
Received January 30, 2020, accepted February 26, 2020, date of publication March 2, 2020, date of current version March 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977824

NALPA: A Node Ability Based Label Propagation
Algorithm for Community Detection
YUN ZHANG 1, YONGGUO LIU 1, JIAJING ZHU 1, CHANGHONG YANG 2,
WEN YANG 2, AND SHUANGQING ZHAI 3
1Knowledge and Data Engineering Laboratory of Chinese Medicine, School of Information and Software Engineering, University of Electronic Science and
Technology of China, Chengdu 610054, China
2Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
3School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China

Corresponding author: Yongguo Liu (liuyg@uestc.edu.cn)

This work was supported in part by the National Science and Technology Major Project of the Ministry of Science and Technology of
China under Grant 2018ZX10715003-002, in part by the National Key Research and Development Program of China under Grant
2017YFC1703905 and Grant 2018YFC1704105, and in part by the Sichuan Science and Technology Program under Grant 2018GZ0192,
Grant 2019YFS0019 and Grant 2019YFS0283.

ABSTRACT Community is an important topological characteristic of complex networks, which is significant
for understanding the structural feature and organizational function of networks, and community detection
has recently attracted considerable research effort. Among community detection methods, label propagation
technology is widely used because of its linear time complexity. However, due to the randomness of the node
order of label updating and the order of label launching in label propagation, the instability of community
detection approaches based on label propagation becomes a challenge. In this paper, a new label propagation
algorithm, Node Ability based Label Propagation Algorithm (NALPA), is proposed to discover communities
in networks. Inspired from human society and radar transmission, we design four node abilities (propagation
ability, attraction ability, launch ability and acceptance ability), label influence and a new label propagation
mechanism to deal with the instability and enhance the efficiency. Experimental results on 42 synthetic and
14 real-world networks demonstrate that NALPA outperforms state-of-the-art approaches in most cases. In a
case study, NALPA is applied to a drug network in Traditional Chinese Medicine (TCM) and can discover
the drug communities where drugs have similar efficacy for treating Chronic GlomeruloNephritis (CGN).

INDEX TERMS Community detection, label influence, label propagation, node ability.

I. INTRODUCTION
Complex systems can be viewed as complex networks, such
as social networks, traffic networks, biological networks, etc.,
where nodes denote objects and edges indicate the interac-
tion among objects [1]. Analyzing the structural feature and
organizational function of complex networks is an impor-
tant research area. Among different features of networks,
community has received widespread attention, which is the
division of a network into the groups of nodes having dense
intra-connections and sparse inter-connections [2]. Overlap-
ping nodes are shared among different communities in net-
works [3]. Meanwhile, each node has different importance
reflecting its weight itself, for example, a node with large
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degree or locating in the center of networks owns large
importance [4], [5].

Significant researches have been carried out in identify-
ing communities, which is helpful for understanding and
exploiting networks more effectively [6], [7]. For exam-
ple, detecting communities in citation networks might find
the papers on related topics [8]. Community structures of
complex networks can be revealed by community detec-
tion algorithms [9], [10], including modularity optimization,
spectral clustering, hierarchical partition, label propagation,
information theory based algorithms, and so on [11], [12].
In this paper, we pay attention to label propagation based
algorithms for community detection because of their sim-
ple idea and near-linear time complexity. Label Propagation
Algorithm (LPA) is a fast community detection algorithm
with nearly linear complexity [12]. But it is known that
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LPA cannot detect overlapping communities in networks and
provide stable community partition, since a node only owns
one label and the node order of label updating is random.
Community Overlap PRopagation Algorithm (COPRA) is a
modified LPA method to uncover overlapping communities
by assigning nodes multiple labels with belonging coeffi-
cients [13]. If the belonging coefficients of labels are smaller
than 1/γ , the labels are filtered, where γ is a threshold to
regulate the number of communities that nodes can belong
to. When COPRA stops, if a node has several labels, in other
words, it is an overlapping node, then it is allocated to multi-
ple communities. However, COPRA still cannot obtain stable
communities, since the node order of label updating is also
random and COPRA randomly chooses one label in multiple
labels with same belonging coefficient of a node to propagate
to other nodes. To better discover communities, researchers
proposed many label propagation algorithms to handle the
instability problem by considering node and label importance
(their weight) to decide the updating order [7], [14]–[19].

By analyzing the label propagation process in above meth-
ods, we find that there are some limits: 1) the node order of
label updating is random, 2) node importance only measures
the weight of nodes themselves but does not evaluate their
influence to others, 3) a node only accepts the labels from its
neighbor nodes and spreads one label to others once although
this node may own many labels, 4) the weight of labels is
constant when the labels are launched from a node to another
node, whichmay cause the instability problem and leadmeth-
ods detecting erroneous communities. Some researches [7],
[14], [17]–[20] are proposed to solve the first problem to
enhance the stability. To our best knowledge, there are few
researches to deal with 2) - 4) problems.

In this paper, a new label propagation algorithm, Node
Ability based Label Propagation Algorithm (NALPA), is pro-
posed for community detection in networks. Inspired from
real world, we design four node abilities (propagation ability,
attraction ability, launch ability and acceptance ability) and
label influence to provide a new label propagationmechanism
and confirm the node order of label updating and the order of
label launching and accepting for enhancing efficiency and
improving the instability.

In society, people have large importance if they own a
senior role, then they have strong capability to propagate
more views to others in wider range, and vice versa [21], [22].
On the other hand, the influence of a person also comes
from its friends [21], [22]. For example, under the condition
that people A and B own the same importance themselves,
if the friends of person A have stronger importance than
those of person B, then person A is often considered to own
larger influence than person B. Thus, we can consider that
the total influence of a person consists of personal impor-
tance and friends’ importance. Then they are affected by
the ones with small influence in low possibility [21], [22].
By modeling people as nodes and their relations as edges,
we can construct a social network to describe people and their
relations. Like human society, a node has large importance

FIGURE 1. Illustration of four abilities and label influence.

itself if it has large degree or locates at the central position of
networks [4], [5]. The node with larger influence has stronger
ability to receive the labels from farther nodes and spread
more labels to farther nodes [21], [22]. Four ability factors
of nodes, propagation ability, attraction ability, launch ability
and acceptance ability, are defined to model the influence
of people as shown in Figure 1(a). Propagation ability
and attraction ability can reflect the influence range of a
node, which consist of personal importance and neighbor
importance. Propagation ability denotes the distance where
the labels of nodes can be spread. Attraction ability denotes
the distance where nodes can receive the labels from other
nodes. The other two factors, launch ability and acceptance
ability, reflect the number of labels that a node can spread
and accept, respectively. In order to handle the randomness,
we fix the node order of label updating in the ascending
order of propagation ability. Different with node importance
[7], [15]–[19], the four abilities of nodes can reflect the
influence of nodes to others, which include the influence
range and the quantity of label launching and accepting.
A node can receive labels from farther nodes according
to propagation ability and attraction ability and can launch
and accept multiple labels according to launch ability and
acceptance ability, which is beneficial for detecting accurate
communities and converging fast.

The second inspiration is derived from radar transmis-
sion. If two radars are in the coverage of each other, they
identify each other and begin to transfer information. The
transmission intensity depends on radar power, the distances
between radars and the importance of information [23], [24].
After defining the ability factors of nodes, we design a
new label propagation mechanism and label influence to
mimic the mode and intensity of radar transmission as shown
in Figure 1(b), which is helpful for accelerating the label
propagation among nodes and discovering accurate commu-
nities. Like radar transmission, we design the label prop-
agation mechanism including the steps 1) determining the
nodes which can launch labels to the updating node, 2) deter-
mining the labels of nodes which are launched and their
quantity, 3) determining the labels which are accepted by the
updating node and their quantity and 4) starting propagation.
We find that existing label propagation based algorithms
consider that the weight of labels of a node (i.e., belong-
ing coefficients) is unchanged when labels arrive at other
nodes [7], [14], [17]–[20]. Similar with radar transmission,
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TABLE 1. Corresponding concepts.

the weight of labels should change according to the
importance of launcher, the distances among nodes and the
belonging coefficients of labels. Thus, we define label influ-
ence to reflect label weight when they arrive at a node by the
above three factors in NALPA. As a result, NALPA filters the
labels with small influence to improve accuracy and acceler-
ate convergence. If a label is more influential than others, then
nodes are assigned to the community characterized by this
label more possibly. The corresponding concepts between
real world and NALPA are listed in Table 1.

FIGURE 2. The framework of NALPA.

The framework of NALPA is shown in Figure 2. Firstly, all
nodes are initialized with labels, such as node id. Secondly,
node vi is chosen to update its labels according to propagation
ability. Then the surrounding nodes that can launch labels
to updating node vi are decided by propagation and attrac-
tion ability. Thirdly, surrounding node vj of node vi chooses
labels owning large belonging coefficient to spread to node
vi until the number of propagating labels equals to the launch
ability of node vj. During label propagation process, labels
are assigned with label influence when it arrives at node vi.
Fourthly, node vi accepts the labels with large label influence
until the number of accepting labels equals to the accep-
tance ability of node vi. Above steps except initialization
are executed iteratively until all nodes are updated. Finally,
if NALPA reaches termination condition, nodes are assigned
to communities by post-processing, else NALPA begins next
iteration.

Experimental results on synthetic and real-world networks
show that our proposed method provides better results than
state-of-the-art algorithms in most networks. The main con-
tributions can be summarized as follows.
• Four node abilities are defined to describe the influence
of nodes to provide a new label propagation mechanism
and decided the node order of label updating.

• Label influence is defined to reflect the importance of
labels when the label arrives at other nodes and deter-
mine the order of label accepting.

• We evaluate the effectiveness of NALPA on 42 synthetic
and 14 real-world networks.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III defines several terms
associated with node abilities and label influence. Section IV
describes our proposed method NALPA in detail. The exper-
imental setups and results are given in Sections V and VI,
respectively. Finally, Section VII concludes the paper.

II. RELATED WORK
A considerable amount of literature has been published
on finding communities in networks. We highlight a few
ideas that use label propagation to discover communities.
Raghavan et al. [12] introduced label propagation into com-
munity detection. Each node updates its label to another
one which is the most popular among its neighbors in LPA.
When LPA stops, the nodes with the same label are assigned
to the same community. However, LPA only can detect
non-overlapping communities in networks, and the discov-
ered communities have randomness because LPA randomly
chooses nodes to update. COPRA [13] and SLPA [25] are
proposed to discover overlapping communities in networks.
In COPRA, each node owns a set of labels, and labels have
the belonging coefficients reflecting their membership among
communities, which are updated by averaging the belonging
coefficients over all labels in neighbors. SLPA is proposed
for overlapping community detection based on the dynamic
process of the speaker-listener interaction. Nodes have the
memory spaces to store received labels, then nodes are allo-
cated to communities according to the frequency of labels in
the memory spaces when iterations end.

To better discover communities, researchers proposed
many label propagation algorithms to handle the instability
problem by considering the weight of nodes and labels.
Tong et al. [14] proposed Weighted Label Propagation Algo-
rithm (WLPA) to consider the weight of labels, which is
defined by the ratio of nodes’ degree to the average degree of
the networks. WLPA spreads the label with the largest weight
to handle the randomness. Sun et al. [20] proposed Dominant
Label Propagation Algorithm (DLPA) simulating the voting
process to consider the weight of neighbors. The confidence
of neighbors to a node is defined to measure the importance
of neighbors and is used to calculate dominant labels. As a
result, DLPA propagates dominant labels to improve the
instability. However, DLPA also updates the labels of nodes in
a random order, which leads to the instability concern.
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Liu et al. [15] proposed DLPA+ and introduced the confi-
dence variance of nodes to improve DLPA’s instability by
updating the labels of nodes according to their confidence
variance.

Apart from considering the neighbors of a node,
researchers also focused on the node itself. Xing et al. [16]
proposed a Node Importance Based Label Propagation
Algorithm (NIBLPA) to deal with the instability of LPA.
In NIBLPA, node importance is defined by k-shell decom-
position to measure the weight of nodes and decide the node
order of label updating, and the labels of more important
nodes are updated earlier. In addition, label importance is
defined by the node importance and degree of nodes to
determine the order of label choosing. Nodes choose the
label with the largest label importance to propagate. Based
on NIBLPA, Wu et al. [17] proposed LINSIA, in which
node and label importance are also defined to deal with
the instability. Different with NIBLPA, LINSIA utilizes
Extended Neighborhood Coreness centrality (ENCoreness)
to replace k-shell decomposition values and define the node
importance, since the k-shell decomposition fails to yield
the monotonic influence ranking of nodes because it assigns
many nodeswith the same k-shell value.Meanwhile, based on
the label importance defined in NIBLPA, LINSIA calculates
the label importance by multiplying an extra ratio, which
denotes the membership of node vj belonging to the com-
munity characterized by label l. Zhang et al. [18] proposed
label propagation algorithm LPA_NI based on node and label
importance. Different with NIBLPA and LINSIA, LPA_NI
defines the node importance by considering the priori impor-
tance of nodes calculating by Bayesian network from expert
knowledge. LPA_NI determines the node order of label
updating by node importance and selects important labels
to update the labels of nodes. Berahmand and Bouyer [9]
designed a label propagation algorithm LP-LPA. Based on
semi-local similarity methods, link strength is defined to
measure the relation power between two nodes and label
influence is considered to measure the popularity of each
community label for selecting initial nodes and avoiding
instability. Shen and Ma [19] proposed a Node Gravitation
based Label Propagation Algorithm (NGLPA), in which
labels are propagated by node gravitation defined by node
importance and node similarity. Different with above meth-
ods, NGLPA defines node importance by LeaderRank [26]
that computes the relations among nodes and its neighbors
iteratively and defines node similarity by Jaccard index.

Some researchers also considered nodes and their neigh-
bors simultaneously. Lu et al. [7] proposed a label propa-
gation algorithm LPANNI based on node importance, node
similarity and neighbor node influence, in which node impor-
tance is defined by node degree and the number of the trian-
gles formed by the node and its neighbors. Node similarity
is defined by a variation of Jaccard index, in which the
direct or indirect paths between nodes vi and vj are considered
and path length threshold α denoting the maximum of paths
is used to control computing complexity. Neighbor node

influence is defined by node importance and node similar-
ity to measure the influence of neighbor nodes on node vi.
LPANNI updates nodes in the ascending order of node impor-
tance and calculates belonging coefficients based on the
neighbor node influence.

Despite their initial success, there are still limitations for
existing approaches as mentioned above. To lift the limita-
tions, in this paper, we provide some ways as follows.
• Four node abilities are defined to measure fine-grained
node influence including the influence range and the
quantity of label launching and accepting to form a new
label propagation mechanism, which may be beneficial
for discovering accurate communities and converging
rapidly.

• Nodes can accept labels from farther nodes besides
neighbor nodes and launch multiple labels to other
nodes once, which can use more node and label infor-
mation and help the model detect communities fast and
accurately.

• Label influence is defined to measure the weight of
labels, which will change when they arrive at other
nodes during label propagation to help the model to
detect accurate membership of nodes in communities.

III. PRELIMINARIES
Given unweighted and undirected network G = (V ,E),
where V = {v1, . . . , vi, . . . , vN } represents node set, E =
{e1, . . . , ej, . . . , eM } represents edge set, and N andM denote
the number of nodes and edges, respectively. The neighbor
set of node vi is expressed as N (vi) = {vj|evivj ∈ E}, and
kvi denotes the degree of node vi. The label set of node vi is
expressed as B(vi) = {(l

vi
1 , c

vi
1 ), . . . , (l

vi
j , c

vi
j ), . . . , (l

vi
H , c

vi
H )},

where label lvij with belonging coefficient cvij is the jth label

of node,
H∑
j=1

cvij = 1, and H is the number of labels.

A. PROPAGATION ABILITY
The propagation ability of node vi reflects its influence range
and denotes the distance where its labels can be spread, which
is defined as

Pvi=Cvi × kvi+α
∑

vj∈N (vi)

kvj∑
vk∈N (vi)

kvk
× Cvj × kvj , (1)

where Cvi × kvi is the personal importance of node vi, which
is defined by closeness centrality Cvi and degree kvi [4], [5].
The second item represents the neighbor importance of node
vi, which is influenced by three factors, the weight, closeness
centrality and degree of neighbor vj. Closeness centrality
Cvi of node vi evaluates its centrality in networks, which is
defined as

Cvi =
N − 1∑
vj∈V

dvivj
, (2)

where dvivj is the shortest distance between nodes vi and vj.
Influence factor α ∈ [0, 1] is used to adjust neighbor
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importance to balance the personal and neighbor importance
of node vi. For handling the computing complexity of Eq. (2),
we set vj ∈ N (vi) in large networks. In order to deal with
the instability problem, we update the labels of nodes in the
ascending order of propagation ability, since the nodes with
small propagation ability can be affected by other nodes
easily.

B. ATTRACTION ABILITY
The attraction ability of node vi also reflects its influence
scope, however, it is different with propagation ability and
denotes the distancewhere it receives labels from other nodes,
which is defined as

Avi = |Pvi |. (3)

In society, if people can spread information in certain
range, they can obtain information in the same range [21].

C. LAUNCH ABILITY
Most label propagation algorithms only send a label once
in spreading process [7], [12]–[19], [25]. Spreading all
labels of node vi cannot obtain satisfying results [13]. How-
ever, the labels of node vi contain node and community
information [18]. If the methods only spread one label in the
propagation process, they need more iterations for discover-
ing communities because of losing some node and label infor-
mation possibly. Thus, we propagate partial labels according
to the launch ability of node vi to catch more network infor-
mation. The launch ability of node vi represents the number
of labels that node vi can propagate to other nodes, which is
defined as

Lvi = bP
β
vic. (4)

Launch factor β ∈ [0, 1] is used to adjust the number
of labels sent by node vi. If the launch ability of node vi is
smaller than 1, we make Lvi = 1 to ensure that node vi can
spread a label. In addition, node vi chooses the labels with
large belonging coefficients to launch. In real world, if people
have large influence, they can send plenty of information to
others [21], [22].

D. ACCEPTANCE ABILITY
In the procedure of label propagation, many labels with differ-
ent label influence may arrive at node vi. The label influence
of some labels is too small to have impact on community
partition. In this paper, we define the acceptance ability of
node vi as the number of labels that a node accepts, which is
defined as

Rvi = γ. (5)

Here, the acceptance ability is defined as a global thresh-
old γ ∈ N+ for simply filtering labels with small weight
and controlling the number of communities that nodes can
belong to [13]. Node vi accepts labels until their quantity
equals to its acceptance ability. In real world, people only

FIGURE 3. A sample network.

TABLE 2. Node abilities of the sample network.

accept information which is necessary and important for
them [21], [22].

Given a sample network [7] as shown in Figure 3, there
are nine nodes. These nodes can be classified into four types:
1) node 1 is the topology center of the network, 2) nodes 5 and
9 are the center of local groups, 3) nodes 2 and 4 are closed to
nodes 1 and 5, and nodes 6 and 8 are closed to nodes 1 and 9,
4) nodes 3 and 7 are closed to nodes 5 and 9, respectively.
Their closeness centrality, degree and four abilities are shown
in Table 2. We can find that nodes have large closeness
centrality, if they are in the center of network (e.g., node 1).
However, the difference of their closeness centrality is not
obvious. The personal importance of node vi (Cvi × kvi ) can
correct the closeness centrality with the degree of nodes.
It can be seen that personal importance can better reflect
the difference of nodes than closeness centrality. Further,
the influence of nodes is reflected obviously by propagation
ability. The values of attraction ability are equal to propa-
gation ability. The launch ability (β = 0.8) and acceptance
ability (γ = 2) are also calculated.

Here, we give an example to explain the steps of the
new label propagation mechanism. Assuming node 2 is the
updating node.
1) NALPA determines the nodes which can launch labels to

node 2. Node 2 has attraction ability Av2 = 3.02, thus it
can attract nodes 1, 3, . . . ,9 whose distance to node 2 <
3.02 to spread their labels. However, as the propagation
ability of node 7 is smaller than the distances between
node 2 and it, it cannot propagate their labels to node 2.
Thus, nodes 1, 3, 4, 5, 6, 8, 9 are found to spread labels
to node 2.

2) NALPA determines the labels of nodes which are
launched and their quantity. Node 1 can spread three
labels in the descending order of belonging coefficients,
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node 3 can spread one label, and nodes 4, 5, 6, 8
and 9 propagate two labels to node 2.

3) NALPA determines the labels which are accepted by
node 2 and their quantity, then node 2 can accept two
labels at most.

4) Starting propagation.

E. LABEL INFLUENCE
Existing label propagation methods only consider the weight
of labels in a node, we consider that the weight of labels
should change when they arrive at other nodes. Following
the above example, node 2 can accept two labels, however,
it may receive more than two labels. So which labels should
be accepted? Thus, label influence is defined to reflect the
weight of labels when they arrive at a node, which is different
from belonging coefficient cvij reflecting the weight of label
lvij in the label set of node vi. Like radar transmission, when
node vj launches label l to node vi, the label influence of label
l is related to the three factors, the propagation ability of node
vj, the distances between between nodes vi and vj and the
belonging coefficient of label l. The order of label accepting is
determined according to label influence, and we define label
influence as

LPl,vj→vi =
Pvj
dvivj
× c

vj
l . (6)

IV. THE PROPOSED ALGORITHM
In this section, we propose NALPA to address the instabil-
ity and enhance the efficiency. The overall process is first
described and then its time complexity is analyzed.

A. ALGORITHM DESCRIPTION
As shown in Figure 2, the procedures of NALPA include
initialization, node choice, label launch, label acceptation,
termination judgment and post-processing.
Step 1 Initialization
In this step, all nodes are assigned with the initial label, and

their node abilities are computed.
1) Set S = V , B(vi) = {(l

vi
1 = i, cvi1 = 1)} for vi ∈ V and

a = 1, t = 1. Here, S denotes the node set, in which
nodes have not been updated.

2) Four node abilities Pvi ,Avi ,Lvi and Rvi for vi ∈ V
are computed, then the nodes in S are ordered in the
ascending order of propagation ability.

Step 2 Node choice
In this step, node vi is chosen to update its labels.

Then the nodes that can launch labels to node vi are
determined.
1) Node vi satisfying Pvi = min(Pvj |vj ∈ S) is selected.
2) If node vj satisfies dvivj ≤ Avi , then V

A
vi = V A

vi

⋃
{vj}.

If there does not exist node vj satisfying dvivj ≤
Avi , then V A

vi = V A
vi

⋃
N (vi), where V A

vi denotes the
nodes attracted by node vi.

3) If node vj ∈ V A
vi and Pvj ≥ dvivj , then V

S
vi = V S

vi

⋃
{vj}.

If @vj ∈ V A
vi satisfies Pvj ≥ dvivj , then V S

vi =

V S
vi

⋃
N (vi), where V S

vi denotes the nodes that can launch
their labels to node vi.

Step 3 Label Launch
In the step of label launch, node vj in V S

vi launches their
labels to node vi in the descending order of belonging
coefficient.

1) For node vj in V S
vi , label lvj satisfying cvj =

max(cvk |(lvk , cvk ) ∈ B(vj)) is selected, then B(vj) =
B(vj) − {(lvj , cvj )},B(vi) = B(vi)

⋃
{(lvj ,LPlvj ,vj→vi )},

and nLvj = nLvj + 1 until nLvj = Lvj or B(vj) = ∅, where
nLvj is the number of labels launched by node vj. B(vj) is
recovered for next label propagation.

2) If the labels with the same id arrive at node vi, their label
influence are summed.

Step 4 Label Acceptation
After the procedure of label launch, many labels may arrive

at node vi. This step is used to accept useful labels and filter
the labels with small label influence.

1) We first sort the labels of node vi by their label influence,
then B(vi) = {(l

vi
1 ,LPlvi1

), . . . , (lvij ,LPlvij
), . . . , (lviR ,

LPlviR
)} after label launch step, where R is the

number of labels received from other nodes. Then
node vi accepts Rvi labels in order. Thus, B(vi) =
{(lvi1 ,LPlvi1

), . . . , (lvij ,LPlvij
), . . . ,

(lviRvi
,LPlviRvi

)}.

2) By normalizing the label influence of labels in B(vi),
we can obtainB(vi) = {(l

vi
1 , c

vi
1 ), . . . , (l

vi
j , c

vi
j ), . . . , (l

vi
Rvi
,

cviRvi
)}.

3) For label
(
lvij , c

vi
j

)
in B (vi), if c

vi
j < 1/Rvi , then B (vi) =

B (vi)−{
(
lvij , c

vi
j

)
}. Then we obtain the updated B(vi) of

node vi by normalizing again. The updating of labels of
node vi is finished in the tth iteration.

4) If a = N , step 5 is executed, else the method sets a =
a+ 1, S = S − {vi} and returns to step 2.

Step 5 Termination Judgment
The proposed algorithm calculates the minimal number set

mt of nodes signed by each community identifier [13], [14].
Ifmt = mt−1, NALPA goes to step 6 for post-processing, else
sets S = V , a = 1, t = t + 1 and returns to step 2.
Step 6 Post-processing
When NALPA stops, nodes containing community label

l are allocated to community Ol . Overlapping nodes are
allocated to multiple communities.

To understand the label propagation of NALPA intuitively,
we present the process of NALPA in the sample network
in Figure 4. Firstly, as shown in Figure 4(a), the nine nodes are
assigned unique labels with belonging coefficients: (1, 1),
(2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1) and (9, 1).
Second, by calculating four abilities and sorting the nodes in
the ascending order of propagation ability, then we can
get the updating sequence 3→7→2→6→4→8→5→9→1.
As shown in Figure 4(b), node 3 is selected to update its label.
The attraction ability of node 3 is 2.13, thus, it can attract
nodes 1, 2, 4 and 5 to launch their labels, and the propagation

VOLUME 8, 2020 46647



Y. Zhang et al.: NALPA: A NALPA for Community Detection

FIGURE 4. Label propagation process of NALPA on the sample network
(in the ascending order of propagation ability 3 → 7 → 2 → 6 → 4 → 8 →

5 → 9 → 1).

abilities of nodes 1, 2, 4 and 5 are all larger than the distances
between node 3 and them. Thus, nodes 1, 2, 4 and 5 spread
(1,1), (2,1), (4,1) and (5,1) to node 3, respectively. When the
labels arrive at node 3, we calculate their label influence and
obtain node 3: (1, 2.80), (2, 3.02), (4, 3.02) and (5, 3.63). Then
node 3 accepts two labels (4, 3.02) and (5, 3.63) (NALAP
chooses label 4 randomly from labels 2 and 4 because they
have the same label influence). However, the belonging coef-
ficient of label 4 (3.02/(3.02+ 3.63) = 0.45) is smaller than
0.5 (1/Rvi = 0.5), then label 4 is filtered. Finally, the label of
node 3 is updated as (5, 1). In the same manner, the label of
node 7 is updated as (9, 1). As shown in Figure 4(c), node 2
begins to update its label. The attraction ability of node 2 is
3.02, thus, it can attract nodes 1, 3, . . . , 9 to launch their labels.
However, the propagation ability of node 7 is smaller than the
distances between node 2 and it (Pv7 = 2.13 < 3). Then only
nodes 1, 3, 4, 5, 6, 8 and 9 can spread (1, 1), (5, 1), (4, 1),
(5, 1), (6, 1), (8, 1) and (9, 1) to node 2, respectively. When
the labels arrive at node 2, we compute their label influence
and obtain node 2: (1, 5.6), (5, 2.13), (4, 1.51), (5, 3.63),
(6, 1.51), (8, 1.51) and (9, 1.815). Then node 3 accepts (1, 5.6)
and (5, 5.76). Because the belonging coefficient of label 1
(5.6 / (5.6 + 5.76) = 0.49) is smaller than 0.5 (1/Rvi ), then
label 1 is filtered. Finally, the label of node 2 is updated as
(5, 1). In the similar way, nodes 6, 4, 8 update their labels as
(9, 1), (5, 1) and (9, 1) in turn, respectively. Finally, as shown
in Figure 4(d), the labels of nodes 5 and 9 stay the same. Then
the labels of node 1 are updated as (5, 0.5) and (9, 0.5). As a
results, nodes 1, 2, 3, 4 and 5 are assigned to a community,
and nodes 1, 6, 7, 8 and 9 belong to another community.
Here, node 1 belongs to two communities at the same time,
in other words, node 1 is an overlapping node which has equal
belonging coefficient to both communities. It is worth that
NALAP only needs one iteration to obtain community results
in the sample network. As a contrast, LPANNI [7] needs three
iterations in the same network, which illustrates that NALPA

can obtain satisfying results and converge fast for using more
node and label information.

B. COMPLEXITY ANALYSIS
The time complexity of NALPA is estimated as follows.
1) Initialization: Initializing nodes with unique labels and

computing node abilities needs time O(N ). Quick sort
algorithm is used for sorting nodes by propagation abil-
ity with time O(NlogN ). As a result, initialization takes
time O(NlogN ).

2) Node choice: Choosing a node to update its label and
determining nodes to launch labels take constant time.

3) Label launch: Determining node set V S
vi costs time

O(n1)+O(|V A
vi |) and launching labels to node vi takes the

worst timeO(n2|V S
vi |), where n1 is the maximum number

of nodes attracted by node vi, and n2 is the maximum
number of labels of nodes in V S

vi . In general, n1 � N
and n2 � N . Thus, label launch takes constant time.

4) Label acceptation: Accepting labels costs time O(n3),
where n3 is the number of labels arrived at node vi.
In general, n3 � N . Thus, label acceptation uses con-
stant time.

5) Termination judgment and post-processing: As same as
COPRA, the former takes time O(γN ), and the latter
takes time O((γ 3

+ 1)N + γ (N +M )) [13].
For the updating of the labels of node vi, steps 2-4 need

constant time. Thus, updating the labels of all nodes in
one iteration needs time O(N ). Then the time complexity
of NALPA is O(NlogN + γM + (γ 3

+ 2γ + 1 + t)N ).
Thus, the time complexity of NALPA is near O(NlogN +
c1N + c2M ), where c1 and c2 are positive integer.

V. EXPERIMENTAL SETUPS
In this paper, extensive experiments are conducted on Intel
Core i3-4370 CPU running at 3.80 GHz with 8 GB mem-
ory to evaluate the effectiveness of NALPA. Each algorithm
independently runs 50 times. The synthetic and real-world
networks are introduced firstly. Then the baselines and evalu-
ation criteria are described. Finally, we conduct the parameter
analysis.

A. DATASETS
In this paper, 42 synthetic and 14 real-world networks
are adopted to evaluate the performance of the proposed
algorithm. Synthetic networks are generated based on LFR
benchmark which imports heterogeneity into degree and
community size distributions governed by power laws with
exponents τ1 and τ2, respectively, [27]. In experiments,
the synthetic networks are generated with some parame-
ters described in Table 3. Mixing parameter µ denotes the
expected fraction of edges of a node connecting to other
communities. To generate the networks with overlapping
communities, we set the number of overlapping nodesOn ≥ 1
and assign nodes to Om ≥ 1 communities.
The synthetic networks are given in Table 4. We use the

networks with τ1 = 2 and τ2 = 1 [27]. LFR-1-16 are
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TABLE 3. Parameters for synthetic networks.

TABLE 4. Description of synthetic networks.

TABLE 5. Description of real-world networks.

the networks with N = 5000, in which LFR-1-2 are the
networks with non-overlapping communities, LFR-3-16 are
the networks with overlapping communities whereOn is 10%
of N and Om varies from 2 to 8 indicating the diversity of
overlapping nodes. LFR-17-32 are the networks with N =
10000, whose other parameters are the same as the corre-
sponding networks with N = 5000. For LFR-33-37, On
varies from 400 to 2000 with an interval 400. For LFR-38-42,
<k> varies from 5 to 30 with an interval 5.We select the real-
world networks with known or unknown true communities,
then we sort them according to the number of nodes, which
are listed in Table 5.

B. BASELINE ALGORITHMS
To give a well-rounded performance comparison with state-
of-the-art algorithms, we compare our method with nine

community detection algorithms based on label propagation
listed below.
• LPA [12] is a fast algorithm for discovering non-
overlapping communities by updating the label of each
node to the most popular among its neighbors.

• COPRA [13] is an efficient model for discovering over-
lapping communities in networks by assigning multiple
labels with belonging coefficients to a node.

• SLPA [25] is an overlapping community detection
approach by allocating nodes memory spaces to store
received labels.

• DLPA+ [15] computes the confidence of neighbors
and the weight of labels to discover overlapping
communities.

• WLPA [14] is a label weight based method to discover
overlapping community, which spreads the labels with
large weight in label propagation process.

• LINSIA [17] is designed for detecting overlapping com-
munities based on node importance and label influence.

• LPA_NI [18] is also proposed for discovering overlap-
ping communities based on node importance and label
influence.

• NGLPA [19] is proposed for discovering communities
based on node gravitation and node similarity.

• LPANNI [7] is designed for discovering overlapping
communities based on node importance, node similarity
and neighbor node influence.

TABLE 6. Time complexity of methods.

Here, we present the time complexity of our method and
baselines, as shown in Table 6. We can find that their time
complexity can be classified as two types, 1) the time com-
plexity is O(h1M + h2N ) if the methods do not need to sort
nodes, 2) the time complexity is O(NlogN + h3M + h4N ) if
the methods sore nodes in prescribed rules, where h1, . . . , h4
are different coefficients for different methods.

C. EVALUATION CRITERIA
We use five criteria, overlapping modularity, normalized
mutual information, precision, recall and F-score, to evalu-
ate the quality of detected communities. Normalized Mutual
Information (NMI) [41] is used to show the difference
between the results of experimental algorithms and true
communities. The larger the value of NMI, the smaller the
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FIGURE 5. Results of parameter analysis.

difference. Overlapping modularity (QOV ), the extension of
Newman’s modularity [42], reflects the quality of divisions
assessed by the relative density of edges within communi-
ties and between communities [43]. As the QOV function,
we adopt f (x) = 60x−30 [13]. Like NIBLPA, we useF-score
(F) [16], [44], also called F-measure to quantify the accuracy
of community detection, which is defined as

F − score =
2 ∗ Precision ∗ Recall
Precision+ Recall

, (7)

where Precision (P) and Recall (R) are represented as

Precision =
|S ∩ T |
|S|

, (8)

Recall =
|S ∩ T |
|T |

. (9)

T is the set of node pairs (vi, vj) where nodes vi and vj
belong to the same communities in the ground truth, and S
is the set of node pairs that belong to the same communities
generated by community detection algorithms. Then S ∩ T
represents the intersection of node pairs of the ground truth
and the community results. F-score is the comprehensive
measurement of Precision and Recall. The larger the value
of F-score, the more accurate the community results.

If the true communities of networks are known, five criteria
are both adopted, otherwise only QOV is adopted. In addi-
tion, we adopt Running Time (RT) to evaluate the efficiency

of methods. To intuitively compare the comprehensive per-
formance of methods, we compute the rank of different
algorithms in each network and calculate their average rank.
The smaller the average rank, the better the performance of
methods.

TABLE 7. LFR-0 for parameter analysis.

D. PARAMETER SETTINGS
Here, we explore the impact of parameters α, β and γ

on NALPA, in which α controls the effect of neighbors’
importance for propagation ability, β controls the effect of
propagation ability for launch ability and γ is the accepting
threshold. LFR-0 with large µ and Om is used for parame-
ter analysis, as shown in Table 7, so the algorithms cannot
discover communities easily because the communities of
networks with large µ and Om become intricate. If NALPA
with some parameters can obtain satisfying communities in
LFR-0, we deduce that NALPA can obtain desirable partition
for the networks with small µ andOm. We analyze the effects
of two parameters by fixing another parameter to investigate
how they affect community results. Parameters α and β vary
from 0 to 1 with interval 0.1, and γ varies from 1 to 8 with
interval 1. The effects of α, β and γ in terms of NMI andQOV
are presented in Figure 5.
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As shown in Figure 5(a), when α ∈ [0, 0.4], NMI rises
with the increase of α. When α ∈ [0.4, 1], the results of
NMI keep steady. We can find that NALPA with α = 0.4
outputs the best NMI, which is beneficial for improving the
performance. Thus, major personal importance and some por-
tion of neighbor importance can better reflect the influence
of nodes and are helpful for community detection. As shown
in Figure 5(b), when β ∈ [0, 0.6],NMI rises with the increase
of β, and NMI keeps steady when β ∈ [0.6, 1], which means
that launching labels with the number equaling to a large
proportion of propagation ability can obtain good results.
Thus, we choose β = 0.6. It can be seen that parame-
ter γ has large influence on the results of NMI, as shown
in Figures 5(b) and 5(c), which decline with the increase
of γ . When nodes belong to more than three communities,
the results become poor, since nodes are not closed in each
community for there nodes possibly and the methods cannot
detect accurate overlapping nodes in multiple communities
easily. By observing the trends, we can conclude that NALPA
obtains the best NMI with γ = 1 and 2, then we choose
γ = 2 for overlapping community detection. By discussing
these parameters, we infer that NALPA achieves the bestNMI
when α = 0.4, β = 0.6 and γ = 2 for LFR-0. In terms
of QOV , NALPA also obtains the best result with the same
parameter values for LFR-0, as shown in Figures 5(d)-5(f).
Therefore, we choose NALPA with α = 0.4, β = 0.6 and
γ = 2 to compare with other algorithms.

In order to obtain good community results, the parameters
of the baseline algorithms with tunable parameters, including
COPRA, SLPA and DLPA+, WLPA and LPANNI, need to be
adjusted for different networks. So we adjust and choose the
parameters in following experiments to gain good results of
these algorithms. Specifically, the baseline algorithms with
tunable parameters using the following parameter settings:
1) For COPRA and WLPA, maximum label number γ of

each node varies from 1 to 8 [13], [14].
2) For SLPA, probability threshold r varies from 0.01 to

1 with interval 0.01 and iteration time t sets to 100 [25].
3) For DLPA+, inflation factor varies from 1 to 8 and

iteration time t also sets to 100 [15].
4) For LPANNI, path length threshold α sets to 3 [7].

The determined parameters are as shown in Table 8.

VI. EXPERIMENTAL RESULTS
A. RESULTS FOR SYNTHETIC NETWORKS
The experimental results for the synthetic networks with non-
overlapping communities are shown in Table 9. The number
in bracket is the rank of methods for each network, and the
average rank is shown at the bottom. The results for the
synthetic networks with overlapping communities are shown
in Figure 6 (N = 5000, µ = 0.1 or 0.3, Om changes),
Figure 7 (N = 10000, µ = 0.1 or 0.3, Om changes), Figure 8
(N = 10000, On changes) and Figure 9 (N = 10000, <k>
changes). The average rank of methods for LFR-3-16 and
LFR-19-32 is shown in Table 10. The curves of experimental
results of partial methods are overlapped to a certain extent.

TABLE 8. Parameter values of baseline algorithms.

As shown in Table 9, we can find that majority results for
LFR-1 are better than the results for LFR-2 obtained by each
algorithm, and this phenomenon is similar for LFR-17 and
LFR-18 because communities become more intricate when
µ varies from 0.1 to 0.3. Community detection algorithms
discover communities more hardly, then corresponding eval-
uation indexes decline. In terms of NMI, SLPA and WLPA
obtain the best result for LFR-1 and LFR-2, respectively.
NALPA ranks the first for LFR-17 and LFR-18. LINSIA
obtains the worst results in these networks. Although NALPA
ranks the third only to SLPA and LPA_NI for LFR-1 and
the second only to WLPA for LFR-2, the difference with the
optimal value is small. In terms ofQOV , NGLPA and NALPA
outperforms other methods in LFR-1-2 and LFR-17-18,
respectively. According to the average rank, NGLPA ranks
the first and our method ranks the second, on the contrary,
LINSIA also performs the worst. As for Precision, WLPA
obtains the best result for LFR-1 and NALPA ranks the
first for other networks. LINSIA also obtains the worst. But
for Recall, LINSIA ranks the second. Meanwhile, NGLPA
gets the best Recall. It can be seen that, some algorithms
have imbalanced Precision and Recall. There are usually two
reasons: over-detection and under-detection. For example,
LINSIA has low Precision but high Recall, which indicates
that it has the problem of over-detection. Although the Recall
of LINSIA is high, however, its Precision is relatively low
in these networks, then its F-score is low. WLPA has high
Precision but low Recall, which may be caused by under-
detection. In terms of F-score, the Precision and Recall of
NALPA are high and balanced, then its F-score is the best. As
for RT, LPA needs the least running time and the efficiency
of NALPA is near LPA. In the updating process of NALPA,
nodes can attract more nodes not just neighbors to spread their
multiple labels, and labels are filtered by label influence, then
NALPA can utilize more network topology and label infor-
mation to reduce iteration times. Among baselines, WLPA is
tied for second with NALPA, on the contrary, the efficiency
of SLPA is the worst because it requires 100 iterations. As for
stability, the standard deviation of LINSIA is 0, in other

VOLUME 8, 2020 46651



Y. Zhang et al.: NALPA: A NALPA for Community Detection

TABLE 9. Results for synthetic networks with non-overlapping communities.

words, LINSIA is stable. If the number of the most impor-
tant labels of a node is more than one, LINSIA spreads
all labels to other nodes, which does avoid the instability
problem but makes LINSIA discover inaccurate communities
and waste efficiency. NALPA ranks the second in terms of
standard deviation that means NALPA is more stable than
other methods except LINSIA because NALPA determines
the node order of label updating according to propagation
ability, the order of label launching according to belonging
coefficient and the order of label accepting according to label
influence. However, when the number of the most important
labels of a node is more than its launch ability, NALPA ran-
domly spreads these labels, which also causes the instability
problem. Among baselines, the stability of LPA, COPRA,
SLPA and NGLPA is worse than some methods.

For the synthetic networks with overlapping communities
when N = 5000, as shown in Figure 6, the results of NMI,
QOV , Recall and F-score reduce gradually with the increase

of Om, and the values of NMI and QOV when µ = 0.3 are
smaller than those when µ = 0.1, which also illustrates that
the communities become more intricate with the increase of
Om and µ. On the other hand, the variation of Om has little
influence on running time.

In terms of NMI, as shown in Figures 6(a) and 6(b),
the algorithms except DLPA+ and LINSIA behave simi-
larly and obtain good results, and NALPA gains the high-
est average rank as shown in Table 10. Among them, LPA
updates the label of a node to the most frequent label of
neighbors. COPRA assigns the labels with belonging coef-
ficients to measure the membership of nodes in different
communities. SLPA records received labels and considers
the communities with the largest frequency label as nodes’
communities. WLPA defines the weight of labels to reflect
the ownership of nodes. LPA_NI identifies the member-
ship of nodes by node importance and label influence from
expert knowledge. NGLPA discovers the relationship among
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FIGURE 6. Results for the synthetic networks with overlapping communities when N = 5000.
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FIGURE 7. Results for the synthetic networks with overlapping communities when N = 10000.

46654 VOLUME 8, 2020



Y. Zhang et al.: NALPA: A NALPA for Community Detection

FIGURE 8. Results for the synthetic networks with overlapping communities with On varying when N = 10000.

nodes by node gravitation and node importance inspired from
LeaderRank [26]. LPANNI uses the influence of neighbor
nodes to identify the ownership of nodes. NALPA takes node
abilities to attract more nodes and make them launch more
labels and uses label influence to accept crucial labels for
enhancing the model ability of distinguishing different com-
munity nodes, thus, it achieves better performance than most
methods. On the contrary, DLPA+ obtains poorer results than
others except LINSIA because its inflation factor cannot be
adaptive to control overlapping rate well in large networks,

and LINSIA obtains the worst result because all labels with
the largest importance are spread to other nodes.

In terms of QOV , most algorithms also behave similarly
as shown in Figures 6(e) and 6(f), but the results of LPA
and COPRA are away from the first tier. NALPA obtains
good performance because attraction ability can draw more
nodes to spread labels and increase the dense degree among
nodes to promote the closeness of community, then its QOV
is higher than most methods. On the other hand, these results
decline more obviously than those of NMI when µ increases
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FIGURE 9. Results for the synthetic networks with overlapping communities with <k> varying when N = 10000.

from 0.1 to 0.3, which showsQOV is more sensitive to mixing
parameter µ than NMI.
As for Precision, as shown in Figures 6(i) and 6(j),

the algorithms except COPRA, LINSIA and NGLPA behave
similarly. SLPA, LPANNI and NALPA gain better results
than other methods. LPA, DLPA+, WLPA and LPA_NI
obtain the results which are slightly worse than SLPA,
LPANNI and NALPA. We can find that the Precision
of COPRA shows an oscillation trend, and the stability of
COPRA andNGLPA is worse than other methods. In terms of
Recall, LINSIA ranks the first and DLPA+ gains suboptimal
Recallwhenµ = 0.1 as shown in Figure 6(k).Whenµ = 0.3,

as shown in Figure 6(l), LINSIA also achieves the best results
and the Recall of DLPA+ declines and is closed to most
methods. As for F-score, as shown in Figure 6(m), DLPA+

and LINSIA ranks the first and the second when µ = 0.1,
respectively. LPANNI and NALPA get better results than
other methods except DLPA+ and LINSIA. When µ = 0.3,
DLPA+ and LINSIA also keep high F-score, and NALPA
ranks the first with some Om values. It can be seen that
LINSIA has low Precision and high Recall, and its Preci-
sion is higher than those for the synthetic networks with-
out overlapping communities, then it gets better F-score
than most methods for alleviating over-detection problem.
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TABLE 10. Average rank of algorithms for the synthetic networks with overlapping communities.

The Precision and Recall of DLPA+, LPANNI and NALPA
are high and balanced, they obtain good F-score. The Preci-
sion and Recall of COPRA is relatively balanced, but neither
of the two metrics is high, so its F-score is not high. Although
DLPA+ and LINSIA cannot obtain good NMI and QOV , they
have high F-score, which means they can detect accurate
node pair in true communities in these networks.

As for RT, LPA and NALPA respectively obtain
the best efficiency in different networks as shown in
Figures 6(o) and 6(p). NALPA gets the best average rank and
LPA ranks the second as shown in Table 10. For NALPA,
the new label propagation mechanism acquires more nodes to
spread multiple labels and makes nodes accept more labels in
updating process. Meanwhile, label influence can reflect the
accurate weight of labels when they arrive at other nodes.
Then nodes can accept influential labels to converge rapidly.
Among other baselines, COPRA renews node labels in the
tth iteration according to the ones in the (t-1)th iteration, then
it needs more running time. SLPA has the worst efficiency
because it requires 100 iterations. The efficiency of DLPA+

is poor in these networks, since it inflation factor cannot
adjust the overlapping rate of nodes well in large networks,
then it needs more iterations. WLPA obtains suboptimal effi-
ciency because it simply updates the labels of nodes by label
weight. With the increase of Om when µ = 0.1, the running
time of LINSIA shows the trend of gradually rising, since
LINSIA spreads all labels with the largest importance to other
nodes that needs more iterations to converge. The efficiency
of LPA_NI is better than SLPA and DLPA+, however, it is

worse than other methods for calculating node importance
and label influence by Bayesian network from expert knowl-
edge. NGLPA and LPANNI get worse efficiency than most
methods, in which the former computes node importance
by LeaderRank for initialization that needs to iteratively
calculate the relations among nodes and their neighbors,
and the latter considers more local topology information to
increase the accuracy of node similarity measurement.

As for stability, we can find that LINSIA and NALPA
obtain the best and suboptimal stability, respectively. LINSIA
propagates all labels with the largest importance of nodes to
avoid randomness and NALPA updates the labels of nodes in
the ascending order of propagation ability, launches labels
in the descending order of belonging coefficient and accepts
labels in the descending order of label influence. On the
contrary, the stability of LPA and COPRA is worse than other
methods, since they randomly choose nodes to update labels.

For the synthetic networks with overlapping communities
when N = 10000, the overall results of five metrics (NMI,
QOV , Precision, Recall and F-score) of all methods are simi-
lar with those of synthetic networks when N = 5000 and do
not decline obviously, which shows that they are not sensitive
to network scale. Different with the results when N = 5000,
the running time of these methods for the networks when
N = 10000 increases because network scale has doubled.
We also can find that NALPA has similar efficiency with
LPA,which is better than othermethods. Specifically, the run-
ning time of COPRA rises more than other methods, which
increases when Om ∈ [2, 5] and declines or keeps steady
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when Om ∈ [5, 8], thus, COPRA’s running time is sensitive
to network scale. Whenµ = 0.3, we can find that the running
time of COPRA falls at Om = 6, which shows it converges
fast under Om = 6. According to the average rank as shown
in Table 10, NALPA can detect more satisfying and stable
communities with high efficiency than most state-of-the-art
methods.

For the synthetic networks with overlapping communities
when On varies, as shown in Figure 8, the five evalua-
tions decline with the increase of On, which illustrates that
the number of overlapping nodes has an influence on the
community results. With the increase of overlapping nodes,
networks become more intricate, then community detection
methods cannot discover accurate communities. On the con-
trary, the Precision of LINSIA rises with the increase of On.
LINSIA can detect hubs and outliers [17] that increases the
accuracy of detecting the node pairs in the same community.
As for RT, COPRA needs more time with the increase of On,
since it requires more iterations to detect overlapping nodes.
The efficiency of other methods keeps steady.

For the synthetic networks with overlapping communities
when <k> varies, as shown in Figure 9, the five evalua-
tions of all methods at <k> = 5 are lower than those of
methods at other <k> values, which denotes that commu-
nity detection methods cannot achieve good performance in
too sparse synthetic networks. With the increase of <k>,
the standard deviation of COPRA declines, which means its
stability becomes better. LINSIA gets the worst and undulant
QOV and Precision but the best Recall for over-detection
problem. Meanwhile, when <k> is greater than 10, these
metrics keep steady with the increase of <k>. In terms of
RT, the efficiency of SLPA, LINSIA and LPANNI rises with
the increase of<k>, especially, LPANNI needsmore running
time in large average degree networks, since it computes the
similarity between node vi and its direct or indirect neighbors
whose distances to node vi are less than α = 3. Thus, with
the increase of <k>, the number of the indirect neighbors of
node vi shows an exponential growth trend, and the running
time of LPANNI increases fast.

B. RESULTS FOR REAL-WORLD NETWORKS
The experimental results for the real-world networks
with known and unknown communities are shown in
Tables 11 and 12, respectively.

In terms of NMI, NALPA obtains better results than other
methods as shown in Table 11. It is worth noting that,
for Karate and Dolphin networks, the difference between
NALPA and baselines is significant. In small-scale networks,
the number of nodes is less. Then the number of initial unique
labels is relatively small, and alterable label influence may
reflect the difference among nodes well, therefore, the results
are quite different. In terms of QOV , LPANNI gets the best
average rank. We can find that NALPA provides the highest
NMI with the middle QOV while DLPA+ obtains the highest
QOV with the middle NMI for Polbook network, which shows
that the maximum QOV may not lead to the best partition of

networks in some cases in conformity with the conclusion
reported in [8]. With the increase of network scale, the NMI
and QOV of LINSIA become poorly for the reasons men-
tioned above. The NMI of DLPA+ becomes better with the
increase of network scale, while its QOV becomes weaker.
As for Precision, Recall and F-score, DLPA+ ranks the first
in terms of Precision, however, it gets the worst Recall, then
it gets poor F-score. We consider that network scale also
has an influence on the Recall of DLPA+. Analyzing these
real-world networks along with synthetic networks, we can
find that the Recall of DLPA+ rises with the increase of
network scale, then its F-score increases with increasing
network scale. On the other hand, LINSIA obtains the best
Recall but the worst Precision due to the problem of over-
detection, thus, it gets poor F-score. On the whole, although
NALPA gets poor Precision and Recall in Football network,
NALPA gains the best average rank in terms of F-score
for balanced and good Precision and Recall. In terms of
RT, NALPA has higher efficiency than other methods ecx-
ept LPA because the new label propagation mechanism is
effective.

As shown in Table 12, NALPA obtains the best average
rank in terms ofQOV , although it obtains middleQOV in Jazz,
Email and Enron networks. In the three networks, the differ-
ence with the result of NALPA and the optimal value is small.
The attraction ability can attract more nodes to launch labels
and increases the tightness of nodes in communities, however,
this way may not fit the relative dense networks, such as
Email network (M = 5451 and dia = 8). NALPA obtains
the best QOV in the largest network Amazon, and LPANNI
and LPA_NI ranks the second and the third, respectively.
We can find that NALPA can obtain good results in large-
scale networks. NALPA acquires similar efficiencywith LPA,
which illustrates that NALPA owns near linear complexity
and good efficiency.

As for stability, we can find that the results of these
methods in large-scale networks are more stable than
those in small-scale networks comparing with the results
in Tables 11 and 12, in other words, network scale has an
influence on the stability of the algorithms. In small-scale
networks, label propagation converges fast for relatively sim-
ple network structure, thus, the results of unstable algorithms
are different and exist relatively large fluctuation. NALPA
achieves the smallest standard deviation in most networks
neglecting LINSIA that means the results of NALPA aremore
stable than other methods, since NALPA updates nodes and
chooses labels according to the regulation order to lighten
the instability. Among other label propagation algorithms,
DLPA+ comes to the third, WLPA, LPA_NI and LPANNI are
slightly worse, however, the stability of LPA, COPRA, SLPA
and NGLPA is poor.

In summary, NALPA obtains better and more stable results
than state-of-the-art approaches in most cases, as the perfor-
mance and efficiency of NALPA are improved by the new
label propagation mechanism with node abilities and label
influence.
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TABLE 11. Results for real-world networks with known communities.

FIGURE 10. Community results of some networks for NALPA.

We present the community results of our method for Karate
and Dolphin networks, as shown in Figure 10. In particular,
the experimental results in some networks (e.g., Dolphin
and Polbook networks) show that the maximum NMI does

not correspond to the best QOV , and vice versa. Given an
example of Polbook network to explain the reason. By ana-
lyzing the true communities of Polbook network, we can
find that Polbook network owns three community as shown
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TABLE 12. Results for real-world networks without known communities.

in Figure 11(a), the orange and light purple communities
with majority nodes and the green community with scattered
nodes, specially, some nodes (e.g., nodes 8, 29, 49 and 77)
in the green community are not closely connected to other
nodes. Meanwhile, the nodes in the green community locate
in the border of the orange and light purple communities,
which may be caused by the people with the neutral point of
view in real world. On the contrary, the communities with the
bestQOV are some small communities where inside nodes are
more close. Thus, the communities with the best NMI is not
in accordance with those with the best QOV . The commu-
nities detected by these algorithms are shown in Figure 11
(the red box shows the error-prone areas of methods). LPA,
WLPA and NGLPA find three communities. However, some
nodes belonging to the true green community are assigned
to the orange and light purple communities. COPRA, SLPA
and LPANNI detect four communities in Polbook network,
and most errors focus on the nodes belonging to the true
green community. These nodes are assigned to the orange and
light purple communities or form new communities, however,
these communities are far away from true partitions. DLPA+

discovers the most communities, in which the nodes have
dense inner connection, so that it gets the highest QOV but
poor NMI. We can find that some methods based on the
weight of nodes and labels (LINSIA, LPA_NI and NALPA)
tend to discover two communities in Polbook network, and
NALPA finds most accurate nodes in communities, which are
the same as true partitions, so it obtains the best NMI.

C. CASE STUDY
According to experimental results above, NALPA can pro-
vide good accuracy with the highest efficiency for detect-
ing communities. Thus, we apply NALPA to discover drug
communities in a TCMdrug networkwhere drugs are used for

treating Chronic GlomeruloNephritis (CGN). In order to uti-
lize NALPA to discover drug communities, we first select key
word pairs ‘‘ (chronic glomerulonephritis)’’
and ‘‘ (Chinese medicine)’’, and ‘‘
(chronic glomerulonephritis)’’ and ‘‘ (Chinese native
medicine)’’ to search literature in China National Knowl-
edge Infrastructure (CNKI) and acquire 1126 literature, then
use Chinese word embedding method [45] to encode words
in literature to low-dimensional vectors, extract drugs and
calculate their similarity to build a drug network, in which
nodes represent drugs, and if two drugs are similar, they are
linked to form an edge. Then we construct a drug network
with 273 nodes and 520 edges, which is built based on drug
similarity, then the drugs in the same community have similar
efficacy and are signed for treating a class of symptoms of
CGN. The results are shown in Figure 12.

TABLE 13. Drugs with top-6 degree in communities.

We choose two large drug communities (purple and green)
to explain their rationality. The drugs with the top-6 degree
in the two communities are shown in Table 13. In the purple
community, the drugs are used for treating the syndromes of
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FIGURE 11. Community results for Polbook network.
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FIGURE 12. Drug communities for the drug network.

liver and kidney deficiency mainly according to the analysis
of TCM doctors. ‘‘ (rehmannia root)’’ with the largest
degree in this community is the core drug for treating these
syndromes, which is in accordance with [46]. In the green
community, the drugs own the efficacy of nourishing liver
and kidney. ’’ (malaytea scurfpea fruit)’’ with the
largest degree in this community is severed as the core drug
with the efficacy in keeping with patents CN107875233-A
andCN104491575-A. Thus, NALPA can detect accurate drug
communities in drug networks.

VII. CONCLUSION
In this paper, a node ability based label propagation algorithm
NALPA is proposed for community detection. We design
four node abilities and label influence to provide a new label
propagation mechanism and decide the order of label updat-
ing and label receiving to enhance the efficiency and handle
the instability. We validate the effectiveness of NALPA on
42 synthetic and 14 real-world networks. In addition, NALPA
is introduced to detect drug communities in a drug network
and can find effective drug communities.

We also find that NALPA is inferior to some algorithms
in some networks. Designing the elaborate strategies of
acceptance ability for each node and adaptive parameters
to detect more accurate communities is the important area

of future research. It would also be interesting to combine
deep learning and node abilities in community detection
algorithms [47].
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