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ABSTRACT Activity recognition which aims to accurately distinguish human actions in complex environ-
ments plays a key role in human-robot/computer interaction. However, long-lasting and similar actions will
cause poor feature sequence extraction and thus lead to a reduction of the recognition accuracy. We propose
a novel discriminative deep model (D3D-LSTM) based on 3D-CNN and LSTM for both single-target and
interaction action recognition to improve the spatiotemporal processing performance. Our models have
several notable properties: 1) A real-time feature fusion method is used to obtain a more representative
feature sequence through composition of local mixtures for enhancing the performance of discriminating
similar actions; 2) We introduce an improved attention mechanism that focuses on each frame individually
by assigning different weights in real-time; 3) An alternating optimization strategy is proposed for our model
to obtain parameters with the best performance. Because the proposed D3D-LSTMmodel is efficient enough
to be used as a detector that recognizes various activities, a Real-set database is collected to evaluate action
recognition in complex real-world scenarios. For long-term relations, we update the present memory state
via the weight-controlled attention module that enables the memory cell to store better long-term features.
The densely connected bimodal modal makes local perceptrons of 3D-Conv motion-aware and stores better
short-term features. The proposed D3D-LSTMmodel has been evaluated through a series of experiments on
the Real-set and open-source datasets, i.e. SBU-Kinect and MSR-action-3D. Experimental results show that
the proposed D3D-LSTM model achieves new state-of-the-art results, including pushing the average rate of
the SBU-Kinect to 92.40% and the average rate of the MSR-action-3D to 95.40%.

INDEX TERMS Human action recognition, RGB-D, attention mode, real-time feature fusion, dataset.

I. INTRODUCTION
Human action recognition has gained more interest in the
research community and has become a fundamental task in
many applications, such as monitoring security [1], gaming
entertainment [2], complex object movements [3], [4], smart
indoor security systems [5], video streaming [6]–[8], and
healthcare [9]. Generally, RGB data, depth data, skeleton
data, and mixed data are used to represent human actions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Ayoub Khan .

The emergence of sensors/cameras achieves efficient
action tracking by providing target trajectory and skele-
ton joints points. Puwein et al. proposed wide baselines-
based cameras which can accurately record human pose and
estimate human action [10]. Slimani et al. proposed an auto-
mated recognitionmodel for human interaction activities esti-
mation [11]. Zhao et al. proposed the SDG model for human
action estimation without sufficient labeled and collected a
novel skeleton-based dataset [12]. Many effective real-time
human tracking systems based on body parts features were
proposed by Jalal et al. [13], [14], and they also proposed
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a human feature representation and extraction method for
depth and skeleton data [15].

Since the CNN has achieved great success in image pro-
cessing, many CNN-based effective networks have been
proposed, such as VGG [16], GoogleNet [17], BN-In-
ception [18] and ResNet [19]. While there are also many deep
networks with great performance for action recognition, for
example, LSTM for long-term feature modeling [20]; dual-
stream neural networks that can process still images and video
frames, including spatial and temporal streams [21]; optical
flow networks and these improved methods [22]–[24]. The
above studies are all for RGB data. Since the Kinect sensor
can easily acquire depth data, efforts on the RGB-D dataset
have been widely developed.

In recent years, some promisingmethods for RGB-D-based
human action recognition have emerged. Wu et al.
designed a deep dynamic neural network (DDNN) to
implement gesture recognition for multimodal input data.
This network can extract spatiotemporal features from
depth images [25]. Wang et al. proposed a scene flow
dynamic model to extract features from RGB-D images
by using the ConvNets network [26]. Kim et al. pro-
posed a circulatory neural network (PRNN) based on priv-
ileged information for deep sequences recognition [27].
Wang et al. adapted the DMM to a pseudo-RGB image
which converted its spatiotemporal data into texture infor-
mation, and the model trained by merging three indepen-
dent ConvNets. They also extracted features in depth image
sequences by constructing three different dynamic depth
images, namely dynamic depth images, dynamic depth con-
ventional images, and dynamic depth motion conventional
images [28], [29]. Rahmani et al. proposed a model with
infinite sequence learning view-invariant. Each depth image
was input into a specific CNN to learn advanced features,
and then the action data was transmitted to the model
for training [30]. However, these studies have three main
limitations: 1) Complex actions recognition is a challenge,
such as the combination of several simple actions and long-
lasting actions; 2) Poor performance in distinguishing similar
actions, such as gestures and timing similar actions; 3) Exist-
ing public datasets are not complex enough to represent actual
situations.

In this paper, we propose a discriminative deep model
(D3D-LSTM) for RGB-D based human gesture recogni-
tion to overcome problems that previously mentioned. Our
model is almost immune to illumination and occlusion which
achieves significant performance in different complex envi-
ronments. In particular, the D3D-LSTM model achieves a
high recognition rate for a variety of RGB-D datasets. The
main contributions are summarized as follows.

1) A real-time feature fusion method is proposed by com-
bining RGB and depth features more effectively with-
out losing important features. The method achieves
better performance in feature fusion which improves
recognition accuracy.

2) The proposed D3D-LSTM model can deal with the
long-term and spatial features of actions more effec-
tively, especially for complex and combined actions,
and similar actions recognition.

3) The attention mechanism is further improved by
assigning a corresponding weight to each element in
the feature vector to represent the importance of the
element. Eachweight is determined by the combination
of the upper layer and the current state. This approach
improves the recognition rate of long-term complex
actions.

4) A newRGB-D dataset for action recognition, termed as
Real-set, is designed and collected. It is more complex
than the current available datasets. Data in Real-set
contains changes in illumination intensity, angle, and
occlusion, which is more closer to the actual situation.

The remainder of this paper is organized as follows.
Section II briefly reviews related work about action recogni-
tion methods. Section III introduces the collection process of
the RGB-D action dataset. Section IV describes the proposed
D3D-LSTM model in detail. Section V reports the experi-
mental sets and results analysis. Section VI concludes the
paper and gives the future work.

II. RELATED WORK
A. CONVENTIONAL ACTION RECOGNITION
An ideal recognition model relies on effective learning of
action features. In recent years, many different techniques are
applied to extract and represent both short-term and long-term
spatiotemporal features [31]. For human interaction recog-
nition, the Harris corner points and the histogram [32], and
a compact and discriminative video encoding method [33]
were proposed to extract features. For objects tracking, chain
codingmechanism and centroids point extractionwere extend
to label body parts [9], [34]. Besides, Kamal et al. intro-
duced the hidden Markov model (M-HMM) to fuse spatial
depth shape features and temporal joints features for feature
representation [35].

CNNs and RNNs have been extensively applied in feature
learning. In [16], [17] and [19], the application of CNN to
process images achieved great success. Ji et al. extended
CNN and proposed 3D-CNN [36] that enables CNN to deal
with time information. D.Tran et al. [37] proposed the opti-
mal convolution kernel size of 3D-CNN, applied to the C3D
network of the large-scale datasets, improved the residual net-
work of 3D-CNN, and proposed a Res3D network superior to
C3D . Chen et al. proposed a lightweight multi-fibre network
that optimized network performance [38]. Yang et al. pro-
posed an asymmetric 3D-CNNnetwork that combined optical
flow frames and RGB features to improve network perfor-
mance [39]. While Hussein et al. improved the 3D-CNN to
extract temporal features of action more efficiently [40].

Owing to the poor performance of the CNN extrac-
tion temporal features, researchers introduced the LSTM to
improve the performance of processing complex actions.
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Wang et al. proposed a dynamic model for target tracking,
which combined the attention mechanism with CNN and
LSTM to improve the recognition rate [41]. Ullah et al.
proposed a two-way LSTM combined with CNN to recognize
long-term actions, mainly used sequence stacking in forward
and backward propagation, which deepened the ability to
understand action intentions [42].

B. SKELETON BASED ACTION RECOGNITION
The skeleton-based method mainly acquires 3D dynamic
features, including line features, surface features, and body
features. Yang et al. determined the classes of actions by cal-
culating the position of 3D joint points, which can effectively
recognize static and dynamic actions, used the PCA algo-
rithm for dimensionality reduction, and applied the NBNN
algorithm for classification [43]. In the description of static
action features, the time domain pyramid covariance descrip-
tor, the sparse coding and the pyramid histogram method
were all effective [44]–[46].Surface-features-based method
was mostly inspired by Tang et al. They used 3D normal
vectors to construct 2D histograms to describe the shape of
the target [47]. Recently, Yang et al. proposed an adaptive
space-time pyramid to divide the depth image and then used
the aggregate hypersurface to describe the actions [48].

C. DENSE CONNECTION
DenseNets has been proposed by Corn Huang et al. in 2017,
which was inspired by the ideas of highway networks and
ResNet [19], [49], [50]. The shortcut connection method is
a cross-layer connection rather than a sequential connection
which is used in all three networks. The purpose is to solve the
problem of existing gradient divergence. The shortcuts used
in DenseNets are the most efficient. Usually, every 2 or 3
layers would be directly connected using the shortcut. This
method can transfer information from the shallow part of
the network to the deep part. In particular, partially dense
connections can avoid some problems, such as oversized
models, excessive parameters, and poor training efficiency,
it is shown as Fig.1.

FIGURE 1. Shortcut connection method.The two blue areas use dense
connections independently to share data. Generally, the two areas are
connected by pooling layers and convolution layers.

In this paper, we extend the traditional DenseNets for
static image recognition to 3D-CNN, which can extract the
spatiotemporal features of actions. The operation is to extend
the convolution kernel from d × d to k × d × d . Using
the DenseNets connection method, the output characteristics
of each layer can be reused, which significantly reduces
the amount of calculation. Although the densely connected
3D-CNN is more complex than the C3D, it can improve the

recognition accuracy, and it is much simpler than the method
base on ResNet.

D. ATTENTION MODE
Attention Mode provides an effective idea for natural lan-
guage, image recognition, and big data mining, which is a
more popular idea recently [51], [52]. Attention Mode draws
on the human visual system, it can quickly scan, lock tar-
gets and focus on global images [53]. In action recognition
study, the idea of attention mode is to aggregate multiple
feature vectors to obtain aggregated features (h). For the
first time, Sharma et al. introduced attention mechanism
into human action recognition, where they focused on the
body, clothes and backpacks [54]. Bahdanau et al. proposed
attention mechanism in the time dimension, and used a
weighted summation method [51]. Li et al. proposed an end-
to-end sequence method for action recognition in video [23].
However, these methods cannot be extended to other studies,
and how to comply with the novel model is not addressed.

In the previous studies, the weighted average method was
used to obtain the feature weight αi. Although this method
focused on global features, it did not allow the model to
know the key element in the feature, and the performance
was rarely improved. Therefore, we assign each element a
corresponding weight to represent the importance of that
element in the feature, which is shown as

xi =
k×k∑
i=1

exp(Wiht−1)∑k×k
j=1 exp(Wjht−1)

Xt,i. (1)

III. REAL-SET
In this section, we describe our RGB-D human action dataset
which is named Real-set. This dataset is collected to train
the proposed model in a real environment. By analyzing the
public datasets, we find that although these datasets are large
in scale, they ignore the interference that exists in the real
world, and the data preprocessing is not sufficient. In this
paper, we design and collect a dataset, that is, Real-set, to deal
with these problems.

A. DATASET COLLECTION
We collect the RGB-D dataset by applying Kinect 2 which
is an RGB-D sensor from Microsoft, and Figure 2 shows
the dataset collection process. This sensor can simultane-
ously capture the RGB data and depth data. Depth data
can detect the target from the complex background and be
not affected by lighting conditions. The acquisition speed is
30 fps/S, the resolution of the image is 640 × 480, and the
sensor’s acquisition range is 0.8 m to 3.5 m. All the actions
were finished by five volunteers (3 males and 2 females),
each action performed at different light intensities, differ-
ent angles, different backgrounds, and partial occlusions.
The dataset combined single-person actions and interac-
tion actions, including horizontal-waving, high-swinging,
beating, punching, approaching, kicking, hugs, and shaking
hands. Each actionwas collectedwith 4000 samples, of which
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FIGURE 2. Real-set collection. In the Kinect 2.0 sensor, a colour camera,
a depth camera (based on the infrared acquisition method), and a
microphone are built-in. In theory, the two cameras are acquired
simultaneously, and the pixels in the colour image and the depth image
correspond one-to-one.

FIGURE 3. Real-set.The first line is RGB data, and the second line is depth
data for the corresponding behavior. Each action is performed by
different participants under changing conditions, with the goal of
simulating a real scene.

3000 were used as training samples and 1000 were used for
testing. Therefore, the Real-set has a total of 64,000 video
clips, namely, 4000(samples) × 8(classes) × 2(modes) =
64000, and each sample contains both RGB and depth modes.
Figure 3 shows some samples in the Real-set.

Compared to the existing datasets, the Real-set has three
advantages: 1) More interaction samples: the Real-set has
4000 samples, which ismany times than that of other datasets,
such as MSR-action-3D dataset (567 samples), SBU-Kinect
dataset (300 samples), NTU RGB-D dataset (880 samples);
2) More complex: actors have different body shapes and skin
tones, and the light, angle, and scale in the data collection
scene are constantly changing and occluded; 3) More effec-
tive data: the Real-set has raw data and pre-processed data,
which provides convenience for using data in pixel level to
get better results and researching data processing methods.
The Real-set will be a benchmark dataset for human action
recognition based on multi-modal data. The Real-set and
trained models will be made available to the public when we
finish the skeleton data collection.

B. DATA PREPROCESSING
Most of the public datasets are raw data without prepro-
cessing, which will lead to three problems: both modes of
acquisitions are not synchronized; the depth data is partially
missing; and the colour data is noisy. Therefore, we have
taken three methods to solve the above problems, the data
processing flow is shown in Fig. 4.

The sensor is calibrated before acquisition such that the
three-dimensional coordinates of RGB data and depth data
are in one-to-one correspondence. For Hd = [Xd ,Yd ,Zd ]T

FIGURE 4. Data processing overall flow. After the Kinect is calibrated,
RGB-D data is collected. Next, RGB data and Depth data are processed
separately: 1) RGB data: after the data is denoised, increasing the fullness
of RGB data by applying histogram equalization; 2) Depth data: after the
data is denoised, filling depth data holes by applying joint bilateral
filtering. Finally, clean-RGB-D data is obtained for model training.

is the coordinates of the depth image, HR = [XR,YR,ZR]T is
that of RGB image, the relationship between them is HR =
PHd + t , P is the rotation transformation matrix, and t is
the translation vector. By performing a homogeneous trans-
formation on both, Equations (2) and (3) can be obtained.
After experimental measurements, the parameters in the two
equations are obtained, including α = 528.32, β = 527.03,
i0 = 320.10, j0 = 257.57, t = [25, 2,−2]T , and p =
[0.05,−0.01, 0.02]T .

z

 i
j
1

 =
α µ i0 0
0 β j0 0
0 0 1 0



X
Y
Z
1

 (2)


X
Y
Z
1

 = [P t
0 1

]
Xd
Yd
Zd
1

 (3)

When the target depth data is recorded by the infrared
camera of the Kinect, the problem of partial area deletion in
the depth data is caused by object reflection and diffraction.
In this paper, joint bilateral filtering is used to denoise and fill
the image to preservemore edge data. Themethod is as shown
in (4), where C(x, y) represents depth data, P(x, y) is a pixel
point,W(x, y) is a weight, andGσ is a Gaussian function. The
change of the histogram of the depth data after preprocessing
is shown in Fig. 5.

B(C(x, y)) =
1

Wx,y

∑
(x ′,y′)∈RD(x′,y′)

Gσx (‖ Px,y − Px ′,y′ ‖)

×Gσy (‖ Dx,y − Dx ′,y′ ‖) (4)
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FIGURE 5. Depth data preprocessing. Use additional colour data to fill
holes in-depth images. (A) The depth image is empty, some data are
missing, and the curve is close to the X-axis. (B) After filled, the data are
rich, and the curve is increased.

FIGURE 6. RGB data processing. It enhances the contrast between
individual pixels in an image. (a) The contrast is weak and the colour is
poor in each pixel. (b) The contrast is enhanced, and the colour is rich in
each pixel.

The RGB data is processed in a balanced manner. The
histogram data of the R/G/B three colour channels are respec-
tively counted, and then the equalization operation is per-
formed. The original channel data is replaced by the mapping
of the three channels. The method is as shown in (5) and the
effect of preprocessing is shown in Fig. 6.

R(x)→̂Ṙ(x),G(x)→̂Ġ(x),B(x)→̂Ḃ(x) (5)

IV. PROPOSED APPROACH
The traditional 3D-CNN can only perform local short-time
feature extraction. The traditional LSTM network does not
performwell for global long-term feature extraction. To solve
these problems, we propose the D3D-LSTM model based on
3D-CNN and LSTM, which introduces the improved atten-
tion mechanism and feature fusion method. In this section,
we introduce the proposed D3D-LSTM model in detail.

A. NOVEL MODEL STRUCTURE
To better extract the temporal and spatial features of human
action, we design the D3D-LSTM model based on 3D-CNN
and LSTM, the pipeline of our proposed method is shown as
Fig.7. The model consists of three steps, that is, spatiotempo-
ral feature extraction based on 3D-CNN, key temporal feature
extraction based on LSTM, and classification.

The huge scale of 3D-CNN often leads to problems such as
inefficient training of models and incorrect use of parameters.
Therefore, we introduce the idea of dense connection, which
allows parameters to be shared in 3D-CNN and improves
operation efficiency. A real-time fusion method is adopted to
synchronously extract RGB and depth features in 3D-CNN.
Immediately after each extraction, it is merged into elements

FIGURE 7. The overview of the proposed D3D-LSTM framework. The red
area represents spatial features and local short-time feature extraction.
The dual-modal features are merged into a one-dimensional feature
vector in real-time. The green area represents that each element in the
one-dimensional vector is assigned a corresponding weight by attention
mechanism to distinguish the importance of each element so that the
LSTM can finish focused learning. The blue area represents the final
classification and outputs a probability vector.

in the feature vector. Experiments show that this feature
extraction method of real-time fusion can obtain more rep-
resentative feature vectors. Besides, an attention mechanism
is introduced in the LSTM. Each element in the fused feature
vector is assigned a corresponding weight and then input into
the LSTM for training. Finally, the action classification is
finished using the classic softmax classifier.

B. DENSELY CONNECTED 3D-CNN
In 2016, Anguelov et al. proposed using a convolutional
neural network of the same structure to train multiple modal
data separately, and feature fusion at appropriate locations
to obtain more distinguishing features and enhanced feature
robustness [55]. Based on this idea, we design a dual-mode
3D-CNN to train RGB and depth data respectively, and the
structure of 3D-CNN in both modes is the same. Taking the
process of extracting RGB features as an example, themethod
is described in detail.

The network consists of five 3D convolution (3D-Conv)
layers, two Max-pooling layers, five BN layers, and three
dense connection operations. This structure is shown in Fig.8.
We introduce the dense connection to the double-module 3D
CNN model for feature extraction and fusion. For feature
extraction (RGB/Depth), it can speed up model training and
feature transfer, and avoid vanishing gradients. For feature
fusion, it can provide efficiency features for the fusion pro-
cess because the previous outputs can affect the following
layers. To speed up the convergence of the network and
prevent gradient explosion, we add a large number of BN
layers, which improves the training efficiency of D3D-LSTM
networks.

The pipeline of the network is as follows: 1) Using
64 3D-Conv kernels to extract the features of the input data,
and obtain 64 feature maps, and the size of each feature
map does not change, that is, 64@32×112×112; 2) Adopting
a 1×2×2 size kernel to reduce the size of the feature and
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FIGURE 8. Densely connected 3D-CNN network. Each coloured cuboid represents the processed data, and the change in the
size of the cuboid represents the change in the size of the data. The yellow, green, and blue connection lines represent three
dense connections, respectively. The 3D-Conv kernel size and pooling layer size are obtained through comparative
experiments.

the number of parameters, the time dimension is unchanged,
and the output feature map size is 64@32×56×56; 3) The
input feature maps are processed by using 32 3D-Conv ker-
nels; 4) Splicing the feature maps in step 2 and 3 to obtain
features of 96 channels, their size is unchanged, this opera-
tion increases the feature diversity, and reduces the number
of the parameters; 5) The third 3D-Conv operation, using
32 convolution kernels, obtains the feature maps with the
size of 32@32×56×56; 6) Splicing the step 2/3/5 into fea-
ture maps with the size of 128@32×56×56; 7) The fourth
3D-Conv operation for extracting 32 key feature maps from
128 sets; 8) The last layer splicing operation, including the
features in step 2/3/5/7; 9) The last 3D-Conv operation for
extracting 32 feature maps; 10) Selecting a pooled check fea-
ture size of 2×2×2 to reduce the dimension, and outputting
the feature maps with the size of 32@16×28×28.

C. FEATURE EXTRACTION FOR REAL-TIME FUSION
Real-time fusion is more effective than the methods of early-
fusion and post-fusion, and the robustness and discrimination
of the fused features can be enhanced. This is because the
commonality of the RGB and depth features is extracted.

The real-time fusion feature extraction framework is shown
in Fig.9. All the large cubes (color/gray) indicate data transi-
tion paths with 3D-Convs or max-pooling in the densely con-
nected 3D CNN, and small cubes (color/gray) indicate data
fusion operation. After the transition, the output feature maps
f iRGB and f iD are fused into a new feature fi in real-time, while
f iRGB and f iD are also input to the next layer, and so on. Then,
the new features obtained by each fusion are concatenated
into a more representative feature vector (f1, f2, . . . . . . , fn).
Next, the vector is processed by attention-based LSTM to
extract global-temporal features, as shown in Figure 6 (green
area). Where f iRGB represents the RGB feature extracted for
the i times in the model, and f iD is the same. Based on
the differences and commonalities between RGB and depth

FIGURE 9. Real-time fusion feature extraction network.The gray area
represents the dual-modal feature extraction, and the structure is the
same. Each cube (color and gray) represents the feature extracted in each
frame. Every two corresponding cubes are fused into one element in the
feature vector.

features, the following equations are obtained: RGB feature
is disassembled into fR = f1R+ fCM , depth feature is split into
fD = f1D+ fCM , and f1R and f1D, that are differences. The sex-
ual part, fCM is the part with the sameness. Therefore, the real-
time feature fusion can be expressed as f = f1R + f1D + fCM .
To complete the recognition task, it is also necessary to obtain
the real label Lture of the action, which can be obtained by
the regression coefficient matrix. The weights corresponding
for f1R, f1D, and fCM are W 1R, W 1D, and WCM , the Lture is
shown as〈
W (CM )T

‖ W (1R)T
‖ W (1D)T

〉T
×〈fCM ‖ f1R ‖ f2D〉T =Lture.

(6)

D. ATTENTION MECHANISM BASED LSTM
The attention mechanism allowed the model to focus on the
integrity of the input and improve the performance of the
model [56]. Based on this idea, we configure the correspond-
ing weights for each input frame. This method is to configure
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a larger weight for the frame containing a large amount of
action information, so that these frames get the attention of
the model, thereby improving the recognition rate.

FIGURE 10. Attention mode based flowchart. First, the spatial and local
short-term features of the behaviour are extracted for real-time fusion.
Then, the attention mode is used to process the fused feature vectors,
so that the LSTM has a focused learning process, and the process is
iterated in real-time. Finally, model optimization and output classification
results.

The pipeline of the LSTM based on the attention mecha-
nism is shown in Fig.10. First, the fusion feature fi is extracted
by 3D-CNN, which is formed by the real-time fusion of RGB
and depth features. The fused features are then processedwith
an improved attention mechanism, assigning corresponding
weights to each frame, as shown in (7).Where αti is the weight
of the ith element in the fused feature, and the weighted
sum of all elements is 1. Therefore, αti can represent the
importance of each element. The larger the value, the more
critical it is. Finally, how to choose αti is the key to the model.

xt (f ) =
N∑
i=1

αti fi (7)

In the LSTM, the key is that the last input can affect the next
output, and the loop operation can focus on global long-term
information. Based on this idea, the choice ofαti is also related
to the output of the last neuron. The activation function tanh
is selected, and the parameters are normalized to obtain the
expression of αti , as shown in (8). Where ht−1 is the output
of the last neuron, and fi is the dual-stream fusion feature.
ha, wa, and ua are the weight matrices obtained during model
training, where wa ∈ Rn×n, ua ∈ Rn×2n, ha ∈ Rn×n.

αti =
exp{tanh(ha,wa, ua)+ fiht−1}∑N
i=1 exp{tanh(ha,wa, ua)+ fiht−1}

(8)

These weights are introduced into the input vector so that
the network can focus on each element in the input sequence
by its usefulness.αti is also a kind of dynamicweight, which is
determined by the output ht−1 of the previousmoment and the
input fi of the current state, which can more closely represent
the importance of each element. In summary, the LSTMstruc-
ture based on the improved attention mechanism is obtained,
as shown in Fig.11. After the global long-time feature is
extracted, the vector is input into the softmax classifier for
classification, and a probability vector is obtained. Based
on the above improvements, the proposed model is more
effective for long-term feature processing and improves the
recognition rate.

FIGURE 11. Attention mechanism based LSTM network.The blue area
represents the weights that have been iteratively updated by the
attention model and applied to the input vector. W i is the weight
generated after each iteration and is used for the final classification.

E. MODEL OPTIMIZATION
The proposed D3D-LSTM model is decomposed into two
parts. The 3D-CNN is first optimized and then optimized for
the LSTM.Where the former is responsible for extracting and
real-time merging RGB and depth features, the latter mainly
extracting global long-time features. Comparing with other
optimization models, such as SGD [57] and ADAM [14],
ourmodel applies the alternating optimization strategy, which
uses different methods to update the parameters, including
the multi-modal feature adaptive weight learning method and
SGD method. The dimension of both features is different in
each fusion hierarchy, which would lead to the failure of the
multi-feature fusion.We utilized themappingmodulemethod
to optimize depth and RGB features. First, the original feature
inputs are mapped into the same feature space. Then, each
new feature fi = [f iRGB; f

i
D] is obtained by applying our fea-

ture fusion strategy. Finally, all the fi are listed in temporal
order to be the multi-feature fusion sequence.

Themethod of optimizing the objective function is adopted
to optimize this model. Let the objective function be minS =
SR + SD + SF . Where SR is the cost function of RGB
mode, SD is the cost function of depth mode, and SF is
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the cost function after fusion. When the cost function is
minimized, the 3D-CNNmodel can output the optimal result.
(SR, SD, SF ) are expressed as (9), (10), and (11), respectively.
Where both µ1 and µ2 are the weights in the modal and
satisfies µ1 + µ2 = 1,W is the transformation matrix of
the independent correlation features, f is the characteristic
of each modal extraction, α is the weight coefficient of the
penalty function, g(·) is the penalty function, λ represents the
relationship between feature constraints and supervision in
the fusion feature, and Lture is true label. During the model
optimization, the update of the parameters take place until the
model converges, the loop iteration steps are summarized as
follows. First, initializing with random values for one part of
parameters, including W , W1, W2, f , while µ1 and µ2 are
initialized as 0.5. Next, the weights µ1 and µ2 are updated
in each module (other weights are fixed) by constructing
the Lagrangian objective function. In the following iteration
process, µ1 and µ2 are different because both play different
roles in each feature extraction module. Then, the values
Wi and f are updated (other weights are fixed) through the
gradient descent method.

SR = µ1(‖W1X1 − fR‖
2

F +

∥∥∥W1
T fR − X1

∥∥∥2
F
+ α1g(fR)) (9)

SD = µ2(‖W2X2 − fD‖
2

F+

∥∥∥W2
T fD−X2

∥∥∥2
F
+ α1g(fD)) (10)

SF = λ(
∥∥∥W T f − Lture

∥∥∥2
F
+ α2g(‖W‖2,1)) (11)

Each norm can optimize the objective function. Both (9)
and (10) contain two norms. The first norm represents
the similarity of the feature and the transformation matrix
of the added modal extraction, and the second norm rep-
resents the ability of the improved feature to reconstruct
the original feature in the reverse direction. Equation (11)
takes advantage of the ability to monitor the characteristics
of information fusion. Besides, although SR and SD seem to
be optimized independently of each other in the objective
function, fR and fD in the two equations contain the same
features fCM .

V. EXPERIMENTS AND ANALYSIS
In this section, we conduct numerous experiments and evalu-
ate the proposedD3D-LSTMmodel on two tasks, that is, sim-
ilar activity differentiation and complex action recognition.
First, two sets of experiments were performed using the Real-
set, that is, many conventional algorithms and state-of-the-
art methods are tested. Next, used the public datasets to test
the proposed model, and compared the experimental results
with other advanced results, and comprehensively analyzed
the performance of the model. These experiments verify the
effectiveness and advancement of our model.

A. EXPERIMENTAL SETTINGS
We use the Real-set, SBU-Kinect and MSR-action-3D data
sets, each of which is split into two parts, 70% for train-
ing model and 30% for testing model.For fair comparisons,

we operate the Cross Subject Test , which can verify results
accuracy and generalization. We follow the formulation
technique of [58], which includes three concise settings for
training and two effective settings for testing. The selected
samples for Cross Subject Test are applied to the same sam-
pling strategy as [59].
In this model, the two modes that process RGB and depth

data use the same structure of the network, sharing the
same initialization weights. When training with the Real-
set, the initial learning rate is set to 0.001, the learning rate
attenuation factor is 0.1/5000 times, the network training step
number is 30,000 steps, and the batch value is 16. Since the
framework used is the Tensorflow 1.1.4 GPU, the NVIDIA
GTX1080 graphics card ismainly used for training. The train-
ing epoch is 20, and other parameter settings are empirically
obtained q = 1.5, λ = 1500, α1 = 2, α2 = 10, γ = 0.001.

B. HUMAN ACTION RECOGNITION: REAL-SET
This set of experiments intends to prove the correctness of the
proposed model. In particular, the new model combines the
traditional networks of 3D-CNN and LSTM and introduces
advanced ideas such as attention mechanism and real-time
feature fusion. This combined idea has rarely been studied
before.

TABLE 1. Verification results on the real-set.

In this paper, the D3D-LSTM model is proposed based
on some traditional algorithms, using Real-set to test these
algorithms. We conducted the following six sets of experi-
ments: 1) Testing the proposed model using the RGB data
in the Real-set, namely, RGB-net; 2) Testing the proposed
model using the depth data in the Real-set, namely, Depth-
net; 3) Testing 3D CNN without real-time feature fusion part
using the Real-set, namely, 3D CNN-net. 4) Testing 3D CNN
using the Real-set, namely, New 3D CNN-net; 5) Testing the
proposed D3D-LSTM model without the attention mecha-
nism using the Real-set, namely, LSTM-net; 6) Testing the
proposed D3D-LSTM model using the Real-set. The results
of the six groups are shown in Table 1.

When only a single-modal dataset is input, the recognition
rate based on the depth dataset is higher than that of the RGB
dataset, which proves that the depth data can improve the
performance of the action recognition. Comparing the results
of the groups 4 and 5, it can be concluded that the method
of real-time feature fusion is effective, and its performance
is superior to the early-fusion or post-fusion scheme in the
traditional method. By analyzing the experimental results of
the group 5, it is concluded that adding the LSTM to deal with
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TABLE 2. Experimental results on the real-set.

the global long-time features can improve the performance of
the model, which also proves that the idea of combining the
LSTM is correct. By comparing the experimental results of
groups 5 and 6, it is also possible to derive the introduction
of the attention mechanism, which can improve the ability of
the LSTM to deal with global long-time features. The exper-
imental results of group 6 are better than the other 5 groups,
which indicates that the D3D-LSTM model is effective and
better than other traditional methods.

FIGURE 12. Confusion matrix of the proposed model on the Real-set.

Additionally, the confusion matrix of the proposed
D3D-LSTM model on the Real-set is shown in Fig.12.
By analyzing, it can be concluded that although the model
occasionally misjudges the recognition of interactive actions,
the overall performance is superior. Because, in the process of
double target approach, especially when the target overlaps,
there would be limb contact and large area occlusion, so the
model can occasionally misclassify. The recognition rate for
a single target action is close to 100%, that for interaction
actions with a long duration is above 95%.

In summary, the proposed D3D-LSTMmodel is robust and
feasible. However, the difference between the model and sev-
eral classic algorithms is unknown. Therefore, using the Real-
set to test several classical target recognition approaches,
the experimental results are shown in Table 2. The results
prove the effectiveness and superiority of the proposed
D3D-LSTM method.

C. HUMAN ACTION RECOGNITION: SBU-KINECT
These sets of experiments intend to analyze the perfor-
mance of the proposed D3D-LSTM model on recognizing
interactions. The interaction is more complicated and is a key

TABLE 3. Experimental results on the SBU-Kinect dataset.

role in human action recognition. Each action in the dataset
is long-lasting and is finished by many participants, which is
challenging for the model.

The SBU-Kinect is the first publicly available RGB-D
interactive action dataset, including approach, leave, kick,
punch, push, hug, shake hand, and exchange item. The results
of the proposed D3D-LSTM model and other state-of-the-
art methods on this dataset are shown in Table 3. By com-
parison, the recognition rate of the model is higher than
other methods. Specifically, in [58] and [63], both introduced
attention mechanisms into LSTM, but the recognition rate
of our model is higher due to the improved attention model.
These results show that our model can extract more effective
spatiotemporal features. Besides, by comparing [64] and [65],
it can be obtained that our model is superior to the skeleton-
based methods in terms of recognition rate. It should be
noted that the methods based on different data types have
their advantages. As shown in Fig.13, the confusion matrix
on the SBU-Kinect is given. It can be intuitively concluded
that in addition to the extremely similar behaviours, including
shoving, hugs, and hits (the body shape and action sequence
are almost the same), the recognition rate of other interactions
is about 95%.

FIGURE 13. Confusion matrix of the new fusion model on the SBU-Kinect.

The improved attention mechanism introduced in the pro-
posed D3D-LSTMmodel enhances its ability to extract long-
term features. The unique advantage of the 3D-CNN network
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FIGURE 14. Confusion matrices of the proposed D3D-LSTM model on the MSR-action-3D dataset. AS1 and AS2: Similar
actions, that is, the timing and amplitude of the actions are similar, used to test the model’s ability to distinguish similar
actions. AS3: Complex actions, including actions combined with simple actions and long-lasting actions, are used to test the
model’s ability to recognize complex actions.

is that it can extract local short-term features. The proposed
D3D-LSTM model combines long-short-time features when
processing data. This dramatically enhances the recognition
rate for long-lasting behaviours, such as complex actions and
interactions.

D. HUMAN ACTION RECOGNITION: MSR-ACTION-3D
These sets of experiments intend to analyze the performance
of the model on distinguishing similar actions and recogniz-
ing more complex actions. Both are the most common types
of actions in daily life and are key indicators for evaluating
whether a model has applicability.

The MSR-action-3D is a large dataset containing 20 indi-
vidual actions. Following the complexity and similarity, these
actions are divided into three groups, each group contains
8 actions, where high-injection, croquet and throwing, tennis
serve, and front kick are simultaneously present in different
groups. As shown in Table 4, the first group (AS1) and
the second group (AS2) include some similar actions, and
the third group (AS3) includes some more complex actions.
The biggest advantage of using the dataset is that it can
comprehensively evaluate the performance of the model, that
is, the accuracy of distinguishing similar actions and the
recognition rate of complex actions.

TABLE 4. MSR-action-3D dataset.

The experimental results of the proposed D3D-LSTM
model and other state-of-the-art methods are shown
in Table 5. By comparison, it can be concluded that the
recognition rate of complex actions in the model is better
than other methods, and the recognition rate of most similar

TABLE 5. Experimental results on the MSR-action-3D dataset.

actions is also higher than other methods. This is because,
in the new model, the real-time feature fusion method can
extract more effective space features without losing important
information, thus improving the ability to distinguish similar
actions. The combination of 3D-CNN and LSTM, and the
introduction of an improved attention mechanism, which
allows the model to better process temporal information,
thereby improving the recognition performance of complex
actions.

Figure 14 shows the confusion matrices for the results
of the proposed model. As shown, the recognition rate
of most of the actions is as high as 90%, especially the recog-
nition rate of complex actions in the AS3 is close to 100%.
In other state-of-the-art methods, most models cannot have
a high recognition rate for ‘‘ Pickup throw ’’ in the AS3.
This is mainly because that ‘‘ Pickup throw ’’ is a continuous
long-term combination action, that is, the ball is thrown after
the ball is picked up first. However, other methods have
insufficient ability to process the global long-time feature.

In the AS1 and AS2, in addition to these very similar
actions, the recognition rate of other actions is also close to
100%.The very similar actions recognition rate is also stable
at 90%which is better than other state-of-the-art methods. For
example, in previous studies, the recognition rate of ‘‘Pickup
throw’’ and ‘‘Bend’’ in the AS1 are not good. Especially,
it is noticed that the recognition rate of our model in the
AS2 is not the best, the main reasons are as followed. In [58],
the 3DMTG model was proposed for skeleton joints fea-
ture extraction based on a new histogram projection method
and a novel feature descriptor. The main contribution is to
improve the ability to distinguish similar actions by recording
3D moving trend feature in body joints. However, since the
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model did not fuse RGB and depth features, the recogni-
tion rate for complex, angle-changing or partially occluded
actions is not better than the D3D-LSTM model, and cannot
be widely applied in the real world. In [14], spatiotemporal
multi-fused features-based an online HAR method was pro-
posed for depth and skeleton data action recognition. The
method can track body parts such as arms and legs in case
of multiple actions, which aims to describe in detail the
differences between similar activities. While the method is
able to detect minor differences in action, themodeling ability
of complex spatial features is not better than our model due
to the lack of color information.

TABLE 6. Quantitative evaluation of HMM-based methods on the
MSR-action-3D dataset.

We compare our model with state-of-the-art HMM-based
models on the MSR-action-3D dataset and summarize the
results in Table 6. The hidden Markov model (HMM)
achieves better ability to model temporal feature and have
been extensively used in sequence recognition. We consider
the following state-of-the-art methods: Jalal et al. developed
the multi-fused features codingmethod for training the HMM
model [14], and trained clustered features based on transition
and emission probabilities values [6], and extended HMM by
using robust depth silhouettes context features [71];Wu et al.
combined SVM and HMM for continuous action feature
modeling [72].

In summary, the proposed D3D-LSTM model achieves
great advantages in recognizing complex actions, and the
performance of distinguishing very similar actions is better
than other methods.

VI. CONCLUSION AND FUTURE WORK
We propose the D3D-LSTM model for recognizing human
action based on RGB-D. The proposed D3D-LSTM model
is based on 3D-CNN and LSTM, which also introduces the
idea of dense connection, the improved attention mechanism,
and the real-time feature fusion method. The model has a
strong global long-term feature processing performance and
can extract better spatiotemporal features which increase the
recognition rate of complex actions as well as distinguish
similar actions. We collect a dataset called Real-set with
changing scenes, which currently is a more realistic RGB-D
action dataset.

A series of experiments are conducted to compare the
proposed D3D-LSTM model with other traditional methods,
to prove the correctness of the study ideas. Because the
model improves the extracting ability of global features. The
performance of the model in the Real-set, SBU-Kinect, and
MSR-action-3D data sets is superior to other state-of-the-art

methods. Especially, the recognition rate of complex actions
in MSR-action-3D is about 5% higher than other methods,
and the average accuracy rate is improved by 2% when dis-
tinguishing similar actions. When recognizing interactions in
SBU-Kinect, the recognition rate is increased by about 3%.
These databases are challenging because they contain similar
actions, complex actions, and multiple changes. However,
some limitations should be noted. First, the D3D-LSTM
model has not achieved the best recognition rate for intra-
class similarity actions, such as Tennis serve, Draw X , Hand
catch. Second, our model can extract the keyframes of each
sample, but it cannot automatically extract saliency infor-
mation in the keyframes that would be important for the
recognition rate.

In future work, we will improve the effectiveness of dis-
tinguishing similar actions by adding the skeleton data and
research a more discriminative temporal attention model.
Besides, we also focus on continuous action recogni-
tion to make the proposed method more practical in real
applications.
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