, we set a threshold
of time limit for each reader. If the amount of time that
a reader spends in any step is larger than the threshold,
the reader will spontaneously set its status to OFF and stop the
algorithm.

Define the average number of vertices in G∗ as n. Then
each step in this algorithm has a time complexity ofO(n), and
the time complexity of each iteration is also O(n). Moreover,
because each reader only needs to get its one-hop neigh-
bor readers updated, the complexity of message exchange is
O(n). In Figure 5, we show the execution of the distributed
MWISBAII on the example in Figure 4 step by step. After the
first iteration, reader 2 (R2) and reader 3 (R3) are activated.
In the second iteration (which is not shown in Figure 5),
reader 1 (R1) and reader 4 (R4) will receive and process the
signals sent by reader 2 and reader 3. At the end of the second
iteration, reader 1 and reader 4 will be deactivated.

V. THE PROPOSED MACHINE LEARNING AUXILIARY
APPROACH
In practice, the tags are randomly distributed in the RFID
system. Some RFID readers may have more tags, while other
RFID readers may have fewer tags. This uneven distribution
could be highly skewed. If the RFID readers merely make
decision on their local (1-hop) information, some valuable
RFID readers (contribute more tags to the whole system)

FIGURE 6. A 100m× 100m simulated area with 500 randomly assigned
tags (tags are shown as dots). The interval of nearest readers is 7m;
d = 5m; β = 1.25.

may not be successfully activated. We assume that there
are hidden patterns which can help the distributed algo-
rithm to make a better decision if the geological position
of each RFID reader is fixed. Which means that, with only
the 1-hop local information and some empirical knowledge
on the system environment, we could improve the perfor-
mance of the distributed algorithm. Based on the assump-
tion, we propose a machine learning auxiliary approach for
our distributed MWISBAII algorithm previously introduced
in [1].

To implement the proposed approach, we require that
each RFID reader has a neural network model and a local
ego-network graph. The RFID readers could communicate
with their nearby readers through a wired connection. How-
ever, if the wireless connection among RFID readers is
required, the communication should leverage a channel that
will not interfere with the RFID interrogation. Moreover,
the wireless communication range should be at least d + d ′.
Because when the distance between two RFID readers is
greater than d + d ′, the collisions we mentioned previously
will not happen, and these two readers do not need to contact
each other directly.

There are two stages in the proposed approach. The
first stage is the machine learning stage, which is required
only when the dense RFID system is set up. This stage
primarily happens on the central server because running
simulations and training a neural network model require
high-performance computing resources. At the end of the
machine learning stage, the central server broadcasts the
trained neural network weights to each reader, and each
reader updates its neural network model with the received
weights. The second stage is the application stage, which
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FIGURE 7. The flowchart of machine learning stage.

FIGURE 8. Neural network architecture. From left to right are input layer
(4 neurons), the first hidden layer (16 neurons), the second hidden layer
(16 neurons), and the output layer (1 neuron).

runs in each reader. In this stage, each reader collects the
information from its neighbor readers to initialize a local
graph. The neural network model is used to score each reader
afterward. A reader will be activated if it has the highest
score among its neighbor readers. Finally, the distributed
MWISBAII algorithm proposed in [1] is used to arrange the
rest of the readers. In this section, we describe the proposed
approach in detail.

A. MACHINE LEARNING STAGE
This stage has three sub-phases: (1) data collection,
(2) training the neural network, and (3) broadcasting the

FIGURE 9. The flowchart of application stage.

trained weights. We run simulations in the data collection
phase to collect training data. We assume the simulated area
is 100m × 100m (m denotes unit meter), each reader has
the identical specification (same α and β), and the readers
are uniformly distributed, (see Figure 6). We assume that the
maximum number of deployed tags is 9 = 100ψ , where
ψ is a positive integer value. We run ten random simula-
tions for each number of tags in {100ρ | 1 ≤ ρ ≤ ψ,

ρ ∈ N}. At the start of each simulation, we record the
following information of each reader (i denotes the ith reader):
weight (ωi), cost (ci), average weight of neighbors ($i), and
average cost of neighbors (σi). Weight ωi denotes the number
of tags within the ith reader; cost ci is computed through Eq. 1.
Then, we run theMWISBAII to get the solution. The solution
is recorded in 3, where 3i ∈ {0, 1} (3i = 0 represents
the ith reader is not active; 3i = 1 represents the ith reader
is active;). Each sample is a quintuple: (ωi, ci,$i, σi,3i),
where (ωi, ci,$i, σi) is the input to the neural network, and
3i is the target output. If the number of positive samples
(3i = 1) and the number of negative samples (3i = 0) are
not equal, we randomly drop some samples from the majority
group of samples to make the number of samples in both
groups are equal.

The neural network architecturewe use is a fully-connected
feedforward network with two hidden layers. Each hidden
layer has 16 neurons; the input layer has 4 neurons which
match the 4 input values (ωi, ci,$i, σi); the output layer only
has 1 neuron (see Figure 8). Because the neural network
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FIGURE 10. The testing ROC curves on setting 2 (left column), setting 5 (middle column), and setting 8 (right column).

FIGURE 11. Readers clustered by k-means clustering algorithm. From left to right, the number of clusters (k) are two, three, and four.

weights can be represented as matrices, the total amount of
weights of this neural network is 4×16+16×16+16×1 =
336 (not consider bias weights). We use 32-bit floating-point
data type for neural network weights. Therefore the network
weights take 10,752 bits (equivalent to 1,344 bytes) memory.
We use rectified linear units (ReLU) [46] as the activation
function of the hidden layers, and use the sigmoid activation
function in the output layer. The neural network loss value is
the mean squared error (MSE) of the neural network outputs
and the target outputs. We use Adam optimizer [47] with
a fixed learning rate (10−3) to optimize the neural network
(minimize the loss value). We train the neural network on
the training samples 500 times (epochs), and the training
batch size is 16 (each training step takes 16 samples). After
training, we broadcast the trained neural network weights to
each reader, and each reader assigns the received weights to
its neural network model. Figure 7 depicts the flowchart of
machine learning stage.

B. APPLICATION STAGE
This stage has two sub-phases. In the first sub-phase, we first
let each reader establish its local ego-network graph G∗. The
center node (ego node) of the local graph represents the
reader itself, where the other nodes (external nodes) represent
the neighbor readers that have a conflict with this reader

(if we active this reader, all of its neighbor readers should
not be activated; otherwise, if any of its neighbor readers
is activated, this reader cannot be activated). Each node in
the local graph should contain the following information
(i denotes the ith reader): weight (ωi), cost (ci), score (si),
and status (2i). The score si is initialized to 0 and will be
generated by the neural network once this reader has all the
input information ready. The status 2i is an indicator of
the corresponding reader’s status (STAT). 2i = −1 repre-
sents the STAT of the ith reader is either LOCK or OPEN;
2i = 0 or 1 represent the STAT of the ith reader is OFF
or ACTIVE, respectively. If ωi is either 0 or greater than α,
the ith reader should be deactivated. Here, we skip the detail
of the communication between readers. We can run our pre-
viously proposed distributed algorithm up to step-6 (include
step-6) to complete the node cost information in the local
graph.

Based on the information (ω and c of each node) stored
in G∗, each reader computes $i and σi. Then, each reader
(reader i) inputs (ωi, ci,$i, σi) to its neural network, and
use the neural network output as its score si. Once a reader
updated the score of all the graph nodes (both the ego node
and the external nodes), this reader will find the node that
has the highest score in its local graph. If the node with
the highest score is the ego node, this reader is activated
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FIGURE 12. Performance evaluation results when reader interval is 6m.

(set 2i to 1). If any neighbor readers of a reader are acti-
vated before this reader, this reader should be deactivated
(set2i to 0). If there are more than one nodes (include the ego

node) have the highest score, or the only nodewith the highest
score is an external node, this reader will enter the second
sub-phase which leverages the algorithm proposed in [1] to
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FIGURE 13. Performance evaluation results when reader interval is 7m.

let the rest of the readers whose STAT is neither OFF nor
ACTIVE (2 = −1) make decision. Figure 9 depicts the
flowchart of application stage.

The time complexity (each iteration) of the previously
proposed distributed algorithm is O(n), where n is the aver-
age number of vertices in G∗. Thereby, the time complexity
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FIGURE 14. Performance evaluation results when reader interval is 8m.

for initializing G∗ in the application stage is O(n). The
time complexity for computing either $i or σi is also O(n),
because there are n − 1 external nodes in G∗ on average.

The neural network has a fixed number of parameters and
operations. Thus, the time complexity for computing si is
O(1). In summary, the time complexity of the application
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TABLE 1. Simulation settings for training.

stage is equivalent to the previously proposed distribute
algorithm.

VI. EXPERIMENTAL RESULTS
In the experiments, we simulated a square area (100m×100m)
to deploy the readers and tags. We assume the interrogation
range d of each reader is 5m; the interference range d ′ of each
reader is d ′ = dβ, where β can be 1.15, 1.25, or 1.35. Each
reader can read atmost 10 tags (α = 10). The positions of tags
are randomly generated. The readers are uniformly assigned.
The interval (horizontally and vertically) between two nearest
readers can be 6m, 7m, or 8m. Figure 6 depicts an example
simulated area where the number of tags is 500, the reader
interval is 7m, and β is 1.25.
Table 1 depicts the settings of the simulations for training

the neural network. To collect data with more variety, for
each setting, we simulate ten times for each number of tags in
{100, 200, 300, 400, 500}. Therefore, in the later experiments
of evaluating the performance of the proposed algorithm,
the number of deployed tags can be from 100 to 500. We ran-
domly sampled 60% of the collected data points as training
data, 20% data points as the validation data, and use the
other 20% data points as testing data. Figure 10 shows the
testing receiver operating characteristic (ROC) curves under
setting 2, 5, and 8. In all of the experiments, the area under
the curve (AUC) is greater than or equal to 0.8.

To get some visual insights into the simulation, under
simulation setting 5, we apply k-means clustering algorithm
on the readers (k = 2, 3, 4). Note well, each reader has the
average ωi, ci, $i, and σi over simulations as its fingerprint.
When k = 2, as shown in Figure 11 (the leftmost sub-figure),
the readers at the edge are classified into one cluster. The
reason is that in our simulations, the readers at the edge has
a different number of neighbors than the other readers. When
k = 3 or k = 4, the pattern of clusters is not obvious. Because
theoretically, under our simulation setting, only the readers at
the edge and the readers surrounded by the readers at the edge
have an evident difference.

In the performance evaluation experiments, we use all the
simulation settings in Table 1. For each setting, we ran the
centralized MWISBAII, the proposed machine learning aux-
iliary approach (DMWISBAII w/ ML), and the distributed
MWISBAII algorithm without machine learning assistance

(DMWISBAII w/o ML) separately. The number of deployed
tags is from set {100, 150, 200, 250, 300, 350, 400, 450, 500},
for each, we ran the simulation ten times and show the average
results in Figure 12, Figure 13, and Figure 14. The evaluation
metrics are the number of tags can be read by the RFID
system and the T/R ratio. From the experiments, we can see
that the proposed algorithm with machine learning assistance
can get almost the same performance as the centralized
MWISBAII. Besides, the proposed algorithm with machine
learning assistance is always better than the one without
machine learning assistance.

An interesting phenomenon in the performance evaluation
results is that the number of tags that can be read by the
system is less than the number of deployed tags. Also, with
the number of deployed tags increases, the number of tags can
be read increases slower. The explanation is that since each
reader can read at most 10 tags (α = 10), once the number
of deployed tags within the interrogation range of a reader is
greater than 10, this reader cannot be activated (this situation
can be seen as a type of collision), the system might fail to
read those tags.

VII. CONCLUSION AND FUTURE WORK
In our previous research, we found that due to the lack of
global information, there is a gap in performance between the
distributed MWISBAII and the centralized MWISBAII. The
centralized MWISBAII algorithm will active the reader with
the highest cost value in each iteration, and this highest cost
value is a global highest cost. However, in [1], the distributed
algorithm tends to miss some critical readers which should
be activated. To solve this problem, we proposed a machine
learning auxiliary approach to help each reader make a better
decision. The machine learning model is a multi-layer neural
network, which is trained on a central server only when
the whole RFID system is set up for the first time. The
training data is generated by running MWISBAII on multiple
simulations. Therefore, the neural network is a supervised
learning empirical model. The trained neural network model
will be broadcast to each reader to predict the score of each
reader. Although the training process is binary classifica-
tion learning, we can interpret the output generated by the
trained neural network model as some confidence level or
score. Because the constraint of sigmoid activation function,
the score is a continuous value between 0 and 1. A higher
score means the neural network predicts that there is a higher
probability to activate this reader to achieve better perfor-
mance. The experimental results proved that the machine
learning auxiliary approach helps the proposed distributed
algorithm to make a more effective solution.

The experiments in this paper followed the assumption
that RFID readers are uniformly distributed. Nevertheless,
in many real-world scenarios, the distribution of RFID read-
ers could be manifold. Therefore, merely training a single
neural network model and broadcast the trained model to
every RFID reader might not improve the performance signif-
icantly. In the future, we can employ unsupervised learning
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clustering algorithm such as k-means and mean-shift clus-
tering to divide the RFID readers into groups based on the
features (ωi, ci,$i, σi), and train a neural network model for
each group of RFID readers individually. One challenge of
this approach is that it is difficult to find an appropriate k
value (the number of clusters). The other challenge is that,
once the neural network model is trained for each cluster
of readers, distributing the trained models to each cluster of
readers increases the communication overhead.

Furthermore, extending the proposed approach to the dense
RFID readers system where each RFID reader has more than
one interrogation (and interference) ranges is also our future
work.
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