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ABSTRACT The k-out-of-n: G(F) majority voter consists of n components (or modules) and a number
of the components are required to be operating correctly for the overall system to be correct. As per the
state discretization of the components, such a system is usually classified as either a binary system or a
multi-state system. In practice, the operating conditions of different components may contribute differently
to the operation of the entire system. In this manuscript, the k-out-of-n: G(F) majority voter is generalized
as a consecutive-weighted-k-out-of-n: G(F) voter with either binary states or multiple states. To overcome
the drawbacks of existing approaches, a stochastic analysis is proposed for assessing the system reliability.
In the stochastic analysis, the input signal probabilities are encoded into non-Bernoulli sequences with fixed
numbers of 0s and 1s for the Boolean case, or randomly permuted sequences for the multi-state scenario.
By using stochastic logic, the reliability of a general system consisting of consecutive-weighted-k-out-of-n
majority voters is efficiently and accurately predicted. The results are validated by an analysis of several
case studies. Although the accuracy of the stochastic analysis is closely related with the employed sequence
length, it is shown that a stochastic approach is more efficient than a universal generating function (UGF)
method, while still retaining an acceptable accuracy.

INDEX TERMS Stochastic computation, non-Bernoulli sequence, stochastic logic, consecutive-weighted-
k-out-of-n: G(F) majority voter, reliability evaluation.

I. INTRODUCTION
The k-out-of-n: G(F) majority voter [1] has been widely uti-
lized to ensure the correct operation of computing systems for
numerous critical applications, including the engine systems
[2], unmanned aerial vehicles (UAVs) [3] and power systems
[4], [5] in the defense and aerospace industry. Thus, the output
performance distribution (OPD) is of great interest and has
been extensively investigated in the technical literature [1],
[6]–[9]. In particular, its reliability has been investigated to
reflect the OPD. The k-out-of-n: G majority voter consists
of n components (modules, units), and it correctly operates
provided the minimal total weight of all good (fault-free, cor-
rect) components is not less than a pre-specified threshold k .
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approving it for publication was Zhaojun Li .

For example, a k-out-of-n binary state system is referred to
as a k-out-of-n: G binary state system if and only if at least
k of the n components function. As long as the reliability
of the k-out-of-n: G system can be found, the unreliability
of an equivalent (n-k + 1)-out-of-n: F system can also be
easily determined (where F indicates a failure). For example,
it may be possible to drive a car if at least four cylinders
are firing in its V8 engine. Thus, the functionality of the
engine is specified by a 4-out-of-8: G system. Equivalently,
a car cannot be driven if less than four cylinders fire (i.e.,
at least 5 cylinders are non-functioning); so, the system can
also be described as a 5-out-of-8: F system [10]. Hence,
the performance evaluation of a k-out-of-n: F majority voter
is equivalent to the analysis of a (n-k+1)-out-of-n: Gmajority
voter. In this paper, without loss of generality, the reliability
of a k-out-of-n: G system is treated in detail.
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The components of a k-out-of-n: G majority voter do not
always equally contribute to the overall performance of the
system. Thus, the traditional binary k-out-of-n: G majority
voter has been further generalized as a weighted binary k-out-
of-n: G voter [11]. In a weighted binary k-out-of-n: G system,
component i is assigned a positive integer wi, that indicates
the utility (contribution) of component. Then, the total weight
of all components is calculated as w =

∑
wi. Therefore, the

system is operational if and only if w > k , where k is the pre-
specified threshold that ensures the system correctness. If for
any i ∈ {1, · · · , n},wi = 1, then the system is simplified as a
k-out-of-n: G voter.

For the performance evaluation of a general weighted
majority voter, a universal generating function (UGF) can
be used to derive the exact expressions [12]; this approach
is also applicable to the analysis of multi-state systems
[13], [14]. However, it incurs a high computational com-
plexity when n increases; alternatively, a recursive algo-
rithm can be used to evaluate the reliability of a binary
weighted k-out-of-n: G system [11]. The recursive approach
is more efficient than the UGF analysis to evaluate a weighted
binary k-out-of-n: G system, as shown in the run time
comparison in [15]. Capacity loss and residual capacity in
binary weighted-k-out-of-n: G systems have been investi-
gated in [16]; a voter consisting of components with ran-
dom weights has been further discussed in [8]. Furthermore,
imperfect fault coverage has also been studied in k-out-of-n
systems [17]–[19].

In practice, the state of a component is not limited to a
binary variable; for instance, a component might have three
states: totally working, partially operating (in a degraded
mode) and failure, i.e. the Boolean assumption for the states is
not always applicable. Therefore, a weighted binary majority
voter has been generalized to a weighted multi-state voter
[20], the component has more than two states and each state
has a positive integer weight which indicates its contribution
to the system’s working state, the system is operational if and
only if the total weight of consecutive working component is
at least k; this topic has been widely investigated in the litera-
ture [21]–[25]. A stochastic multiple valued (SMV) approach
has been proposed to efficiently predict the reliability of
weighted multi-state voter with non-repairable components
and dynamically repairable components, and reliabilities of
components are represented by stochastic sequences [26].
The recursive approach is also applicable to the analysis of
a general weighted multi-state majority voter (as presented
in [15]). It is also proved to be more efficient than the UGF
method for the analysis of a general weighted multi-state
majority system.

Recently, stochastic analysis has been performed for eval-
uating logic circuits [27] and computing the reliability of
dynamic fault trees (DFTs) [28]. The stochastic approach
has been shown to be able to analyze DFTs consist-
ing of non-exponentially distributed components. In [28],
the stochastic analysis is performed to investigate the relia-
bilities of 2-out-of-3 and 3-out-of-5 binary majority voters.

Furthermore, the stochastic approach has been used to ana-
lyze a multi-valued network by utilizing stochastic multi-
valued logic gates [29].

Redundancy techniques have been developed to
ensure high reliability and availability in dependable systems
[30]–[34]. So given the occurrences of different failures,
a stochastic computational model (as proposed in this work)
can efficiently be employed by utilizing only slight modifica-
tions for the different failure scenarios, such as the analysis of
soft errors using a stochastic model [27]. Stochastic models
are also very flexible; approximate computing has been
advocated for designing simpler redundant systems, while
retaining acceptable error rates and improving performance
metrics such as delay and power [35]. Also in this case,
the analysis of an approximate system can be performed by
utilizing a stochastic technique.

As the stochastic approach leads to an efficient and
accurate evaluation of performance by using non-Bernoulli
sequences. In this paper, the system reliability of consecutive-
weighted multi-state voters is investigated through a
stochastic analysis: a non-Bernoulli sequence is generalized
to randomly permuted sequences of fixed numbers of values.
In this manuscript, stochastic computational models are first
proposed for a general k-out-of-n: G system. Then, stochastic
models are respectively proposed for a consecutive-weighted
binary k-out-of-n: G system and a multi-state system. For the
multi-state system, randomly permuted sequences of fixed
numbers of values are utilized to indicate the correspond-
ing signal probabilities. It is shown that the reliability of
a consecutive-weighted binary or multi-state k-out-of-n: G
system is efficiently found by using the randomly permuted
sequences. Based on the proposed stochastic architecture,
the reliability evaluation of a general system consisting
of various gates, such as the Priority AND (PAND) gate,
the Spare gate and the majority voter, can be efficiently
performed. Finally, as signal correlation is preserved by
stochastic sequences, systemswith repeated common compo-
nents can also be analyzed. The accuracy is found to be very
high by using reasonable sequence lengths in the simulation
of several case studies.

The remainder of the paper is organized as follows.
Section 2 reviews the preliminaries on stochastic compu-
tation. In Sections 3, the modified stochastic model for a
binary-state majority voter is presented; then the stochastic
model is generalized for the analysis of weighted major-
ity voter. A stochastic model is proposed for a general
consecutive-weightedmulti-state majority voter. Case studies
are presented in Section 4 to show the efficiency and capabil-
ity of the proposed stochastic approach for analyzing different
systems. Finally, Section 5 concludes the paper.

II. REVIEW AND PRELIMINARIES
A. STOCHASTIC COMPUTATION
Stochastic computation was presented for reliable circuit
design in the 1960s [36]. In stochastic computation, the signal
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FIGURE 1. Logic gates for stochastic computation.

probability is indicated by a stochastic sequence, in which
each bit is set to a specific value. Logic gates are used
for stochastic computation with input signal probabilities
(Figure 1). The output probability is obtained by analyzing
the corresponding output sequence, i.e. Boolean logic oper-
ations are transformed into probabilistic computations in the
real domain. Figure 1 shows the logic gates for the stochastic
analysis employed in this paper. In Figure 1 (a), an inverter
with a random binary sequence as input. In Figure 1 (b), an
AND gate with s-independent inputs. In Figure 1 (c),
an AND gate with totally correlated inputs. In Figure 1 (d),
an OR gate with s-independent inputs. In Figure 1 (e),
A 2-to-1 multiplexer inputs.

In stochastic computation, the number of 1’s in the
output sequence is probabilistically incurred by stochastic
fluctuations [27]. To reduce the stochastic fluctuations, non-
Bernoulli sequences are used to encode the initial signal prob-
abilities [27]. In Figure 1(a-d), a sequence length of 10 bits is
utilized for the stochastic encoding and computing process; a
longer sequence length is usually required for higher accuracy
(Figure 1(e)). The multiplexer computes the weighted sum
with the output being affected by the control sequence. Corre-
lation among signals is usually incurred by the reconvergence
of fanout signals. It can be inherently handled by stochastic
logic because signal dependencies are maintained and prop-
agated (as indicated in Figure 1(c)) [27]; this is a desirable
property when dealing with the common component of a
system [37].

For a generalized system consisting of multi-state compo-
nents, the non-Bernoulli sequence is generalized to a multi-
state scenario. For simplicity, all components are assumed
to have the same number of states and each component is
discretized into M states. For a component with M states,

FIGURE 2. Stochastic encoding of a ternary signal using a sequence
length of 10 values [29].

the probability distribution of each state is given by a vector
P = [pM , pM−1, . . . , p1], with

∑
pi = 1. This signal proba-

bility vector can be encoded into a multiple-valued stochastic
sequence; hence, it is referred to as a randomly permuted
sequence of fixed numbers of multiple values [29].

The use of randomly permuted sequences (as in Figure 2)
in a simulation significantly reduces the amount of stochastic
fluctuations and the effect of fluctuations is made negligible
when using an appropriate sequence length.

B. ASSUMPTION
The following assumptions are made for a general
consecutive-weighted-k-out-of-n: G majority voter.

(1) The state of a component i, i.e., xi, is assumed to
be discretized into Mi values; then xi ∈ {1, 2, · · · ,Mi}

(Mi > 2 and i ∈ {1, 2, · · · , n}). If for every i, Mi = 2, then
the system is referred to as a binarymajority voter. Otherwise,
it is referred to as a multi-state majority voter.

(2) A component i has a positive integer weight, i.e.,
wi > 1, which indicates its contribution to the system’s
working state. If for component i, wi is larger than 1, then
the k-out-of-n system is generalized as a weighted k-out-of-n
system.

(3) The system is operational if and only if the total weight
of consecutive working component is at least k; this is an
a priori specified threshold.

(4) A component is working when its weight is greater
than 0.

(5) All components are working at the beginning of the
mission time.

(6) All states of the n components are mutually
s-independent.

During the specified mission time, the components are
assumed to be non-repairable [38]. For some applications,
(e.g., flight control and space missions), it is difficult
to repair or replace a failed component when a failure
occurs. Maintenance is only performed when the system
is in a specific state (such as for example an idle state
and/or in a specific location), so the system has all good
components at the beginning of each mission for most
applications.

III. PROPOSED STOCHASTIC MODELS
The 4 models for the binary majority voters, the weighted
binary majority voters, the weighted multi-state majority vot-
ers, and the consecutive-weighted multi-state majority voter
are considered next; these models exploit specific stochastic
properties in their analysis to assess different features for
calculating the system reliability.
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FIGURE 3. The stochastic models for majority voters.

TABLE 1. Truth table for a 3-out-of-4 binary-state majority voter.

A. THE BINARY MAJORITY VOTER
For a binary majority voter, each component has two exclu-
sive states: working and failure, indicated by 0 and 1 respec-
tively. As analyzed in [28], a 2-out-of-3 majority voter can be
implemented by stochastic logic. The logical relationship in
the system can be modeled by the combinations of the logic
gates.

The stochastic models for majority voters consist of
stochastic logic. For example, a stochastic model for a 3-out-
of-4 majority voter is presented in Figure 3(a). The truth table
is shown in Table 1. Once any three of the four inputs are
equal to 1, the output of the 3-out-of-4 majority voter is 1.
If the input signal probabilities are encoded by non-Bernoulli
sequences, the output signal probability can be efficiently
derived by analyzing the output sequence. As revealed by the
results in [27], the accuracy in the system reliability for the
stochastic approach increases if a longer sequence length is
utilized.

Based on the stochastic model of Figure 3(a), a stochastic
architecture for a general k-out-of-n majority voter is pre-
sented in Figure 3(b). The stochastic model in Figure 3(b)
is classified into two layers. Layer 1 consists of a number
of multiple-input AND gates. The number of inputs for the
AND gate is k which is determined by the majority voter. The
inputs of an AND gate are given by the possible combinations
of k elements being selected from n; hence, the number
of inputs for the OR gate in Layer 2 is Ck

n . If the input
signal probabilities are encoded as non-Bernoulli sequences,
the output sequence can be obtained through propagating
the stochastic sequences in the stochastic model of
Figure 3(b).

TABLE 2. The simulation results by utilizing different
stochastic models.

By increasing min(k, n-k) or n, the number of input combi-
nations (i.e., Ck

n ) grows rapidly. To avoid the enumeration of
the combinations, a modified stochastic model is presented
in Figure 3(c). The inputs are accumulated by an n-input sum
module (equivalent to the bit-addition of n sequences), and
then the majority voting process is implemented by a thresh-
old module. The threshold module is defined as follows: if the
value is bigger than or equal to a pre-specified threshold, then
the output is 1; otherwise, it is equal to 0. An example of the
threshold logic operation is illustrated in Figure 4, in which
the threshold is set to be 2.

FIGURE 4. An example of the threshold logic.

The generalized stochastic models of Figure 3(b) and (c)
are applied to calculate the output signal probability of a
k-out-of-5 majority voter. The simulation results by utilizing
different stochastic models are illustrated in Table 2 for dif-
ferent sequence lengths. Stochastic analysis is performed for
the investigated system with different sequence lengths. The
input signal probabilities are 0.5. Furthermore, the accurate
results obtained by using the approach in [7] are presented
in Table 2 for comparison. As per the results in Table 2,
the two stochastic models are capable of evaluating general
k-out-of-n majority voters by producing very close results.
The stochastic fluctuation of the stochastic approach
decreases with an increase of sequence length. By utilizing
an appropriate sequence length L, the reliability of a general
k-out-of-n majority voter is effectively and accurately found.

B. THE WEIGHTED BINARY MAJORITY VOTER
A weighted binary k-out-of-n model is generalized in [11];
the ‘‘weight’’ indicates the contribution of each component
to the correct operational state of the system. In a weighted
binary majority voter, the weight of the system is equal to the
sum of the weights of the components; if a component fails,
then its contribution to the system or the weight is 0.

For a weighted binary k-out-of-n majority voter, each
component i has a positive integer weight, i.e., wi > 0
for I = 1, 2, . . . , n. The total weight of all components is
w, which is calculated as w =

∑
wi [15]. Therefore, k is
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the minimal total weight of the working components that
ensures the system to be operational (note that k may be larger
than n). An illustrative example for a general weighted binary
k -out-of-n majority voter (k is a pre-specified threshold,
which might be larger than n) is presented in Figure 5(a),
while a stochastic model for the k-out-of-n majority voter
is presented in Figure 5(b). The binary state of a compo-
nent is first multiplied by the corresponding weight and the
weight of the working components is computed by an n-input
sum module; then, a threshold logic is applied to determine
whether the system works correctly or not. If the input signal
probability is encoded as a non-Bernoulli sequence, then the
system reliability can be easily determined by analyzing the
output sequence. If for any i,wi is always equal to 1, then
the weighted binary majority voter is simply reduced to a
traditional binary majority voter.

FIGURE 5. Illustration of a general weighted binary k-out-of-n majority
voter (a) and a corresponding stochastic model (b).

Example 1: Consider a weighted binary 5-out-of-3: G sys-
tem (Figure 6(a), here, let k be a pre-specified threshold, here
k ∈ {0, 2, 4, 6, 8, 10, 12}); the weights for the components
are 2, 6 and 4 respectively. The system is operational if and
only if the total weight of the functional components is at least
5. An example is presented to use the voter in Figure 6(a)
as a subsystem and to illustrate the capability of a stochastic
analysis for correlated signals.

The UGF of component i is a polynomial function that
relates the probability of each state to the performance of the
component. The UGF defines the OPD for the investigated
system. For the binary weighted k-out-of-n system, the UGF
of component i is given by Ui(z) = pizwi + (1 − pi)z0; here,
pi denotes the reliability of component i and wi indicates the
weight of component i if it is in the working state. The oper-
ator � = �(U1(z),U2(z), . . . ,Un(z)) in [12] can be utilized
for describing the UGF of a system, where � is determined
by the corresponding structure of the components.

The UGFs for the input components are obtained
from [15]:

U1(z) = q1z0 + p1z2

U2(z) = q2z0 + p2z6

U3(z) = q3z0 + p3z4

where qi = 1 − pi and pi indicates the reliability of compo-
nent i, i = 1, 2, 3.

FIGURE 6. Illustration of a general weighted k-out-of-3 majority voter.
(b) A system with the voter in (a) functioning as a subsystem.

Then, the exact expression obtained by the UGF analysis
is [15]:

Us(z) = q1q2q3z0 + p1q2q3z2 + q1q2p3z4

+ (q1p2q3 + p1q2p3)z6 + p1p2q3z8

+ q1p2p3z10 + p1p2p3z12 (1)

The analysis in [14] is applied to find the reliability of the
system for any given threshold value. For k = 5, the reliabil-
ity of the system is based on (1) and given by:

RS(5) = p2 + q2p1p3

By applying the stochastic model of Figure 5(b), a stochas-
tic analysis is performed for the investigated majority voter.
To assess the accuracy of the stochastic analysis, the obtained
results are compared with an accurate UGF approach. The
arbitrarily generated input signal probabilities are shown
in Figure 7(a); then the accurate reliability is given by (2)
and plotted in Figure 7(b) (for the threshold 5). Figure 7(c)
shows the absolute difference between the results obtained by
a stochastic analysis and the UGF approach. The difference
decreases with an increase of sequence length, thus achieving
a higher accuracy.

The average run time for the stochastic analysis is com-
pared with the recursive method in [11] and Monte Carlo
(MC) simulation. The run time is obtained by a software-
based simulation for the stochastic approach throughout this
paper. The results are provided in Table 3, which illustrate the
efficiency of a stochastic analysis. The input parameters are k
and n, respectively indicating the threshold value and the total
number of components. As shown in Table 3, the efficiency
of a stochastic computation approach compares favorably
with the recursive method. In the MC simulation, the binary
input signal, either 0 or 1, is randomly generated according
to the signal probability. The difference between MC and the
stochastic analysis is in the input sequences. For the stochas-
tic analysis, the sequence consists of random permutations of
fixed numbers of 1s and 0s, while for theMC simulation, each
sequence is approximately a Bernoulli sequence generated by
using pseudorandom numbers.
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FIGURE 7. Results for the example in Figure 6(b). (a) Arbitrary inputs; (b) Accurate reliability; (c) absolute difference between stochastic
and accurate results.

TABLE 3. Average run time (Avg.) for the recursive method [11],
stochastic analysis and Monte Carlo (MC) simulation for the majority
voter with randomly generated weights.

The reliabilities of the binarymajority voters (the scenarios
for n = 3 and 4 in Table 3; here, L and N denote the sequence
length for the stochastic analysis and the number of simula-
tions for MC respectively.) found by stochastic analysis are
further compared with the values obtained by using the UGF
approach. The voter is also analyzed byMC simulation. Some
parameters (e.g., the input signal probabilities and weights)
are randomly generated and the benchmark is analyzed for
different approaches. The sequence length (or the number of

simulation runs) is varied in the stochastic analysis (or MC
simulation). The stochastic analysis or the MC simulation is
performed 30 times to determine the reliability. The obtained
values are compared with the accurate value found by the
UGF approach. Then themean and variance of the differences
in 30 simulations are determined. The obtained variances
(in log) for the different scenarios are plotted in Figure 8.
For n = 3, the variance decreases with an increase of the
sequence length or simulation runs. If the sequence length
and the number of simulation runs are 10,000, then the
difference between the found and the accurate mean values
are 1.5667 × 10−4 and 2.800 × 10−4, respectively, for the
stochastic analysis and MC simulation. While both values
are small, the stochastic analysis is more accurate than MC
simulation. This result also applies to the case when n = 4
and the other scenarios in Table 3.

The example in Figure 6(b) is also analyzed by using
stochastic analysis and MC simulation; again, 30 simula-
tion runs with randomly generated input signal probabili-
ties are performed. The input signal probabilities are shown
in Figure 9(a), and the absolute difference between the relia-
bilities obtained by the stochastic analysis andMC are plotted
in Figure 9(b) (the threshold for the majority voter is set to 5).
As shown in Figure 9(b), the difference between the two
approaches decreases with an increase of sequence length for
the stochastic analysis or simulation runs forMC. At the same
sequence length and number of simulation runs, the stochas-
tic analysis generates more accurate results than MC
simulation.

C. THE WEIGHTED MULTI-STATE MAJORITY VOTER
If the state of a component is not limited to a binary value,
then the weighted binary-state majority voter is generalized
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FIGURE 8. Variance (in log) of the difference between a stochastic analysis (or MC) and UGF.

FIGURE 9. Simulation results of 30 runs for the example in Figure 6(b). (a) Arbitrary inputs; (c) absolute
difference between stochastic and MC results.

to a weighted multi-state voter. For a weighted multi-state
majority voter, every possible state of a specific component
contributes to some extent to the system’s output performance
distribution.

For further application of stochastic computation in the
analysis of a weighted multi-state system, the randomly per-
muted multiple-valued sequence can be coded by a combi-
nation of stochastic sequences with the number of sequences
calculated as [log2(j)] where j denotes the number of states for
a specific component. An example is given in Figure 10 by
using a stochastic sequence combination to represent the
randomly permuted sequence of Figure 2 for a ternary signal;
here, the sequence length is set to be 10 bits while ‘‘00’’,
‘‘01’’ and ‘‘10’’ indicate state 1, 2 and 3 respectively. In this
case, a combination of two stochastic sequences is sufficient
to encode the investigated ternary signal.

A stochastic model for a general weighted multi-state
k-out-of-n majority voter is shown in Figure 11. Here, wi,j
represents the weight distributions for state j of component
i. Si denotes the stochastic sequences determined by the

FIGURE 10. Stochastic decoding of a ternary signal,
i.e., p = [0.3, 0.3, 0.4].

input signal probabilities. For simplicity, we assume that each
component has j states. The stochastic sequences for the
input signal probabilities operate as the control sequences
of the multiplexers. Depending on the state values, dif-
ferent weight contributions are selected; then, an n-input
sum module is utilized to compute the total weight of
the working components. Finally, the status of the sys-
tem is determined by the output sequence of the threshold
logic module.
Example 2(a):Aweighted multi-valued k-out-of-3: G sys-

tem is considered to show the efficiency of the proposed
stochastic model. The system is operational if and only if
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TABLE 4. Reliability distribution of component i in state j, i.e., pi,j , and
corresponding weight distribution Wi,j [15].

FIGURE 11. A stochastic model for a general weighted k-out-of-n
majority voter.

the total weight of the functional components is at least k .
For simplicity, it is assumed that each component has three
states.

The reliability distribution and weight contributions of the
components are given in Table 4. Consider the input signal
probabilities and the weight distributions in Table 4, the anal-
ysis of Example 2(a) is performed by using the stochas-
tic and UGF methods [12]. The simulation results for both
approaches are presented in Table 5 for k ∈ [2, 7]. It can be
seen that the stochastic analysis provides very accurate results
using a reasonable sequence length compared with the UGF
approach. As indicated by the simulation time in Table 5,
the stochastic analysis can efficiently predict the output reli-
ability. As the reliability by the UGF analysis is found using
a formula, its run time is very short (by ignoring the time
required for the UGF deriving process), 0.0001249 second
in the case considered here.

In fact, the proposed stochastic model of Figure 11 is
a generalization of the model of Figure 5(b). The multi-
plexer in Figure 11 can be simplified as the multiplica-
tion module in Figure 5(b) if the state of a component is
binary.

D. THE CONSECUTIVE-WEIGHTED MULTI-STATE
MAJORITY VOTER
If the weight of the system is equal to the maximum
sum of the weights of the consecutive working compo-
nents, then the weighted multi-state majority voter is gen-
eralized to a consecutive-weighted multi-state voter. For a

TABLE 5. Comparison of the reliabilities of weighted multi-valued
k-out-of-3 majority voters obtained by stochastic and UGF
analysis, k ∈ [2, 7].

consecutive-weighted multi-state majority voter, every pos-
sible state of a specific component contributes to some extent
to the system’s output performance distribution.

The majority voter shown in Figure 11 is generalized to
a consecutive-weighted multi-state voter. Depending on the
state values, different weight contributions are selected; then,
an n-input sum module is utilized to compute the total weight
of the consecutive-working components. Finally, the status
of the system is determined by the output sequence of the
threshold logic module.
Example 2(b): The majority voter in Example 2 is

generalized to a consecutive-weighted multi-state voter. A
consecutive-weighted multi-state k-out-of-3: G system is
considered to show the efficiency of the proposed stochastic
model. The system is operational if and only if the total
weight of the consecutive-working components is at least k .
For simplicity, it is assumed that each component has three
states.

The UGF of component i is a polynomial function that
relates the probability of each state to the performance of
the component. The UGF defines the OPD for the inves-
tigated system. For the multi-state consecutive-weighted-
k-out-of-n system, the UGF of component i is given by
Ui(z) =

∑
pi,jzwi,j; here, pi,j denotes the probability

of component i being in state j, and wi,j represents the
weight distributions for state j of component i. The operator
� = �(U1(z),U2(z), . . . ,Un(z)) in [12] can be utilized for
describing the UGF of a system, where � is determined by
the corresponding structure of the components.

The UGFs for the input components are obtained as:

U1(z) = p1,1z0 + p1,2z1 + p1,3z2

U2(z) = p2,1z0 + p2,2z2 + p2,3z3

U3(z) = p3,1z0 + p3,2z2 + p3,3z4
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TABLE 6. Comparison of the reliabilities of weighted multi-valued
k-out-of-3 majority voters obtained by stochastic and UGF
analysis, k ∈ [2, 7].

Then, the exact expression obtained by the UGF analysis
is:

Us(z) = p1,1p2,1p3,1z0 + p1,2p2,1p3,1z1

+ (p1,3p2,1p3,1 + p1,1p2,2p3,1 + p1,1p2,1p3,2)z2

+ (p1,2p2,2p3,1 + p1,1p2,3p3,1)z3

+ (p1,2p2,3p3,1 + p1,3p2,2p3,1 + p1,1p2,2p3,2

+ p1,1p2,1p3,3)z4 + (p1,2p2,2p3,2 + p1,3p2,3p3,1)z5

+ (p1,3p2,2p3,2 + p1,2p2,3p3,2 + p1,1p2,2p3,3)z6

+ (p1,2p2,2p3,3 + p1,3p2,3p3,2 + p1,1p2,3p3,3)z7

+ (p1,2p2,3p3,3 + p1,3p2,2p3,3)z8 + z9 (2)

Consider the input signal probabilities and the weight
distributions in Table 4, the analysis of Example 2(b) is per-
formed by using the stochastic and UGF methods. The simu-
lation results for both approaches are presented in Table 6 for
k ∈ [2, 7]. It can be seen that the stochastic analysis provides
very accurate results using a reasonable sequence length com-
pared with the UGF approach. As indicated by the simulation
time in Table 6, the stochastic analysis can efficiently predict
the output reliability.
L denotes the sequence length used in the stochastic analy-

sis. The average run time (Avg. (s)) for the stochastic analysis
is also provided. As evidenced by the simulation results
for Examples 1 and 2 (in Tables 2, 3, 5, 6), the stochastic
approach can accurately and efficiently predict the overall
reliability. Moreover, the proposed model can also be applied
to a majority voter with mixed states (i.e., different compo-
nent has different number of states). The simulation time for
the stochastic analysis only slightly varies as a function of the
threshold value; so, the threshold k has no significant effect
on the average run time.

TABLE 7. Reliability of binary component i, i.e., pi , where
i ∈ {A, B, C, . . . , J}, and the corresponding weight wi .

IV. CASE STUDIES
In this section, the analysis of a system consisting of several
majority voters is presented to show the capability of the
proposed stochastic models. All simulations are run on a
computer with a 2.30 GHz i5-6200U microprocessor and an
8 GB memory.
Example 3: The system in this example is composed of 4

majority voters (i.e., MV1, MV2, MV3, MV4) and 17 compo-
nents (A∼ H are components with binary states, while K∼S
are components with ternary states). This system is shown
in Figure 12(a).

In Figure 12(a), MV1, MV2, MV3 and MV4 are respec-
tively a 3-out-of-4 majority voter, a weighted 20-out-of-
8 binary majority voter, a weighted-10-out-of-7 multi-state
majority voter and a consecutive-weighted-6-out-of-5 multi-
state majority voter. B and D are common components for
MV1 and MV2, while O, P and Q are common components
for MV3 and MV4. The components in MV4 are adjacent
in the order of ‘‘O-P-Q-R-S’’. The common components
are assumed to have different weights for different majority
voters. The reliability of the main task (or event) is deter-
mined by the output of the 4 majority voters and the system
topology.

The reliability and weight distributions for the components
are reported in Table 7; the reliability is assumed to be a fixed
value for each component. The reliability of component m,
m ∈ {K, . . . ,S}, in state j and the corresponding weight are
represented as pm,j and wm,j respectively.
A stochastic model is then constructed in Figure 12(b)

by applying the proposed stochastic models of Figures 3(c),
5(b) and 11. By propagating non-Bernoulli and randomly
permuted sequences through this model, a stochastic analysis
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FIGURE 12. (a) An illustrative system. (b) Stochastic model for the system in (a). Here, S_i to the multiplexer is a combination of two-bit stochastic
sequences.

is performed to find the reliability of the main event. The
simulation results of Example 3, as well as the average run
time for the stochastic approach, are reported in Table 8 for
different sequence lengths.

As per the simulation results, the proposed stochastic
approach can deal with reconvergent fanouts as caused by

common components; furthermore, components with differ-
ent failure distributions are efficiently taken into account by
the encoding property of stochastic sequences.

In practice, if external events occur (such as when a neutron
hits a chip, causing a single event upset), the overall reliability
of the system is affected. To ensure the correct operation
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TABLE 8. Reliabilities of majority voters in Figure 11(a) and the top event
obtained by stochastic analysis, as well as the average run time.

of a system, it is vital to identify the most important (crit-
ical) component because available resources, usually lim-
ited, can be directed for remedy. For the investigated system
in Figure 12(a), we assume that the signal probability of a
specific input for MV1 and MV2 varies from 0.1 to 1, while
the parameters for the other components of MV1 and MV2
remain the same as in Table 7.

As shown in Figure 13(a), the component G is less impor-
tant with respect to increasing the overall reliability than
other components. However, if the reliability of componentD
changes, the reliability of the overall systemwill significantly
change. Thus, to ensure a correct operation, the reliability of
componentD is critical. Furthermore, the relative relationship
between the increasing overall system reliability and the reli-
ability of component i in a range from 0.1 to 1 is illustrated
in Figure 13(b); the sequence length equals to 10,000. When
external factors affecting the reliability of a component occur,
D is the most critical component, i.e., if the reliability of
D decreases, the overall system reliability decreases most
rapidly. The order of importance of the binary state com-
ponents is given by D>B>I>H>C>A>F>J>E>G. Hence,
the stochastic analysis is capable of predicting the importance
order of components, providing further guidance in ensuring
a correctly operating system.

For the stochastic architecture, a complex operation can
be performed by employing a simple logic. The proposed
stochastic scheme is independent of the input sequence; a
unary sequence [39] can also be applied with the proposed
models. However, it should be realized that an increase of
sequence length will incur in a high latency and the gen-
eration of random sequence is costly. As indicated in [40],
pseudorandom circuits account for approximately 90% of the
area of a stochastic circuit design. A Deep Neural Network
is analyzed through stochastic analysis in [41]. Though the
existing stochastic algorithms are likely to incur long laten-
cies, the stochastic computing is still desirable for low-power
area-efficient hardware implementations [41]. Thus, in the
future, it is of interest to investigate the application of new and
different types of sequence, such as the Sobol sequence [42],
a deterministic sequence [39] and time-encoded values [43] to
overcome the limitations of current techniques. Furthermore,
this technique is also capable of dealing with analysis of
complex networks [44].

FIGURE 13. (a) The relationship of overall system reliability; (b) Reliability
increment given variation of the signal probability for certain
component i .

V. CONCLUSION
In this paper, a stochastic architecture is proposed for a
binary-state majority system; this model can efficiently
and accurately evaluate the corresponding system reliability.
Furthermore, for a consecutive-weighted system (i.e., each
component contributes differently to the total system),
a stochastic analysis is pursued to predict the system reliabil-
ity (both binary and multi-state properties can be investigated
accordingly). The input signal probabilities are encoded as
non-Bernoulli sequences of random permutations of fixed
numbers of 1s and 0s for the Boolean case, or randomly per-
muted sequences of random permutations of fixed numbers
of multi-values for the multi-state scenario. These stochastic
sequences are propagated through the proposed stochastic
model; the system reliability can then be obtained efficiently
and accurately by analyzing the stochastic sequence at the
output, as validated by the results for several case studies.

The evaluation accuracy can be improved by increasing
the sequence length L for the stochastic approach, as indi-
cated by the reduced absolute result difference at a longer
sequence length; so, a trade-off between accuracy and effi-
ciency is achieved by the selection of the sequence length.
As shown by the simulation time of the investigated bench-
marks, the stochastic approach is more efficient thanMC sim-
ulation. It has been found that the average run time required
for stochastic analysis is mostly dependent on the employed
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sequence length; furthermore, it has been shown that the
threshold has little impact on the average run time.

The stochastic approach is capable of dealing with any
failure distribution of the components as well as a system
consisting of mixed states, for example by the simulation
results of Example 1 with arbitrary input signal probabilities.
This is made possible because for any failure distribution
and specific mission time points, the failure probability can
be readily obtained for any investigated mission time. This
probability is then directly encoded into stochastic sequences.
This is an advantageous feature of a stochastic analysis;
nevertheless, the stochastic approach consumes more mem-
ory than an analytical approach. As shown in [29], with an
increase of sequence length, a larger memory is required for
the stochastic approach than for MC simulation. However,
due to the faster convergence, the efficiency and accuracy
of the stochastic approach are still highly desirable. The
use of longer stochastic sequences considerably improves
the accuracy of the evaluation, i.e., it is more efficient than
the MC method by several orders of magnitude. Finally, its
efficiency can be further improved through parallelization
in the stochastic computation. Additionally, the importance
of each component in the voting system can be efficiently
assessed by the proposed models to provide further guidance
for protective/corrective processes (such as maintenance) and
the continued correct operation in critical applications.

In the future work, we will discuss the systems with and
dynamically repairable components. The effect of common
cause failures (CCF, caused by flood, hurricane, etc.) for
system can be considered.
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