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ABSTRACT As an important link to guarantee normal industrial production, equipment maintenance
plays an increasingly key role in enhancing the competitiveness of enterprises and supporting green smart
manufacturing. This paper aims to promote the implementation of predictive maintenance for complex
equipment and improve the green performance of themaintenance service process. A structural framework of
information sharing and service network is introduced to build a ubiquitous state data awareness environment
for predictive maintenance service. Subsequently, an integrated mathematical problem model that consists
of carbon emission objective and extended maintenance cost objective is constructed. Then an improved
NSGA-II algorithm is utilized to solve this complicated two-objective optimization problem. In response to
deal with the uncertainties of maintenance service environment and inaccuracy of prediction, a data-driven
dynamic adjustment strategy is applied. A grinding roll fault case of a large vertical is used to demonstrate
the effectiveness of this proposed approach.

INDEX TERMS Predictive maintenance, complex equipment, green manufacturing, information service
network, integrated multiobjective optimization.

I. INTRODUCTION
The complex equipment with characteristics, such as com-
plex product structure, a large number of components,
multidisciplinary technologies and long product life cycle,
is usually the core of industrial manufacturing process. As the
competition among enterprises is becoming cumulatively
fierce caused by externalmarket environment changes includ-
ing globalization and individualized customer needs, timely
and effective complex equipment maintenance security is
increasingly valued by enterprises. Meanwhile, confronted
with mounting energy and environmental pressure, govern-
ments around the world have increased their focus on green
growth and low carbon development of the industrial sec-
tor. Driven by increasing competitive pressures and stricter
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environmental regulations, green manufacturing has been the
inevitable trend [1]. Green manufacturing requires to take
measures to minimize negative environmental impacts (such
as carbon emissions) in three related levels of manufacturing
enterprises, the product, the process and the system [2]–[4].
Equipment maintenance is an important link to guarantee
the normal industrial production process and also a potential
optimized object of process planning for greenmanufacturing
as well. By providing scientific and timely maintenance,
the equipment state can be guaranteed and energy efficiency
can be improved. By avoiding non-value added and redun-
dancy maintenance operations, it can reduce the consumption
of resources such as spare parts and consumables. By com-
bining maintenance planning with green manufacturing opti-
mization objectives in different industrial scenarios, resource
and energy consumption, and pollutant emission can be
further optimized.
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In the field of equipment maintenance, predictive main-
tenance is gradually replacing the passive maintenance and
preventive maintenance [5], [6]. With the help of modern
technologies like sensors, communication networks, and data
mining, equipment current health state and the predictive
information for a period of future time can be obtained to
support more scientific and more flexible maintenance plan-
ning [7]. A lot of research has been done on key support tech-
nology and application technology of predictive maintenance
which include equipment condition monitoring and signal
processing technologies [8]–[12], equipment fault diagnosis
and prediction technologies [13]–[15] and predictive mainte-
nance scheduling optimization technologies [6], [16], [17].
In the field of maintenance scheduling, the maintenance
opportunity and the maintenance resource scheduling scheme
are often considered as two different optimization problems
in [18]–[20]. These researches neglected the development of
detailed maintenance service resource scheduling solutions
when choosing the appropriate maintenance service execu-
tion opportunity. The selected maintenance time node will be
inapplicable if constraints of maintenance service resources
are not considered. On the theme of green manufacturing,
some valuable research results have also demonstrated the
positive impact of predictive maintenance. Rødseth et al.
developed the profit loss indicator as a key performance
criterion to measure green manufacturing state and demon-
strated that the data-driven predictive maintenance strategy
has a positive impact on green manufacturing by a case
study of the sawmill industry [5], [21]. Yao et al. pro-
posed a joint maintenance and energy management method
and the saving of power cost is verified in an automotive
assembly line [22]. Reasonable maintenance strategies can
be implemented to reduce the hydraulic oil consumption of
machine tools based onmonitoring and prediction [23]. In the
semiconductor industry, predictive maintenance strategies for
lenses can be utilized to reduce waste of energy and mate-
rials and hence increase the sustainability [24]. However,
the existing research focusesmore on the indirect reduction of
energy consumption and material consumption by planning
appropriate maintenance time. The optimization of energy
consumption and carbon emission caused by the mainte-
nance scheduling and service process is ignored. For complex
equipment that involve multidisciplinary technologies and
various types of components from different sources, main-
tenance services for many fault types require long mainte-
nance cycle and multiple resource scheduling and utilization,
the optimization of energy consumption and carbon emission
of maintenance service process has important significance for
promoting green manufacturing. There is a research gap in
integrated optimization method for maintenance opportunity
and maintenance resource scheduling scheme of predictive
maintenance for complex equipment under the background
of green manufacturing.

Currently, some factors limit the successful implementa-
tion proportion of predictive maintenance for complex equip-
ment [25], [26]. To monitor and analyze all potential fault

types of the target complex equipment will bring tremen-
dous cost pressure and technical pressure for individual user
enterprises. Moreover, acquiring every possible fault mode
from one asset is very unlikely, and thus the fault sample
data of a single enterprise is often inadequate and the pre-
diction accuracy is limited. Meanwhile, a dynamic produc-
tion environment also requires improving the adaptability of
predictive maintenance decision-making. Hence, timely and
reliable environment information of maintenance schedul-
ing are needed. Fortunately, the new generation of infor-
mation technology trigger changes in many related fields
include predictive maintenance scheduling [27]. Equipment
and available maintenance resources state data can be timely
and effectively collected with the help of technologies like
wireless sensor networks, internet of things, digital twin, and
cyber-physical systems and data mining. Moreover, manu-
facturing enterprises, user enterprises and service enterprises
with different spatial distribution are organized into a service
network. It supports information sharing of the fault knowl-
edge and collaborative predictive maintenance service in a
larger schedulable range. Under this background, based on
timely and adequate information, detailed predictive main-
tenance plan can be further optimized, green indexes of the
scheduling process can be measured. The popularization and
application predictive maintenance can be promoted as well.

Based on above analysis, some related technical/
methodological contributions have been carried out in this
paper, which are summarized as follows.
• A structural framework of information sharing and ser-
vice network for predictive maintenance scheduling of
complex equipment is discussed. Compared with the tra-
ditional way of implementing predictive maintenance,
this framework is designed to support the efficient orga-
nization and flexible configuration of dispersed user
enterprises and service resource suppliers, and conduct
the environment for the integration and comprehensive
analysis of data. The major advantages are described as
follows: (1) The interconnection of user enterprises will
break the information barrier, provide the opportunity
of peer-to-peer evaluation, and achieve the accumula-
tion of fault and prediction data. Based on the shared
information resource, the accuracy of fault diagnosis
and prediction information will be improved for these
enterprises, and the technical difficulty will be reduced;
(2) The construction of a service network that includes
user enterprises and maintenance service resource sup-
pliers from different spatial distribution will promotes
the sharing of maintenance resources, and expands the
schedulable range. With the help of effective collabora-
tive management and allocation methods, the efficiency
and the quality of maintenance services are guaranteed
and improved, inventory cost pressure and technical
pressure of user enterprises are further alleviated as well;
(3) Based on the information perception of the whole
process of resource scheduling, carbon emission pre-
diction of maintenance scheduling process is supported.
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These positive effects will be a huge driving force for
the implementation of predictive maintenance with low
carbon emissions in enterprises.

• An integrated intelligent green scheduling optimization
method of predictive maintenance for complex equip-
ment is proposed. A mathematical problem description
model under the ubiquitous state data awareness envi-
ronment is constructed for the optimization solution
of predictive maintenance plans. In order to improve
the feasibility, the maintenance opportunity and the
maintenance resource scheduling scheme are combined
in the optimization object. Two optimization objectives
are provided. The global maintenance cost is the first
one and the added additional economic benefits obtained
by improving the efficiency and quality of subsequent
production tasks are considered in it. Carbon emis-
sions during maintenance resource scheduling process
is the second one. An improved NSGA-II algorithm is
put forward to solve this complicated two-objective opti-
mization problem. A data-driven dynamic adjustment
strategy for predictive maintenance decisions is utilized
to respond to uncertainties of maintenance service envi-
ronment and inaccuracy of prediction. Driven by real-
time data, the maintenance service plan which includes
necessary maintenance resources and the appropriate
maintenance service time node is updated at the right
time based on this strategy. Through the data-driven
dynamic adaptive adjustment strategy, the joint opti-
mization solution of the maintenance opportunity and
the scheduling scheme of shared maintenance resources,
and the optimization objective function which more
matches the actual circumstances, accuracy, performa-
bility, and flexibility of predictive maintenance decision
can be improved. The performance potential of green
manufacturing can be further tapped at the process level
as well.

• A case problem is solved by applying the proposed
method. The better adaptability of predictive mainte-
nance decisions under this framework to various uncer-
tainty of maintenance service environment is verified.

The remainder of this paper is organized as follows.
Section 2 introduces the structural framework of informa-
tion sharing and service network. Section 3 constructs the
integrated mathematical problem description model for pre-
dictive maintenance scheduling, and an improved NSGA-II
and a data-driven dynamic adaptive adjustment strategy
are utilized to solve the final predictive maintenance plan.
Then, the case analysis is illustrated in Section 4. Finally,
Section 5 concludes this paper.

II. AN STRUCTURAL FRAMEWORK OF INFORMATION
SHARING AND SERVICE NETWORK FOR PREDICTIVE
MAINTENANCE
The corresponding maintenance scheduling and service pro-
cess is complicated since complex equipment involves mul-
tidisciplinary technologies and various types of components

from different sources [28]. In this section, a structural
framework of information sharing and service network for
target equipment and distributed maintenance resources is
introduced to create a ubiquitous maintenance decision and
scheduling environment, and types of data need to be col-
lected which impact maintenance service performance and
corresponding carbon emissions is described. This frame-
work supports a more accurate prediction of performance for
predictive maintenance plans based on the real-time interac-
tive capability between the cyberspace layer and the physical
space layer. Meanwhile, it also promotes the interactive shar-
ing of data across organizational boundaries and supports the
efficient organization and flexible configuration of dispersed
user enterprises and service resource suppliers.

The proposed framework is conducted from three function
layers, i.e., the physical space function layer, local function
layer of the cyberspace, and cloud function layer of the
cyberspace, as shown in Fig.1.

A. THE PHYSICAL SPACE FUNCTION LAYER
In the physical space function layer, state awareness of target
equipment objects and related maintenance service resource
objects are independently completed by the corresponding
object owners. With the wave of automation, digitalization
and intellectualization upgrading in recent years, some data
collection and analysis functions (such as processing param-
eter acquisition and product quality parameter acquisition)
have been implemented by service suppliers and manufactur-
ing enterprises. By reusing and enhancing these functions, the
physical space function layer can be constructed. Data acqui-
sition objects include target equipment, production environ-
ment of target equipment, necessary maintenance resources
(such as maintenance service tools, technicians, consum-
able and components, etc.), and scheduling environment of
maintenance resources. Therefore, four types of data need
to be collected, i.e., the operating data of target equipment
objects, the working environment data, the state data of ser-
vice resource objects, and the scheduling environment data.
Data sources include sensors, controllers, energy monitors,
enterprise information systems, internet, etc. Implementing
sensor-based state monitoring of equipment or manufacturing
processes will encounter many issues like hardware and soft-
ware investment cost, sensor selection, and sensor placement.
Some indirect methods have been displayed to collect state
feature parameters of the target equipment object under the
insufficient sensor condition [29]. The key supporting tech-
nologies of this layer include sensor selection and deployment
technologies, internet of things technology, collection and
transmission technologies for different data types.

B. LOCAL FUNCTION LAYER OF THE CYBERSPACE
The collected original data in the physical space function
layer are isolated and littery. These data will be stored
in a temporary database. The local function layer of the
cyberspace offers data preprocessing capacity and plays as
the data buffer and filter. The key supporting technologies of
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FIGURE 1. The structural framework of information sharing and service network for predictive maintenance.

this layer include data cleansing technology, data partition
technology, and feature extraction technology. This data
processing for each target object is completed independently
by their owner. After preprocessing, these filtered data are
uploaded to the cloud function layer of the cyberspace.

C. CLOUD FUNCTION LAYER OF THE CYBERSPACE
Related state feature parameters are extracted from the
filtered data through data analysis and mining technologies
in this layer. It is necessary to extract different state feature
parameters for different data sources. For predictive main-
tenance target equipment, the extractable state parameters
include fault state indexes, the degradation state indexes of
production efficiency, the stability state indexes of process
quality, remaining service life indexes, etc. For the production
environment of target equipment, related production task
information for a specific period time and their relative
importance should be extracted. For maintenance service
tools and device resources, the extractable state parameters
include spatial location, available quantity, functional state,
scheduling cost, scheduling time, etc. For consumption cate-
gory maintenance resources like maintenance service spare
parts, the extractable state parameters include attribution
state, spatial location, available quantity, scheduling time,
scheduling cost, functional state, etc. For maintenance ser-
vice technicians, the extractable state parameters include

attribution state, spatial location, available quantity, schedul-
ing time, scheduling cost, skill state, etc.

Based on these data, fault state prediction information
of target equipment is obtained based on corresponding
equipment fault diagnosis and prediction technologies, avail-
able maintenance resource collection is pushed in time, and
then predictive maintenance decisions can be supported.
Moreover, these state information of different objects related
to predictive maintenance services are integrated and stored
in a could database. Self-comparison capabilities among the
same or similar equipment objects are provided to aid in
object performance evaluation and state prediction [30], [31].
Based on the state information of these same or similar ser-
vice resource objects which is collected and uploaded by dif-
ferent service suppliers, the available service resource objects
range for complex equipment maintenance is expanded.

III. INTEGRATED INTELLIGENT GREEN SCHEDULING
OPTIMIZATION STRATEGY FOR COMPLEX EQUIPMENT
A. MATHEMATICAL PROBLEM MODELING FOR
PREDICTIVE MAINTENANCE DECISION
Based on the framework proposed above, associated knowl-
edge data come from real-time fault state of target equip-
ment, the working environment of target equipment and
scheduling environment of service resources can be obtained
timely to support predictive maintenance decisions. In this
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section, both the economic performance and the environ-
mental performance are concerned, an integrated mathemat-
ical model for predictive maintenance decision is established
to minimize maintenance cost and the carbon emissions of
maintenance scheduling process simultaneously. The final
decision result includes the maintenance time node and the
corresponding optimal scheduling scheme of maintenance
resources.

1) MODEL DESCRIPTION AND PARAMETER DEFINITION
Some illustrations of this mathematical model are described
below.
• A target complex equipment may occur several different
fault types during its entire life cycle. Different mainte-
nance service tasks can be combined to make a synthetic
maintenance plan under certain conditions [17], [32].
This paper only discusses the predictive maintenance
decision of a single fault type. A fault type is divided
into several fault levels according to the fault degree and
several feasible maintenance modes are distinguished.
The applicability and expected service execution time
of different maintenance modes are different for dif-
ferent fault levels. Different maintenance modes under
different fault levels will result in different equipment
improvements. Its effects will be reflected in the exten-
sion of equipment life and the restoration of equipment
state. Some models for the equipment fault probabil-
ity have been provided [17], [33]. The equipment fault
probability for a specific time node can be calculated.

• Based on existing scheduling information and historical
experience information, the job task sequence associ-
ated with the maintenance target equipment between the
scheduling decision time node and the expected equip-
ment fault time node can be obtained by the user enter-
prise. Each job task is uninterrupted and maintenance
service can only be performed between two adjacent job
tasks. The importance of different job tasks is distin-
guished. The delay in job tasks caused by maintenance
will lead to the delay penalty cost.

• Predictive maintenance is beneficial to improve the pro-
duction efficiency and the overall product quality. The
probability of defective products can also be reduced.
These improvements and the flexible manufacture abil-
ity of user enterprises can offset part of the delay penalty
cost. The equipment reliability will gradually decrease
and the equipment maintenance cost will present a con-
cave curve with the degradation of the device equip-
ment state. Considering the degradation mode and the
coupling relationship of complex functional structures,
to restore the equipment state through the maintenance
service in the early stage of equipment performance
degradation can create more service revenue.

• Monitoring and forecasting of the target equipment fault
state can help to obtain more explicit requirements of
type and quantity for maintenance service resources.
The service resource type includes spare parts,

professional equipment tools, and technicians. There
have demand relationships between maintenance modes
and needed resource types. Based on the framework pro-
posed above, mot only the schedulable scope of mainte-
nance resources is extended, but also more real-time and
accurate maintenance service resource state information
can be obtained. Each resource type has several different
feasible scheduling paths which correspond to different
scheduling time and cost.

To describe the decision problem of predictive mainte-
nance clearly, some related parameters are defined in Table 1.

2) OBJECTIVE FUNCTION FOR PREDICTIVE MAINTENANCE
DECISION
There are two different optimization objectives are proposed
in this mathematical model. The first optimization objective
attempts to minimize a global maintenance cost results from
resource consumption, production delay, and fault risk, etc.
The second optimization objective seeks to minimize the
carbon emission during maintenance resource scheduling.

The direct maintenance cost and the system fault
risk cost are usually considered as common optimization
objectives [34]. However, maintenance service revenue is
neglected. After the maintenance service, the equipment
trouble-free running time is extended and the production
efficiency is improved. There is a nonlinear relation between
maintenance cost and maintenance revenue under the com-
plex and polytropic manufacturing environment. Therefore,
the more precise predictive maintenance plan should simulta-
neously emphasize the direct maintenance cost, the risk cost,
and the maintenance service revenue. A global maintenance
cost is proposed in this section. This global cost is divided
into four parts, resource scheduling cost, delay cost of job
tasks, maintenance service economic benefits, and system
cumulative fault risk cost.

The resource scheduling cost includes the scheduling cost
of various service resources such as professional tools, tech-
nicians and spare parts. The scheduling cost CR is defined
as:

CR =
b∑
i=1

h∑
j=1

MK∑
k=1

(mi × Oij × Sejk × Cjk ) (1)

The execution of the maintenance plan at different time
node will cause the delay of subsequent job tasks. The delay
cost CD is defined as:

CD =
b∑
i=1

l∑
j=1

n∑
k=1

(Td + mi × st j×Tsij)×Cpk×Revijk (2)

where

Td =
(Tz-Tp)+ |(Tz− Tp)|

2
(3)

Tz = max
i=1,2,...,b
j=1,2,...,h

k=1,2,...,MK

(mi × Oij × Sejk×T jk ) (4)

Revijk = (wk × Rek × Rcij × mi × st j) (5)
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TABLE 1. Parameters description. The increased equipment trouble-free running time, the
restoration for the level of qualified product rate and the
improvement of production efficiency will bring additional
economic benefits to user enterprises. The maintenance ser-
vice economic benefits IF is defined as:

IF=
b∑
i=1

l∑
j=1

n∑
k=1

Xzk×Exk×
(
Inaver+Inamp

)
×Til ij×mi×st j

(6)

The equipment state change is uncertain. It is necessary to
consider the equipment fault risk cost when making mainte-
nance decisions. The system cumulative fault risk cost FR is
defined as:

FR =
n∑
i=1

(Inaver + Cl)× Tl × Pl i × Ex i (7)

where

Tl = max
i=b

j=1,2,...,h
k=1,2,...,MK

(
mi × Oij × Sejk×T jk

)
+ Tsbl (8)

The cost IF should be increased, while the cost CR, CD,
and FR should be reduced. User enterprises may pay different
attention to these four parts. This paper combines these four
cost parts into a global maintenance cost by weighting. Thus,
the optimization objective for the maintenance cost is defined
as follows:

min (a1 × CR+ a2 × CD+ a4 × FR− a3 × IF)

s.t.



b∑
i=1

mi = 1

l∑
i=1

st i = 1

n∑
i=1

Ex i = 1

(9)

where the vector a = (a1, a2, a3, a4) denotes the weight dis-
tribution of four cost parts with

∑4
i=1 ai = 1. Their value can

be confirmed by user enterprises through expert estimation
and comprehensive assessment.

Two carbon emission sources of the predictive mainte-
nance service process are included in this optimization objec-
tive for the environmental impacts.

The first source are carbon emissions come from the main-
tenance resource distribution process. The corresponding
maintenance service resource scheduling becomes very com-
plicated since complex equipment involves multidisciplinary
technologies and various types of components from different
sources [5], [35]. Different operation links (for example,
disassembly, inspection, maintenance, assembly, etc.) need to
depend on different maintenance resources (such as profes-
sional testing equipment, hoisting tools, assembly tools, pro-
fessional operators, etc.) during the process of maintenance
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service. Thesemaintenance resources may belong to different
maintenance service resources suppliers of different spatial
distribution. From the perspective of environmental protec-
tion, different distribution methods and routes will produce
different fuel consumption or carbon emissions. The carbon
emissionsCErd caused by fuel consumption can be calculated
as:

CErd = Rg×
b∑
i=1

h∑
j=1

MK∑
k=1

(mi × Oij × Sejk × Gsjk ) (10)

The carbon conversion coefficient of different common
energy resources can be obtained by converting the current
coefficient of standard coal equivalent [36], [37]. The carbon
conversion coefficient Re of the electricity is 0.781 kg/kwh
and the carbon conversion coefficient Rg of gasoline is
2.26 kg/L [38]. Fuel consumption of the distribution process
is related to vehicle type, driving speed, vehicle weight,
load, and distance [39]. Based on the existing research [40],
the total fuel consumption Gsjk of the k-th path for the j-th
resource type is expressed as:

Gsjk =
(
Fr jk × LjK + Fvjk × Vmjk

)
× Djk (11)

where Frjk denotes fuel consumption constant of the
k-th path, Fvjk is fuel consumption constant of the cor-
responding distribution vehicles, Ljk equals to the sum of
no-load weight of distribution vehicle and vehicle load, Vmjk
is the average velocity of distribution vehicle, and Djk is the
distribution distance of the k-th path.
The second source are carbon emissions come from the

maintaining operation process. Maintenance resource tools
with different types and states generate different unit energy
consumption. The carbon emissions CEmo caused by elec-
tricity consumption during maintenance service can be cal-
culated as:

CEmo=Re×
b∑
i=1

h∑
j=1

MK∑
k=1

l∑
g=1

(mi×Oij×Sejk×Pmjk×pj×Tsig)

(12)

The optimization objective for environmental impacts is
to reduce the total carbon emissions of maintenance ser-
vice. Therefore, the optimization objective for environmental
impacts is defined as follows:

min (CErd + CEmo) (13)

B. INTELLIGENT OPTIMIZATION ALGORITHM
As a hot research direction, researchers constantly con-
tribute new optimization algorithms, analyze algorithm per-
formance and improve existing algorithms. For example,
Zhao et al. proposed a modified cuckoo search algorithm
with a self-adaptive step size, some neighbor-study strategies
and an improved lambda iteration strategy [41]. Zhu et al.
improved the convergence rate and the global optimization
ability of the dandelion algorithm by adopting probability-
based mutation [42]. Li et al. put forward a novel formula of

characterizing robustness for algorithms of learning to rank
and proposed an R2Rank approach [43], and Wang et al. pre-
sented a hybrid algorithm, namely HICATS, combining dis-
crete imperialist competition algorithm and tabu search [44].
Function optimization problems of the manufacturing field
have been typical application goals for these intelligent opti-
mization algorithms [45]. The existing research provides a
good reference for solving the function optimization problem
proposed in this paper.

In the model of optimization problem established above,
a feasible predictive maintenance service scheduling scheme
includes the maintenance time node, the maintenance mode
and the corresponding optimal allocation scheme of mainte-
nance resources. The time interval between the scheduling
decision time node and the expected equipment fault time
node is relatively long in a normal condition. The variable n
that is the total number of job tasks associated with the
predictive maintenance target equipment in this time interval
may take a relatively large integer value. The variable b that
is the total number of fault maintenance modes may take a
relatively large integer value under the method of detailed
partition. The multisupplier collaboration based maintenance
service mode extends the schedulable scope of maintenance
resources. The variable ki that is the number of feasible
scheduling paths for the i-th resource type may take a rel-
atively large integer value, too. Therefore, predictive main-
tenance service scheduling for the complex equipment under
the ubiquitous state data awareness environment is a compli-
cated scheduling problem, the number of possible predictive
maintenance service scheduling schemes is

∏h
i=1 n× b× ki,

and this number is enormous. For the complex scheduling
problem, when the number of possible scheduling schemes
becomes very large, the efficiency of traditional calculation
methods drops considerably, and thus, the actual application
cannot be satisfied. The heuristic algorithm can be an appro-
priate method for addressing this problem since it can find
a feasible solution in an acceptable time compared with the
traditional optimal solution algorithms [46].

The proposed optimization problem of predictive main-
tenance has two objectives. There are interactions between
different objectives in a multiobjective optimization prob-
lem, and the improvement of an objective may cause the
performance reduction of the other objectives. To solve dif-
ferent multiobjective optimization models of specific engi-
neering problems, various of multiobjective optimization
algorithms have been proposed and utilized by researchers.
For example, Guo et al. considered multiobjective opti-
mization problems of the product disassembly planning
with resource-constrained and sequence-dependent relation-
ship and proposed a lexicographic multiobjective scatter
search method [47], [48]. Li et al. proposed a multiobjective
optimization configuration method for maintenance service
resources of complex equipment based on an improved
NSGA-II algorithm [46]. Other classic algorithms include
PESA, SPEA2, etc [49], [50]. Among them, NSGA-II shows
better convergence stability and faster convergence rate for
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the optimization problem with less than three objectives [46],
[51]–[53]. In addition, an optimization problem with a simi-
lar type was solved successfully by utilizing NSGA-II [46].
Hence, this paper solves the proposed two-objective opti-
mization problem based on the improved NSGA-II.

The final optimization result is a set of Pareto optimal
solutions. As the Pareto front of feasible solution space, there
has a non-dominating relationship between any two different
solutions of this set. Then, from the point of practical control
requirements of enterprise for the maintenance cost and the
carbon emission index, a proper solution can be chosen to
guide the final predictive maintenance plan that can be moti-
vated by the results in discrete event systems [54]–[56]. The
flowchart of NSGA-II is shown in Fig. 2.

FIGURE 2. The flowchart of improved NSGA-II.

1) CHROMOSOME CODING METHOD FOR MAINTENANCE
PLANS
The coding structure of a feasible predictive maintenance
plan is shown in Fig. 3. The maintenance plan chromosome
is coded with integer. It consists of three parts, the execution
time node, the maintenance mode, and the corresponding

FIGURE 3. The structure of chromosome code for predictive maintenance
service plan.

maintenance service resource allocation scheme. The code
length of a chromosome is 2+h. The Gene1 and Gene2 of
chromosome code denote the selected execution time node
of maintenance service and the type of selected maintenance
mode, respectively. Namely, this service plan would be exe-
cuted before the a-th job task when Gene1 = a, the b-th
maintenance mode type is selected when Gene2 = b. The
selected scheduling paths for corresponding h types of service
resources are represented through Gene3 to Gene2+h. When
Genei = c, it indicates the c-th path of the i-th resource type
is selected. Corresponding chromosome code of a feasible
maintenance plan code can be obtained through the conver-
sion and extraction of mathematical model parameters.

2) THE CROSSOVER AND MUTATION METHOD
As shown in Fig. 4, a small-scale whole interference
crossover method is used to assist in enhancing population
diversity and global search capabilities. Judgment of single-
point mutation is carried out for each chromosome after the
whole interference crossover process.

FIGURE 4. The process of whole interference crossover.

3) THE NON-DOMINANT SORTING METHOD
Assume that there are M optimization objectives. We use
fk (B) and fk (C) to denote the calculated value of the k-th opti-
mization objective for feasible maintenance plans B and C,
respectively. When fi(B)≤ fi(C) is met for arbitrary i (i =
1, 2, . . . ,M ) and there exists j (j ∈ {1, 2, . . . ,M}) such that
fj(B)< fj(C) comes into existence, the maintenance plan C
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is dominated by maintenance plan B. When there exist i
(i ∈ {1, 2, . . . ,M}) and j(j ∈ {1, 2, . . . ,M}) such that
fi(B)< fi(C) and fj(B)> fj(C) come into existence, respec-
tively, there exists a non-dominated relationship between B
and C. The non-dominated sorting method is shown in Fig. 5.

FIGURE 5. The process of non-dominant sorting.

4) CALCULATION OF THE CROWDING DISTANCE
When several chromosomes with the same chromosome
non-dominated level should be to be compared, the calcu-
lation of crowding distance is utilized to distinguish them
and maintain the diversity of the individual population.
Fig. 6 shows the calculation process of the crowding distance.

FIGURE 6. Calculation process of the crowding distance.

C. DATA-DRIVEN DYNAMIC ADJUSTMENT STRATEGY
Things are constantly changing and full of uncertainties.
In addition to the accuracy of prediction information for
fault state of target equipment, dynamic characteristics of
maintenance service decision environment should also be
concerned. Theremay be unexpected state changes for related
service resources, such as changes in scheduling time or cost.
In order to adapt to external environment pressures (such as
the increasingly fierce market competition, customers indi-
vidualized demands, environmental protection requirements,
etc.), more flexible and dynamic production scheduling mode
may lead to frequent changes of job task sequence associated
with target equipment, constraint conditions and optimization
objectives of maintenance decision may also be adjusted
according to the subjective desire of enterprise.

To improve the responsiveness of predictive maintenance
decision-making to uncertain factors, a data-driven dynamic
maintenance decision strategy is adopted in this section. This
dynamic decision process for an unexecuted maintenance
plan is described as follows. Assume that a corresponding
maintenance plan for a maintenance task is determined at
time ti. The Ts(ti) and TE (ti) denote respectively the expected
maintenance execution time node and expected termination
time node of dynamic correction process that is calculated
at time ti. When ti+1≤TE (ti) is satisfied and the (i + 1)-
th dynamic adjustment operation is triggered, rescheduling
calculation which based on the latest data for this unexecuted
maintenance task will be performed at ti+1 and then the
original maintenance plan will be updated. The updated con-
tent of maintenance plans includes three parts, the execution
time node, the maintenance mode which affects the mainte-
nance resource requirement, and the configuration scheme of
corresponding maintenance service resources. The resource
configuration scheme includes different resource types and
corresponding suppliers.

We do not restrict the driving and termination conditions
for dynamic adjustment operations for an unexecuted main-
tenance plan and set it flexibly. Feasible driving conditions
include the error threshold of prediction accuracy for fault
index, the change of production plan, the state change of
service resources and the maintenance service environment,
the adjustment of optimization objectives for themaintenance
plan, etc. The time node which satisfies the max scheduling
time of necessarymaintenance resources before the execution
time node can be one of the feasible termination conditions.

IV. CASE STUDY
The large vertical mill with the complex product structure and
a long lifecycle is the key equipment of the cement production
system. The grinding roll is one of the key parts and the
bearing is its core component. To guarantee the operation
performance of vertical mills, working status monitoring of
the bearing has been implemented in some enterprises. In this
section, relevant monitoring and prediction data of bearing
fault state, common maintenance mode data and available
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maintenance resource data which come from a user enterprise
of the large vertical mill equipment are collected as the case
data. The objective is to validate and analyze the impact of the
proposed integrated intelligent green scheduling optimization
method on predictive maintenance decisions.

A. PREPARATION OF THE CASE DATA
In this case, a predictive maintenance requirement is gen-
erated when the bearing fault state indicator of the target
equipment reaches its critical threshold in this case. The
corresponding bearing fault state that beyond this critical
threshold are divided into five levels. There are three dif-
ferent maintenance modes to be chosen which include the
simple non-replacement maintenance action (e.g., cleaning,
lubrication, etc.), the complex non-replacement maintenance
action (e.g., the repair of damaged parts) and the replacement
maintenance action. Different maintenance modes can be
implemented to deal with the same fault state. A total of
ten maintenance service resource types are needed to support
maintenance operations under different maintenance modes.
From the generation of maintenance requirements to the final
implementation of maintenance service, there are 24 job tasks
associated with the target equipment in the acquisition inter-
val of case data.

The initial fault state monitoring and prediction data of the
generation time node of maintenance requirement and other
relevant parameter data are shown in Table 2. The correspond-
ing parameter definitions are shown in Table 1 of section 3.
The data has been preprocessed to eliminate the impact of
dimension and order of magnitude. The corresponding initial
predictive maintenance plan can be obtained based on them.

The real-time state of relevant target objects is changing
constantly under the dynamic maintenance service environ-
ment. Considering the uninterruptible assumption of the job
task, the latest relevant data of the completion time node for
each job task are all collected. These related data include the
monitoring and prediction data of bearing fault state and the
state data of available maintenance resources. They will be
used to analyze the impact of the data-driven dynamic adjust-
ment strategy on predictive maintenance decisions. Other
parameters such as job task sequence and its weight do not
change with time in this case.

These dynamically changing parameters include the
equipment fault probability vector Pl, the corresponding fault
level vector Cr, the correction factor vector Rt of the resource
scheduling time, the service resources scheduling timematrix
ThxMK , the service resources scheduling cost matrix ChxMK ,
and fuel consumption matrixGshxMK ,. Due to a large amount
of data, the changes of vector Pl and vector Cr are shown
in Figs. 7(a) and 7(b), respectively. Data change of the matrix
ThxMK , GshxMK and ChxMK are not listed.

B. COMPARISON AND ANALYSIS
The case data in Table 2 is utilized to test the effectiveness and
superiority of the proposed improved NSGA-II in solving the

TABLE 2. Parameters and values.
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TABLE 2. (Continued.) Parameters and values.

FIGURE 7. Dynamic environment data. (a) Variation of parameter values
in vector Pl. (b) Variation of parameter values in vector Cr.

integrated intelligent green scheduling problem. For compar-
ison, the NSGA-II proposed in [46] is also used. The same
encoding method and decoding rules are used to have a fair
comparison. These algorithms run on Intel I5 (3.20GHz/8.0G
RAM) PC with a Windows 10 operating system. In order
to obtain a suitable parameter combination of the improved
NSGA-II and compare the performance of the two algo-
rithms, we have conducted some preliminary experiments
with different parameter combinations. The experimental set
of the initial population is {50, 100, 200, 350, 500}. The
experimental set of the maximum evolutionary generation is
{50, 100, 200, 350}. The experimental set of the crossover

probability is {0.85, 0.9, 0.95}. The experimental set of the
mutation probability is {0.05, 0.1, 0.15}. The results of mul-
tiple optimization calculations show that both algorithms can
effectively solve the integrated intelligent green scheduling
problem. However, under the same parameter conditions,
the average run time of the proposed NSGA-II in this paper is
reduced by approximately 8% compared with the algorithm
in [46]. The improvement of algorithm efficiency has impor-
tant significance for timely maintenance decision.When both
the size of initial population and the maximum evolutionary
generation are small, for example, both are 50, the Pareto
front of the proposed algorithm contains better solutions com-
pared with the algorithm in [46]. When both the size of initial
population and the maximum evolutionary generation are
large enough, for example, both are 350, the Pareto optimal
front of the case problem can be found by these two algo-
rithms. Nevertheless, the probability of falling into the local
optimal solution of the proposed algorithm is greatly reduced.
Besides, the time complexity of the improved NSGA-II
is O(maxgen∗obn∗popsize2). The maximum evolutionary
generation maxgen, the number of objectives obn and the
population size popsize are the key influencing factors of
the algorithm performance. The adopted whole interference
crossover method of this improved NSGA-II can effectively
reduce the value of maxgen and popsize while improving the
optimization speed.

Based on experiments and analysis, an optimal combi-
nation of algorithm parameters with better performance is
selected.

The selected algorithm parameters are as follows: the size
of the initial population is 100; the maximum evolutionary
generation is 100; the crossover probability is 0.9; the muta-
tion probability is 0.1. The detailed influence of parameters
on the optimization quality and the further analysis of the
relationship between the problem size and algorithm param-
eters will be discussed in future work.

The case problem is solved by the improved NSGA-II.
Fig. 8(a) shows the proportion change process of non-inferior
solutions. Fitness change of two different optimization objec-
tives are shown in Figs. 8(b) and 8(c), respectively. Fig. 8(d)
shows the final Pareto front.

Several feasible predictive maintenance plans come from
the final Pareto optimal solution set are listed in Table 3.
To build a benchmark, an optimal maintenance plan which
considering the single maintenance cost objective is obtained
based on the general single objective genetic algorithm and
its corresponding carbon emission is calculated. The optimal
cost fitness is 26.861536, a feasible maintenance plan chro-
mosome is [5, 1, 6, 3, 8, 2, 1, 6, 2, 2, 8, 6], and the correspond-
ing carbon emission fitness is 133.9262. Based on theoretical
analysis, this solution should be dominated or included in the
Pareto front. As verified in Fig. 8(d), this single objective
optimization result is included in the Pareto front for the opti-
mization problem. The Pareto front solution set also includes
some more balanced feasible predictive maintenance plans.
Compared with the single objective optimization which only
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FIGURE 8. Optimization process based on improved NSGA-II. (a) Proportion change process of non-inferior solutions. (b) Fitness change of
the maintenance cost objective. (c) Fitness change of the carbon emission objective. (d) Pareto front of the 100th generation.

TABLE 3. Typical optimal maintenance plans of the Pareto front solution
set.

considering maintenance cost, multiobjective optimization
for predictive maintenance decision enables user enterprise
to minimize carbon emissions of maintenance process while
controlling the maintenance cost.

The detailed maintenance plan information represented by
chromosome code can be obtained by decoding. For a feasible
maintenance plan chromosome [5, 1, 1, 3, 8, 8, 1, 6, 7, 1,
8, 6], the first code 5 represents that maintenance service

should be executed before the fifth job task. The second
code 1 indicates that the first maintenance mode should
be adopted. The remaining code string represents the nec-
essary maintenance resource types and their corresponding
scheduling paths. According to matrix Obxh which describes
the demand relationships between maintenance modes and
maintenance resource types, necessary maintenance resource
types for the first maintenance mode can be confirmed. These
resources types include the first, the second, the fifth and the
eighth. Therefore, the first code, the second code, the fifth
code, and the eighth code in [1, 3, 8, 8, 1, 6, 7, 1, 8, 6] are
valid codes. For these four types of necessary maintenance
resources, their scheduling paths correspond to the first path,
the third path, the first path, and the first path, respectively.
From these feasible maintenance plans of the Pareto front,
enterprises can identify the most appropriate one based on
their latest preferences. Carbon tax and carbon credits can be
an important decision basis. In this case, chromosome [5, 1,
1, 3, 8, 8, 1, 6, 7, 1, 8, 6] is chosen as the initial predictive
maintenance plan. The expected resource scheduling time
is 3.5 according to Table 2. Compared to only optimizing
the resource allocation scheme in literature [50] and only
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FIGURE 9. Data-driven dynamic maintenance decision process. (a) Rescheduling iteration process. (b) Change of the Pareto
front.

optimizing the maintenance time in literature [18], the pro-
posed integrated optimization method can obtain a more
feasible maintenance plan.

In response to uncertainties and dynamic characteristics of
the maintenance service environment, dynamic adjustment of
the unexecuted predictive maintenance plan is implemented.
Completion of each job task is chosen as the trigger condition
of rescheduling adjustment in this case. It generates a new
maintenance plan based on the latest data to replace the
original plan. This iteration process is stopped when the time
difference between decision time node and corresponding
expected execution time node is less than the demand time
for resource scheduling. As shown in Fig. 9(a), rescheduling
iteration process is terminated after the sixth adjustment. The
corresponding Pareto front solutions which are calculated
based on the latest forecast data is listed in Table 4. They show
that the relatively optimal maintenance time node is before
the eighth job task.

TABLE 4. Typical optimal maintenance plans of the pareto front solution
set.

Analyzing the dynamic rescheduling process, it is found
that the execution time node of the maintenance service and
the resource configuration scheme are optimized and updated
according to the latest dynamic data. The maintenance cost
fitness and carbon emission fitness fluctuate constantly even
though with the same fault level and maintenance mode. It is
because of the dynamic change of the maintenance resource
state. Besides, the bearing of grinding roll is expensive and
the loss of unit downtime is relatively large for the large
vertical mill. Hence, it is more inclined to implement low-
complexity maintenance in early fault levels. Fig. 9(b) shows

the change of Pareto front for different rescheduling time
nodes. With the dynamic adjustment strategy, the opportunity
of obtaining predictive maintenance plans with lower main-
tenance costs and carbon emissions can be improved, and the
adaptability of the maintenance plan is guaranteed as well.

V. CONCLUSION
Scientific and efficient complex equipment maintenance
security can not only improve the equipment production
efficiency but also play a key role in the path towards green
manufacturing. Predictive maintenance further expands this
potential. However, prediction accuracy and adaptability of
maintenance plans limit the implementation of predictive
maintenance. Meanwhile, researchers pay less attention to
the environmental impact of the maintenance scheduling
process. To address this problem, this paper focuses on the
precise decision of predictivemaintenance under a ubiquitous
create maintenance scheduling environment. A structural
framework of information sharing and service network for
predictive maintenance scheduling of complex equipment
is introduced to achieve real-time perception of equipment
objects and maintenance service resource objects. This
framework supports the interactive sharing of data across
organizational boundaries and expands the schedulable range
of distributed maintenance service resources. Carbon emis-
sion can also be monitored and controlled based on schedul-
ing process awareness. Then, a mathematical problem model
of predictive maintenance decision is established. Carbon
emission is introduced as one of the objectives. Through
the improved NSGA-II algorithm, a Pareto front solution set
corresponding to different preferences is provided to user
enterprises. The maintenance time node, the maintenance
mode, and the configuration scheme of required maintenance
service resources are all integrated into this optimization
problem. Considering uncertainties of the maintenance ser-
vice environment, a data-driven dynamic predictive mainte-
nance decision strategy is applied. Finally, a case study is
provided to validate the proposed dynamic predictive main-
tenance decision method. The proposed integrated intelligent
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green scheduling optimization method can improve the relia-
bility of a predictive maintenance plan and mining the green
performance potential of maintenance scheduling process.

In the next phase of our study, some constraints and
assumptions of the mathematical model will be improved to
adapt to the actual manufacturing environment. More sources
of carbon emissions, and other pollutant emissions during the
whole maintenance service process will be considered. Green
predictive maintenance with high precision is an important
research direction. The research in this paper and future work
will provide feasible technical supports in this filed.
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