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ABSTRACT The rectilinear/octilinear Steiner problem is the problem of connecting a set of terminals Z
using orthogonal and diagonal edges with minimum length. This problem has many applications, such as the
EDA, VLSI circuit design, fault-tolerant routing in mesh-based broadcast, and Printed Circuit Board (PCB).
This paper proposes an obstacle-avoiding 4/8/10/26-directional heuristic algorithm for this problem based
on the Areibi’s concept, Higher Geometry Maze Routing, and Sollin’s minimal spanning tree algorithm.
The major contributions of this paper are (1) our work is the first report for the octilinear SMTs in the
multidimensional environments, (2) we provide an optimal point-to-point routing without any refinement,
and (3) the proposed algorithm has higher adaptability to deal with any irregular environment, and can be
extended to the λ-geometry without any extra work, where λ = 2, 4, 8 and∞ corresponding to rectilinear,
45◦, 22.5◦ and Euclidean geometries respectively.

INDEX TERMS Higher geometry maze routing, octilinear, rectilinear, Steiner tree.

I. INTRODUCTION
Routing plays an important role in many applications, such as
the Electronic Design Automation (EDA), Very Large Scale
Integrated (VLSI) circuit design (X Initiative), fault-tolerant
routing inmesh-based broadcast [1], [2], decision systems[3],
and Printed Circuit Board (PCB) [4], [5]. Finding a minimal
length spanning structure using orthogonal and diagonal seg-
ments connecting a set of vertices is critical for multi-pin net
in global routing of VLSI design, as shown in Fig. 1. The
objective is to connect a set of terminals with minimal wire
length so that the there exists a path between any two termi-
nals. The problem can be formalized as the minimal spanning
tree (MST) problem. Optimal connection with shortest wire
length of given terminals can be achieved via some additional
terminals or Steiner Vertexes. The optimal connection prob-
lem is so-called the Steiner minimal tree (SMT) problem.

The Steiner minimal tree problem in Euclidean and recti-
linear routingmodel (rectilinear Steinerminimal tree, RSMT)
has beenwell studied in the literatures [6]–[14]. It is similar to
the Minimal Spanning Tree (MST) problem. The difference
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FIGURE 1. Octilinear steiner minimal tree.

is that a minimal spanning tree is formed by edges that link all
the required vertices, while minimal Steiner trees can connect
some auxiliary nodes, which are called Steiner vertices. Con-
sider the five nodes in Fig. 2. A minimal spanning tree can
be easily constructed by linking these five nodes, as shown in
Fig. 2(a). However, Fig. 2(b) reveals that the Steiner minimal
tree has 6 nodes, i.e. one Steiner vertex has been introduced.
That is, the dashed edges in Fig. 2 depict the subtle difference
between them.

Until now, there are some important issues that have not
been fully solved: the first is to apply the RSMT to octilinear
interconnection that is widely used in IC design, such as
the multi-pin nets global routing of VLSI design [1], [2].
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FIGURE 2. Minimal spanning trees vs. minimal steiner trees.

FIGURE 3. 3D Minimal Steiner Trees (a) Minimal Steiner Tree in a
multilayer grid without obstacles, (b) Minimal Steiner Tree in a multilayer
grid with obstacles.

The second is to develop non connection-graph or
non-Delaunay triangulation algorithms for arbitrary obsta-
cles. Recently many Connection Graph (CG) and Delaunay
Triangulation (DT) based algorithms have been proposed
and have outstanding theoretical worse case running
time [4], [15]–[19]. These algorithms have the feature of
obstacle avoidance for rectilinear and even polygon obstacles.

However, how to handle the environment with arbitrary
obstacles, such as single-cell obstacle and non-polygon
obstacles is still a challenge. The other issue concerns
with measuring the performance of the algorithms while
the minimal Steiner tree (MST) problem is known as
NP-complete [10], [11].

In the previous research, besides the time and space com-
plexities, experimental results or simulations of average wire
length are usually provided to illustrate the effectiveness
and efficiency for the proposed algorithms. This paper pro-
poses an obstacle-avoiding 4/8/10/26-directional heuristic
algorithm. Fig. 3 is a schematic diagram of multilayer MST.
Fig. 3(a) depicts the minimal Steiner tree of four vertices in
a multilayer grid without obstacles, while Fig. 3(b) illustrates
a different minimal Steiner tree of three vertices with one
Steiner vertex when there are obstacles around. The proposed
algorithm adapts Areibi’s concept and the recursive minimal
spanning tree algorithm of Boruvka (also attributed to Sollin
and commonly known as the Sollin’s algorithm) to obtain
minimal Steiner tree [20]–[23]. The rest of this paper is
organized as follows. Section II briefly describes background
and related works. Section III outlines the minimal Steiner
tree algorithms. Section IV shows the experimental results,
space and time complexities. Section V concludes this paper.

II. STEINER PROBLEM AND CURRENT RELATED WORKS
A. THE STEINER PROBLEM
The Steiner problem can be formulated as follows: Given a
network G = (V , E , C), where V is a set of vertices, E is a

set of edges, and C : E → R is the cost function that maps
every edge in E to a real-number cost. Find a subnetwork GS
of G for a set of required vertices Z (Z ⊆ V ) that contains
a path between every pair of required vertices and minimizes
the cost

∑
(vi,vj∈GS ) c(vi, vj).

Due to the presence of obstacles, the previous works on
the obstacle-avoiding Steiner minimal tree (OASMT) prob-
lem suffer the decrement of quality and increment of run-
ning time. Very recently, some OASMT algorithms with
significant running time are proposed and most of the
researches adopt the MST strategy. Lin et al. [24] pro-
posed an obstacle-avoiding rectilinear Steiner minimal tree
(OARSMT) construction algorithm that achieves an optimal
solution for two-pin net. Their approach guarantees to pro-
vide a rectilinear shortest path between any two pins. Never-
theless, the approach is applicable only to rectangle obstacles
and has theO(n3) theoretical time complexity. Jing et al. [15]
presented a three stages OARSMT routing algorithm that is
based on the Delaunay triangulation [25]. In Jing et al. [15]
spanning graph is used and the obstacle avoiding feature
is inherited from the connected graph automatically. This
approach first constructs a connected graph by the boundaries
of obstacles and then a spanning graph is generated from the
graph. The algorithm of Jing et al. has O(nlogn) worse-case
time complexity. However, the performance of the proposed
algorithm strongly depends on the global view of the pins or
obstacles. And similarly, Long et al. [16] proposed a spanning
graph based approach with the same time complexity and
improved the local refinements to a global view. The above
mentioned connected/spanning graph-based approaches try
to capture the global blockage information and may have a
large total wire length and running time both when the num-
ber of obstacles is large and in handling polygon/irregular-
shaped obstacles. Besides, the additional cost of calculating
the corner vertices of obstacles is not mentioned.

In a nutshell, CG/DT based approaches are difficult to
deal with the situations shown in Fig. 4. In the case of
Fig. 4(a), the path of CG/DT based approaches from source
to destination is connected by the corner of the obstacle
as the black-dashed line, and this may not be the shortest.
In fact in the 3-D environment, the shortest path is the
white-dashed line as shown in Fig. 4(a). Furthermore, these
approaches are insufficient to meet both the cases of obstacles
with smooth boundaries and obstacles with arbitrary shapes,
such as single-cell obstacles. The two cases are depicted
in Fig. 4(b) and Fig. 4(c), respectively. The researches
mentioned above concern rectilinear SMTs, and recently
many researchers developed their heuristics in the octilinear

FIGURE 4. Three issues in the 3D environment. (a) 3D shortest path
(b) Obstacle with smooth boundary (c) Single cell obstacles.
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architecture. Traditional Manhattan architecture considers
only horizontal and vertical directions, and clearly this
restriction leads to non-optimal routing over the Euclidean
plane.

The algorithm of Jing et al. can be extended to λ-geometry
plane, such as the Y/X-architecture (λ3/λ4- geometry). The
Steiner problem in rectilinear and octilinear routings has been
well studied [4], [5], [17], [18], [26]–[29]. Zhu et al. [19] pro-
posed two octilinear SMT (OSMT) construction algorithms
(OST-E, octilinear Steiner tree by edge substitution and
OST-T, octilinear Steiner tree by triple construction) based
on octilinear spanning graphs (OSGs), which allows 45◦

diagonal interconnections. Their algorithms are easy to find
neighbors for wire length refinement; however, the possible
local optimization of four or more neighbors is not taken into
account.

Lee et al. [30] proposed a DT based heuristic algorithm
that considered only local substitutions and [31]–[34] pre-
sented liquid routing-based technologies in the X architec-
ture. In Dong et al. [35], a tree splitting-merging based
OARSMT and obstacle-avoiding octilinear Steiner min-
imal tree (OAOSMT) heuristic was presented to solve
IC routing problems both in Manhattan Architecture and
X-Architecture. In 2015, Huang et al. [36] presented a
DT based heuristic algorithm with O(n ∗ m) time com-
plexity, where n and m are the number of terminal nodes
and obstacles, respectively. In their work, Delaunay trian-
gulations (DT) was first generated for the given terminal
nodes, then corner points of obstacles were selected as the
Steiner point. Huang et al. is the current state of the art
in OAOSMT construction problem. Furthermore, some arti-
ficial intelligence technologies were applied to multi-scale
routing [37]–[39].

The other MST based approaches concern the concept of
maze routing that was first mentioned by Lee [34]. Clow [40]
presented the A∗ maze routing and Warren [41] presented
an enhanced A∗ to reduce the time and space complexities.
Hentschke et al. [42] presented a fast maze routing-based
algorithm to build Steiner trees. A sharing factor and a path-
length factor were introduced to trade-off wire length for
delay. Researches presented a heuristic maze routing-based
approach for constructing large scale OARSMTs [43]–[48].
These methods of maze routing mentioned so far only take
the rectilinear cases into account. This is because in the
octilinear condition, the time complexity and memory usage
of the traditional maze routing algorithms grow prohibitively
huge as the routing area becomes larger, and this draw-
back make the maze-routing based approaches less popular
for modern applications. For the obstacle-avoiding octilin-
ear MST (OAOMST) problem, Huang et al. [49] proposed
a Particle Swarm Optimization-based (PSO) single-layer
OAOMST approach 2015, and further improved its perfor-
mance with the concept of DT [50] and applied it to the
X-Architecture [51].

In this paper, we will show that the maze routing-based
approach can also handle both the rectilinear and octilinear

SMT problems effectively, due to the acceptable running time
and quality of results.

In this paper, we construct a maze routing based octilinear
OASMT, which is an extension of the Higher Geometry
Maze Routing (HGMR) algorithm that was first introduced
in [9]. Our previous work [52] improves Lee’s rectilinear
routing algorithm [34] to the λ-geometry plane, and the
significant improvement is that it has the same time and
space complexities of O(N ) as Lee’s algorithm by a specially
designed data structure. The λ-geometry allows edges with
the angles of iπ /λ, for all i, λ = 2, 4, 8 and∞ corresponding
to rectilinear, 45◦, 22.5◦ and Euclidean geometries respec-
tively. This paper introduces 2D 4/8- directional and 3D
10/26-directional heuristic OASMT algorithms that based on
maze routing approach (see section 3.1). To our knowledge,
this study is the first report of maze routing based approaches
for octilinear SMT construction and arbitrary obstacles (not
necessary maze routing based). The main contributions of
this paper are listed as follows: (1) the proposed method has
high flexibility and ability to handle arbitrary blockages, (2)
this method produces optimal point-to-point paths both in 2D
planes and 3D volumes without local refinement. This quality
obviously outperforms other graph based approaches in wire
length in multidimensional volumes, and (3) we demonstrate
that the Steiner ratio of our algorithms is 1.25.

III. THE PROPOSED STEINER TREE ALGORITHM
A. λ-GEOMETRY MAZE ROUTING
HananGrid Theorem states that there exists aminimal Steiner
tree with all the Steiner points chosen from the Hanan ver-
tices. As shown in Fig. 5, a finite set H (S) is obtained by
constructing the horizontal and vertical lines of the terminal
Set Z in a planar grid, i.e., the Hanan Vertices. According to
Hanan’s theorem, the Steiner Point of any rectilinear minimal
Steiner tree will fall into the set H (S). Subsequently Areibi
developed an iterative algorithm based on this theorem [20]
and Lee’s shortest path connection algorithm [34], which
is the most commonly used algorithm for finding a path
between two vertices on a planar rectangular grid. Lee’s
shortest path algorithm can be divided into three phases:

(1) Wave propagation phase(Exploration phase): Start-
ing from the source node, wavefronts are propagated

FIGURE 5. An example of rectilinear grid (a) Rectilinear grid with
terminals T1∼T5 (b) Hanan Grid and Hanan vertices.
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to neighboring nodes until the destination node is
reached.

(2) Backtracking phase: A path is backtracked from the
destination node to the source node.

(3) Reversing phase: The shortest path is obtained by
reversing all the edges of the path.

Later Jan et al. improved Lee’s algorithm by extending the
propagation and backtracking processes from 4 directions to
8 directions [52]. The key to the popularity of Jan’s algorithm
is its simplicity and its guarantee of finding an optimal solu-
tion if it exists with the time complexity of O(λN) for the
λ-geometry maze routing, where N is the number of vertices
on the grid.

B. THE PROPOSED ALGORITHM
The proposed algorithm adapts Areibi’s and Jan’s algorithms
to generate shortest paths in the multidimensional environ-
ments. The result of wave propagation in the proposed algo-
rithm can be interpreted as the gravitational effect relative to
starting point. The larger the value in the grid, the smaller
the gravity of the point relative to the starting point, that is,
the distance is inversely proportional to the magnitude of the
attraction. The algorithm uses the concept of equal distance
accumulation to simulate the result of the addition of all
force fields, and then find the critical vertices closest to the
average value of each node. Then a new minimal spanning
tree will be constructed after adding one of Hanan vertices to
Z and its improvement over the previous minimal spanning
tree will be computed. This process will continue until the
improvement becomes non-positive. Aminimal spanning tree
will be constructed with one of candidates plus all the points
in Z and its length will be compared with the length of the
minimal spanning tree of Z only.

The difference for every free vertexwill be stored in a table,
called the Improvement Table, and Steiner vertices will be
chosen from the candidates based on this table by the greedy
method. Consider the nodes Z1 to Z5 in Fig. 6. The length
of the minimal spanning tree of these nodes is 16.73 units,
as shown in Fig. 6(a). The Improvement Table in Fig. 6(b)
reveals that the cost of connecting these nodes can be reduced
if Steiner vertices are used. The length of the Steiner tree is
reduced to 14.07 after adding one Steiner node, as shown
in Fig. 6(c). The 4-directional weight of distance is 1 in
each direction, and 1 and

√
2 corresponding to the angles

of 90◦ and 45◦ in the 8-directions. The basic idea of the

FIGURE 6. 2D Example of SMT and Improvement Table (a) Initial minimal
spanning tree, (b) Improvement Table, and (c) The SMT after adding one
Steiner node.

FIGURE 7. 10/26-Directional Propagation (a) 10 Directions and
(b) 26 Directions.

TABLE 1. Notation used in the 2-dimentional 4/8-directional algorithm.

3D 10/26-directional SMT algorithm is the same as the 2D
4/8-directional algorithm.

The difference lies at the procedure of λ-geometry wave
propagation, and the weight of distance can be 1,

√
2, and

√
3.

The 10-directional connection is widely used in the VLSI
design sincemultiple circuit layers of VLSI or PCB are linked
through vertical vias.

As a result, every node in a multi-layer mesh has 10 neigh-
bors, as shown in Fig. 7(a). In additional, the 26-directional
connection is more general, and each node has 26 neighbors
as illustrated in Fig. 7(b). Table 1 lists the notations of the
proposed algorithm. The complete 4-directional algorithm is
given in Table 2.

C. COMPLEXITY ANALYSIS
1) SPACE COMPLEXITY OF THE 2D 4/8-DIRECTION
Let Nfree be the number of free nodes and Nobstacle be the
number of obstacle nodes, then p + Nfree + Nobstacle = N .
Step 1 of the algorithm creates a matrix AD(i, j) for every
vertex vi,j and every free node in the space and hence the
space requirement is (p+Nfree)×N . Step 2 takes a space ofN
for the Improvement Table IT. In addition, two auxiliary data
structures will be created during computation and each will
takes at most N nodes. Consequently, the space complexity
of this algorithm is (p+ Nfree) × N + N + 2 × N = (p +
Nfree + 3)N = O(N 2).

2) SPACE COMPLEXITY OF THE 3D 10/26-DIRECTION
Step 1 of the algorithm will create a matrix AD(i, j, k) for
every vertex vi,j,k and every free node in the space and
hence the space requirement is (p + Nfree) × N . Step 2 will
take a space of N for the Improvement Table IT. The space
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TABLE 2. The proposed SMT algorithm.

complexity of this algorithm applied to 3D model is (p +
Nfree)× N + N + 2× N = (p+ Nfree + 3)N = O(N 2).

3) TIME COMPLEXITY OF THE 2D 4/8-DIRECTION
In step 1, this algorithm computes the flooding distances from
every node in Z and each free vertex. Since each computation
of flooding distances costs O(N ), the time complexity of this
step is O(N )× (p + Nfree) < O(N )× N = O(N 2). Step 2 of
this algorithm finds the minimum spanning tree connecting
all the nodes in Z using the Sollin’s algorithm, which has the
time complexity of O(plog2p). In Step 3, a free vertex will
be picked and a minimum spanning tree will be constructed
to connect this free vertex and all nodes in Z , and then the
difference between the length of this MST and the MST com-
puted in Step 2 will be stored in the Improvement Table. Since
constructing a minimum spanning tree of p + 1 nodes costs
O((p+1) log2(p+1)) and there are totalNfree free vertices, this
step takesO((p+1) log2(p+1))×Nfree ∼ O(Nplog2p). Step 4
chooses the node with the largest positive number from the
Improvement Table, and hence its cost is only at most O(N ).
Step 5will repeat the processes of Steps 2 to 4 for at most p−2
times, since it is proven that at most p− 2 Steiner nodes can
be found from the set of p nodes Z [53]. As a result, the time
complexity will be (p − 2) × (O(plog2p) + O(Np log2p) +
O(N )) ∼ O(Np2 log2p). The final Steiner minimal tree will

be constructed in Step 6, which has the complexity of O(p2).
Combining these steps, the time complexity of this algorithm
should be O(N 2) + O(Np2 log2p) + O(p2) ∼ O(N 2

+ Np2

log2p).

4) TIME COMPLEXITY OF THE 3D 10/26-DIRECTION
The basic idea of the 3D 10/26-directional SMT is the
same as the 2D 4/8-directional algorithm. The major dif-
ference between the 2D 4/8-directional algorithm and the
3D 10/26-directional algorithm is the flexibility of flooding.
This variation corresponds to the size of N and the order
remains unchanged. Therefore, the total time complexity of
this algorithm is O(N 2

+ Np2 log2p).

D. ERROR ANALYSIS
The proposed algorithms find minimal Steiner trees with a
Steiner ratio of 1.25, where the Steiner ratio is defined as
the smallest upper bound on the ratio between the length of a
minimum spanning tree and the length of a Steiner minimum
tree of the same set of terminals [23], i.e., let M be the
metric space and P a finite set of terminals in M , the Steiner
ratio ρ (M) = supremumLMST (P) /LSMT (P) |P ⊂ M , where
LMST (P) and LSMT (P) are the lengths of the minimal span-
ning tree and Steiner minimal tree on P, respectively.
Lemma 1: When a Steiner minimal tree or a minimal

spanning tree of a set of nodes in the Euclidean space is
translated to the octilinear architecture, its new length will
be at most 1.0842 times of its original length. In other words,

|MST |E ≤ |MST |X ≤ 1.0842|MST |E and

|SMT |E ≤ |SMT |X ≤ 1.0842|SMT |E ,

where |MST|E and |MST|X represent the lengths of minimal
spanning trees in the Euclidean space and octilinear architec-
ture respectively, and |SMT|E and |SMT|X denote the lengths
of Steiner minimal trees in the Euclidean space and octilinear
architecture respectively.

Proof: When horizontal, vertical, or orthogonal edges
are translated from the Euclidean space to the octilinear
architecture, there will be no errors, whereas all other types of
edges will cause discrepancies. Since the regions divided by
the horizontal, vertical, and orthogonal links are symmetrical,
only the grid nodes (x, y) in the first region (i.e. x, and y are
integers, x, y ≥ 0 and x ≥ y) will be shown. For every grid
node (x, y) in the first region, its Euclidean distance to the
original (0,0) is

√
x2 + y2.

On the other hand, its distance on the octilinear architecture
will be

(x − d)+ (y− d)+ d ×
√
2 = (x + y)− (2−

√
2)× d

where d is the number of diagonal edges that are taken in any
path from (0,0) to (x, y).

Therefore, the shortest distance on the octilinear architec-
ture from (0,0) to (x, y) will be

min((x + y)− (2−
√
2)× d)
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FIGURE 8. Shortest Paths to (x,y) on the octilinear architecture (a) One
possible path (b) Another possible path.

which happens when d = y. That is, the shortest distance
from (0,0) to (x, y) is

(x + y)− (2−
√
2)× y = (x − y)+

√
2× y

Fig. 8 displays two possible shortest paths between (0,0)
and (x, y). As a result, the ratio between the shortest distance
on the octilinear architecture and the Euclidean distance will
be

α =
((x-y)+

√
2× y√

x2 + y2

The maximal value of α occurs when y = (
√
2 − 1)x, and

the value αmax is ∼1.0842. Since each edge of a minimal
spanning tree in the octilinear architecture will be at most
1.0824 times of its original length in the Euclidean space, the
overall length of the minimal spanning tree in the octilinear
architecture will be at most 1.0824 times of its original length
in the Euclidean space. That is,

|MST |E ≤ |MST |X ≤ 1.0824|MST |E .

Similarly, it can be proven that

|SMT |E ≤ |SMT |X ≤ 1.0824|SMT |E , (1)

for Steiner minimal trees.
Lemma 2: A Steiner minimal tree connecting a set of

nodes in the Euclidean space can be found from the minimal
spanning tree of the set of nodes, and the length of the Steiner
minimal tree will be at most 2/

√
3 times of the length of the

minimal spanning tree.
In other words, |MST|E ≤ 2/

√
3 |SMT|E .

Proof: It has already been proven by Cieslik [23] and
Feng et al. [54].
Lemma 3: The length of any Steiner minimal trees in

octilinear architecture computed by this algorithm will be
equal to or small than the length of the minimal spanning
tree for the same set of nodes in octilinear architecture.
That is,

|SMT |algX ≤|MST |X ,

where SMT |algX be the length of a Steiner minimal tree in
octilinear architecture computed by this algorithm.

Proof: Step 2 of this algorithm constructs the minimal
spanning tree that connects the set of nodes Z , and then Step
4 identifies a Steiner minimal tree for Z by choosing the node

with the maximum positive value (say cmax) in the Improve-
ment Table as the Steiner vertex. As a result, the length of
the new Steiner minimal tree |SMT|alg X will be equal to
|MST|X − cmax .

Consequently, |SMT| alg X≤|MST|X .
Theorem 1: The Steiner ratio of the Steiner minimal trees

computed by this algorithm is 1.25.
Proof:

SMT |algX ≤ |MST |X , Lemma 3

SMT |algX ≤ |MST |X≤1.0842|MST |E , Lemma 1

SMT |algX ≤ 1.0842× 2/
√
3|SMT |E , Lemma 2

Therefore, |SMT|alg X≤1.25|SMT|E≤1.25|SMT|X .

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We have implemented the proposed algorithms in C++
language and all experiments were carried out on a server
running Windows 7 with an Intel Core i7 processor (3.5GHz)
and 8-gigabyte memory.

A. 2-D 3-D EXAMPLES AND ANALYSIS
Figs. 9∼13 illustrate the experimental results of the pro-
posed algorithms. In all cases, the black cells represent
obstacles, gray cells represent terminals, and light gray
cells represent branches of SMTs. Figs. 9∼11 show the 2D
planes and Figs. 12∼13 are the 3D volumes. Fig. 9 and
Fig. 10 are the experimental results of the 4-directional rout-
ing. Fig. 11 presents two 8-directional routing results.

FIGURE 9. 4-directional routing results under 80 × 80 map, 100 terminals
and with (a) 50 rectangular obstacles, (b) 100 single-cell obstacles.

Fig. 12 and Fig. 13 present the routing results of 10 and
26 directions, respectively. In the 3D cases, we present small
scale routing results to provide a clear view of the diagrams.
The space and time complexities are O(N 2) and O(N 2

+

Np2log2p) respectively, where N is the number of the grid
nodes and p is the number of terminal vertices in Z (|Z | = p
and p ≤ N ). The results are summarized in Table 3.

B. EXPERIMENTAL RESULTS AND OBSERVATIONS
We compared our algorithms with those presented
in [24], [36], [55] in the 2D rectilinear and octilinear planes,
PORA [48], PSO [49], FH-OAOS [50], and Chow et al. [56],
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FIGURE 10. 4-directional routing result that combines 50 rectangular
obstacles (non-single cell obstacles) and 100 single-cell obstacles.

FIGURE 11. Two routing results of the 2D 8-Directional algorithm under
80 × 80 cell map, 100 terminals and (a) 50 rectangular obstacles,
(b) 100 single-cell obstacles.

FIGURE 12. Routing results of the 3D 10-directional algorithm under
20 × 20×20 cell volume, 10 terminals and (a) 20 non-single cell obstacles
(b) 50 single-cell obstacles.

all works were proposed from 2006 to 2020. There are totally
12 test cases used in [24] and Table 4 lists the total wire
lengths of these algorithms. In Table 4, ‘‘Term #’’ is the
number of terminals and ‘‘Obs#’’ is the number of obstacles,

FIGURE 13. Routing results of the 3D 26-directional algorithm under
20 × 20×20 cell volume, 10 terminals and (a) 20 non-single cell obstacles
(b) 50 single-cell obstacles.

TABLE 3. Summarization of Figs. 9∼13 in Map size, number of terminals,
number of obstacles, number of Steiner points, MST/SMT ratio, and wire
length.

which were random generated from size 1× 1 to 200× 200.
‘‘Rec’’ and ‘‘Oct’’ are the rectilinear and octilinear routings,
respectively. Among them, Chow and PSO did not provide
the results of C12, while PORA lacked C11 and C12. The
percentage of improvement was calculated by ((Other Result
– Our Result) / Other Result) × 100%. The respective
improvements on the total wire length of rectilinear routing
are−11.1%∼ + 9.5% and+0.73%∼ + 60% comparedwith
the algorithms in [24] and [55],−12.9%∼ + 6.3% in Chow,
−17.2%∼ + 1.79% in PSO,−18.63∼ + 2.95 in FH-OAOS,
and −9.6% ∼ + 7.56% in PORA. In the octilinear case,
the improvements on the total wire length are −9.9% ∼ +
47.1% and −17.4% ∼ + 11.5% compared with [55] and
Huang et al. [36], −12.48% ∼ + 14.62 in Chow, −15.4%
∼ + 10.26% in PSO, −17.6% ∼ + 11.57% in FH-OAOS,
and−9.2%∼ + 15.77% in PORA. Compared with the latest
research in 2020 [48], the proposed approach achieves better
performance in most cases of both rectilinear and octilinear
routing.
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TABLE 4. Comparison between [55]-Rectilinear, [55]-Octilinear, [24]-Rectilinear, Huang[36], CHOW [56], PSO [49], FH-OAOS [50], PORA [48] and ours on
wire length.

The results clearly show that our approaches outperform
the CG/DT based approaches in many cases, since the pro-
posed algorithms seek the shortest path in the free space
instead of the path connected from the source, corners
of obstacles to the destination. As described in section 2,
the other major drawback of the CG/DT based approaches is
that the Steiner verticesmust be set in the corners of obstacles;
the total wire length grows prohibitively huge as the number
of obstacles increases sharply. In C12, there are nearly 2 times
improvements to [55] inwire length (1,723,990 vs. 833,071 in
rectilinear and 1,564,170 vs. 826,189 in octilinear) since there
are 10,000 obstacles.

Furthermore, to handle single cell obstacles with size 1×1,
a virtual bound must be attached to the obstacles to at least
2× 2, and this also leads to the increase of wire length.

V. CONCLUSION
This paper has proposed an obstacle-avoiding heuristic for
the minimal Steiner tree problem for multidimensional recti-
linear and octilinear architectures. The 4/8/10/26-directional
algorithm is developed by adapting Areibi’s concept and
Sollin’s minimal spanning tree algorithm. The proposed
algorithm sequentially adds one potential Hanan vertex to
Z and reconstructs the MST to compute the improvement
over the old MST. Among this procedure, the HGMR is
invoked for λ-geometry shortest path routing. This procedure
will continue until the improvement becomes non-positive.

Traditionally, the CG/DT-based approaches need local refine-
ment to each triangle connected by any three terminals and
Steiner nodes, which may limit the capacity for extending
their approaches to higher dimensional environments. Com-
pared to these algorithms, one can replicate our method-
ology to any λ-geometry environment without complicated
refinement, and the point-to-point shortest path is guaranteed.
Compared with researches up to 2020, our approach archived
up to 1.79%∼7.56% improvement on the total wire length in
rectilinear cases, and 10.26%∼47.1% in octilinear cases.
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